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We study a dynamic market with asymmetric information that creates the lemons problem. 
We compare efficiency of the market under different assumptions about the timing of 
trade. We identify positive and negative aspects of dynamic trading, describe the optimal 
market design under regularity conditions and show that continuous-time trading can 
always be improved upon if sellers are present at t = 0. Instead, continuous trading is 
optimal if sellers arrive stochastically over time.
© 2019 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

When designing or regulating a market, an important variable to study is the frequency with which traders are allowed to 
trade or make offers to each other. In this paper we take the set of times the market is open, �, as our only design or policy 
instrument and study how different timing protocols affect the equilibrium and welfare in a market with adverse selection.

In Akerlof (1970) the seller makes only one decision at the start of time: to sell the asset or not, � = {0,∞}. However, 
in practice, if the seller does not sell immediately, there are often future opportunities to trade. Delayed trade can be used 
by the market as a screen to separate low-value assets (those that sellers are more eager to sell) from high-value assets. 
As we show in this paper, dynamic trading creates costs and benefits for overall market efficiency. On the positive side, 
the screening via costly delay increases in some instances overall liquidity of the market: more types eventually trade 
in a dynamic trading market than in the static/restricted trading market. On the negative side, future opportunities to 
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trade reduce the amount of early trade, making the adverse selection problem worse. There are two related reasons. First, 
fixing the time 0 price, p0, buyers update positively about the value of the asset if the seller reject this price, leading 
to a higher future price. This makes it desirable for some seller types to wait. Second, the types who decide to wait are 
a better-than-average selection of the types that were supposed to trade at time 0 in a static model. Hence the average 
quality at time 0 falls, so p0 must decrease. In turn, even more types decide to wait, reducing efficiency further.

Consider next the case where the seller is free to trade at any point in the interval �C = [0, T ] and all traders are present 
at t = 0. When a privately informed seller can trade now or the next instant, it is really hard to screen types since the cost 
of waiting and trading the next instant is negligible. In this case, trade is smooth and a differential equation captures the 
speed at which types trade. If T → ∞, asymptotically all types eventually trade but they do so at a slow pace. Next consider 
introducing a small closure of time � after the initial round of trade �EC ≡ {0} ∪ [�, T ]. Now the sellers that were trading 
in (0,�) must decide if they trade earlier or later. Importantly, as some sellers start trading earlier, a virtuous circle takes 
place: as better types trade earlier, competition on the buyers’ side implies that the price at t = 0 must increase, but this 
in turn attracts even more sellers to trade early. This allows us to establish that if all the traders are present at t = 0 then 
continuous trading is never optimal. A small departure from continuous trading leads to a Pareto improvement.

It is natural then to ask what happens as we increase �. Consider the extreme case when � = T i.e., we allow just one 
opportunity to trade at time 0 and never again until T (just as in Akerlof (1970) if T = ∞). In this case, there will be a 
large mass of sellers that trade at time 0, but some seller types might prefer to hold on to their asset rather than receiving 
a low pooling price. For large T , this would not be a Pareto improvement over continuous trading, since some types that 
used to trade now don’t do so anymore. Still, we show in Theorem 1 that, under a regularity condition (similar to what is 
used frequently in mechanism design), this is the optimal timing design in terms of maximizing expected gains from trade.

For both of these results and the recommended policy implications, it is important to identify what time 0 in the model 
corresponds to in practice. Our model shares this issue with any model in which time on the market plays a signaling role. 
In practice, identifying when gains from trade arise (say, because the seller is hit by a liquidity need) may not always be 
easy. Certain occasions may, nonetheless, provide a good proxy. For example, while working to stop the Deepwater Horizon 
oil spill, BP announced a plan to sell $30 billion worth of assets in order to have the necessary liquidity to face the liabilities 
stemming from the accident. During the recent financial crisis, several financial institutions sold large portfolios of assets 
and minority stakes in other companies to strengthen their financial position and meet capital requirement regulations.1

Although not perfectly, the explosion of the oil well and the collapse of Lehman Brothers serve as natural candidates for 
time 0. Another good example is that of firms that enter into bankruptcy. As part of their reorganization, they commonly 
divest non-core assets and could use costly delay to signal the value of those assets. For such situations, our model suggests 
that to maximize expected gains from trade, there should be an organized auction early in the bankruptcy process with an 
obligation not to resell the asset for a period of time if the auction fails.

Our results also suggest that normal times, when there is no initial event and gains from trade arise stochastically 
over time, call for a laissez-faire approach. In Theorem 2 we show that in a stationary environment with sellers arriving 
at a Poisson rate over time (and in a linear-uniform case), discounted gains from trade are maximized by having the 
market continuously open. The cost of having some traders wait until the market opens surpasses the benefits highlighted 
above of restricting trading opportunities conditional on the seller being present. It is worth noting though that the cost of 
introducing small discrete trading intervals of size � is second order. Thus, if there are other first-order considerations such 
as high-frequency traders picking stale orders, it might still be beneficial to introduce some small trading restrictions.

Lastly, our findings that restrictions to future trading can improve welfare bring up an important practical issue: can the 
involved parties credibly commit to keeping the market closed in the future? As we point out in Remark 1, one way to 
achieve such commitment is to make trades completely anonymous, so that past buyers could re-sell the asset if the market 
becomes active without their counterparties knowing whether they are facing the original seller or a previous buyer. If this 
were implemented, buyers would be discouraged from purchasing the asset after time zero since they would face additional 
adverse selection. As a result, the seller would not be able to get a higher price if he delays the transaction (unless he waits 
till the information arrives) and the gains from trade we describe in Theorem 1 would be realized.

1.1. Related literature

Our paper contributes to the literature on dynamic markets with adverse selection that includes Nöldeke and van Damme
(1990), Swinkels (1999), Janssen and Roy (2002), Kremer and Skrzypacz (2007), Fuchs et al. (2016), and Daley and Green
(2012). These papers characterize equilibria of trading games under different assumptions about information available in 
the market. While we share with these papers an interest in dynamic markets with asymmetric information, none of these 
papers focuses on timing as a design element. An exception, albeit using a search framework, is the work by Camargo and 
Lester (2014) who also study equilibrium dynamics with adverse selection and present an example where sunset provisions 
might be useful when introducing subsidies.

1 Merrill et al. (2012) show that the willingness to sell residential mortgage-backed securities by insurance companies can be partly explained by the 
severity with which their capital constraints were binding.
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In terms of results, our paper is most closely related to our earlier paper, Fuchs and Skrzypacz (2015) [FS]. There, we 
look at government interventions after events such as the recent financial crisis.2 There are two important differences: in FS 
we give the planner a richer set of instruments, and we assume T = ∞. We allow the planner to tax and subsidize trades 
differentially over time and endow it with an initial budget. Moreover, when we assume traders arrive over time, we allow 
the planner to regulate the prices in the market. When traders are present at time 0, the extra power of the government is 
not too relevant. Indeed, as we show there (see FS Theorem 1), the government effectively uses taxes to close the market 
after an initial round of trade, similarly to Theorem 1 in this paper. There are many instances, such as in the design of 
trading platforms, in which a rich set of taxes and subsidies may not be an available instrument, and yet determining with 
which frequency players get to trade might be. In contrast to our previous work, this paper aims to highlight ‘timing design’ 
as a valuable form of market design.

From the perspective of proof techniques (use of mechanism design), both our papers are related to Samuelson (1984). 
He characterizes a welfare-maximizing mechanism in a static model subject to no-subsidy constraints. When T = ∞, this 
static mechanism design is mathematically equivalent to a dynamic mechanism design, since choosing probabilities of trade 
is analogous to choosing delay. Our analysis in this paper is more general since we also allow for both finite T and for 
the case in which the arrival time is stochastic. In these cases, the models are no longer equivalent. Although our proof 
of Theorem 1 uses similar methods to Samuelson (1984), the problem changes in two important ways because we allow 
T < ∞. First, when calculating the gains from trade, now the alternative is to wait until time T (or the stochastic arrival of 
information) and trade efficiently. This reduces the gains from trading at t = 0. Second, there is an additional effect because 
the possibility of trading when information is revealed also changes the outside option of the seller. In turn, this changes the 
information rents that are captured by the different types. From an applied perspective, solving the model with temporary 
information asymmetry allows us to apply the model to situations such as stress tests or other forms or regulatory approval 
that might reveal the seller’s private information.

When the seller is not present at time 0, there is an important difference in results vis a vis FS. By regulating the price 
in the market to be equal to the pooling price of the period when there is only one trading possibility, the planner in FS is 
able to effectively eliminate any incentives to delay trade while allowing players to trade as soon as they enter the market. 
In this paper, the stationary instrument is a trading frequency �, allowing trades at �, 2�, ... Increasing �, increases the 
efficiency conditional on the seller being present, but at the cost that now the seller will arrive at t ∈ (n�,(n + 1)�). That 
would imply an efficiency loss of waiting for the first opportunity to trade. We show that this cost is larger than the benefits 
and thus it is optimal in this case to have the market continuously open.

Conceptually, we believe this paper is more directly related to papers where the timing of trades is a design element. 
The market microstructure literature (see Biais et al. (2005)) has also considered the question of how different trading 
protocols perform in the presence of adverse selection. That literature has mainly focused on stock markets where there are 
potentially many competing sellers, divisible assets and dispersed information. In this respect our work is related to Vayanos
(1999) and Du and Zhu (2017) who focus on the effect of frequency of trade on the price impact of trades in imperfectly 
competitive markets. The differences between known and unknown timing of arrival have been also considered by Janssen 
and Karamychev (2002), who show that equilibria in dynamic markets with dynamic entry can be qualitatively different 
from markets with one-time entry if the “time on the market” is not observed by the market (see also Hendel et al. (2005)
and Kim (2017) about the role of observability of past transaction/time on the market).

Finally, there is also recent literature on adverse selection with correlated values in models with search frictions (among 
others, Guerrieri et al. (2010), Guerrieri and Shimer (2014) and Chang (2018)). Rather than having just one market in which 
different quality sellers sell at different times, the separation of types in these models is achieved because markets differ 
in market tightness. In a market with low prices a seller can find a buyer very quickly and in a market with high prices 
it takes a long time to find a buyer. Low-quality sellers who are more eager to sell quickly self-select into the low price 
market while high-quality sellers are happy to wait longer in the high price market. One can relate our design questions to 
a search setting by studying the efficiency consequences of closing certain markets (for example, using a price ceiling). This 
would roughly correspond to closing the market after some time in our setting.

2. The model with a known timing of shock

As in the classic market for lemons, a potential seller owns one unit of an indivisible asset. When the seller holds the 
asset, it generates for him a revenue stream with net present value c ∈ [0,1] that is private information of the seller. The 
seller’s type, c, is drawn from a distribution F (c), which is common knowledge, atomless and has a continuous, strictly 
positive density f (c). At time T ≤ ∞ the seller’s type is publicly revealed.3

There is a competitive market of potential buyers. Each buyer values the asset at v (c) which is strictly increasing, twice 
continuously differentiable, and satisfies v (c) > c for all c < 1 (i.e., common knowledge of gains from trade) and v (1) = 1

2 See also Tirole (2012) and Philippon and Skreta (2012).
3 We could think of the public revelation of the banking stress tests as a possible example of this.
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(i.e., no gap on the top). These assumptions imply that in the static Akerlof (1970) problem some but not all types trade in 
equilibrium.4

Time is t ∈ [0,∞] and we consider different market designs in which the market is opened at different moments in that 
interval. Note that the first time the market opens after private information is revealed, trade will take place immediately 
with probability 1. So without loss we consider only t ∈ [0, T ] and assume that the market is always “opened” at T (but see 
Section C.3 in the Appendix for the possibility of restricting trade also at T and later).

Let � ⊆ [0, T ] denote the set of times that the market is open (we assume that at the very least {0, T } ⊂ �). We call �
the timing design, motivated by a regulator or a market maker who can affect when the market is open (by its choice of �).

There are many examples of possible timing designs; some examples are: (i) infrequent trading �I = {0, T } (ii) con-
tinuous trading, �C = [0, T ], (iii) constant frequency of trading: �� = {0,�,2�, ..., T }, and (iv) early closure design: 
�EC = {0} ∪ [�, T ].

Every time the market is open, there is a market price pt at which buyers are willing to trade, and the seller either 
accepts (which ends the game) or rejects it. If the price is rejected the game moves to the next time the market is open. 
If no trade takes place by time T , the type of the seller is revealed and the price in the market is v (c), at which all seller 
types trade.

All players discount payoffs at a rate r, and we use δ = e−r� when convenient. If trade happens at time t at a price pt , 
the seller’s payoff is

(
1 − e−rt) c + e−rt pt

and the buyer’s payoff is

e−rt (v (c) − pt) .

2.1. Equilibrium definition and examples

There are many ways regulators or market makers may influence markets. For example, designers can tax or subsidize 
trade, or choose how much information to reveal (as in the literature on information design). In this paper we focus on the 
problem of a market designer who can choose timing design, while prices and trades are set by equilibrium forces that we 
define now. Despite timing design being a rather limited tool (as opposed to using arbitrary taxes and subsidies subject to a 
budget constraint), we show that under certain conditions timing design can be as efficient as an arbitrary balanced-budget 
policy. We also discuss how in this case a certain information policy can do as well.

Before defining equilibrium it is worth noting that the Skimming Property holds in this setting. That is, in any equilibrium, 
if a given type c is willing to accept an offer pt at time t then, all types c′ < c would also accept this offer (had they not 
traded before). Since we know that the skimming property holds in this environment it is simpler to directly define the 
competitive equilibrium in terms of cutoffs.

A competitive equilibrium for a given timing design � is a pair of functions {pt ,kt} for t ∈ �/ {T } where pt is the com-
petitive market price at time t and kt is the highest type of the seller that trades at time t . These functions must satisfy:

(1) Zero profit condition: pt = E [v (c) |c ∈ [kt−,kt ]] where kt− is the cutoff type at the previous time the market is open 
before t (with k0− = 0 for the first time the market is opened.)5

(2) Seller optimality: given the process of prices, and that prices at T are pT (c) = v (c) (for every history of previous 
play), each seller type maximizes profits by trading according to the rule kt .6

(3) Market Clearing: in any period the market is open, the price is at least pt ≥ v (kt−).
Conditions (1) and (2) are straightforward. Condition (3) guarantees that there is no excess demand given the prices 

at times when the market is open but there is no trade. If the asset were offered at a price pt < v (kt−) at time t , then, 
since the value of the good is at least v (kt−), there would be excess demand making those prices inconsistent with market 
clearing.

We assume that all market participants publicly observe all the trades. Hence, once a buyer obtains the asset, if he tries 
to put it back on the market, the market makes a correct inference about c based on the history. Since we assume that all 
buyers have the same value of the asset, there would not be any profitable re-trading of the asset (after the initial seller 
transacts) and hence we ignore that possibility (however, see Remark 1).

To illustrate the model and the definition of equilibrium consider the timing design: �� = {0,�,2�, ...} (with T = ∞).
The equilibrium conditions at times the market is open are:
Zero profit condition:

pt = E [v (c) |c ∈ [kt−�,kt]] .

4 Assuming v (1) = 1 allows us not to worry about out-of-equilibrium beliefs after a history where all seller types are supposed to trade but the trade 
did not take place. We discuss this assumption further in Section C.4 in the Appendix.

5 In continuous time we use a convention kt− = lims↑t ks , E [v (c) |c ∈ [kt−,kt ]] = lims↑t E [v (c) |c ∈ [ks,kt ]], and v (kt−) = lims↑t v (ks). If kt = kt− then the 
condition (combined with the market clearing condition 3) is pt = v (kt).

6 Implicitly, for the equilibrium to exist we require that the price process is such that an optimal seller strategy exists.



W. Fuchs, A. Skrzypacz / Review of Economic Dynamics 33 (2019) 105–127 109
Fig. 1. Equilibrium dynamics for different trading frequencies.

Seller optimality:

(pt − kt) = e−r� (pt+� − kt) .

The seller optimality conditions are the indifference conditions for each cutoff type trading at t , for every t ∈ �� . They 
are necessary and sufficient for the seller optimality in case there is trade in every period.

From these two equations for given � we can derive a difference equation for equilibrium cutoffs and prices.7

An equilibrium for infrequent trading, �I = {0, T }, is characterized by just {p0,k0} that satisfy:

p0 = E [v (c) |c ∈ [0,k0]] and

(p0 − k0) = e−rT (v (k0) − k0) ,

where the right-hand side of the second condition follows from the assumption that at T seller’s type becomes public and 
he sells for pT (c) = v (c).

Finally, in case of continuous trading, �C = [0, T ], the equilibrium is the unique solution to:

pt = v (kt)

r (pt − kt) = dpt

dt

k0 = 0,

where the first equation captures the zero-profit condition in case trade is atomless over time, the second equation is 
the indifference condition for the current cutoff type that implies global optimality, and the last equation is the boundary 
condition.8

Below we plot the path of cutoffs for different values of � for the case c distributed uniformly over [0,1], v (c) =
1+c

2 , r = 10%, and T = ∞.
How does trading efficiency depend on �? From Fig. 1, it is not obvious. As can be observed, there is generally a 

trade-off, with some types trading sooner as � increases and some types trading later. For our example we can compute 
the discounted realized gains from trade for different values of �. Fig. 2 presents these results normalized by the full 
potential gains from trade.

Consider the two extreme cases: �I = {0} and �C = [0,∞]. Committing to only one opportunity to trade generates a 
big loss of surplus if there is no immediate trade. This clearly leaves a lot of unrealized gains from trade in our example: 
types between 2/3 and 1 do not trade. However, it is this inefficiency upon disagreement that helps overcome the adverse 
selection problem and increases the amount of trade in the initial period (types c ∈ [0,2/3] trade at time t = 0). Continuous 
trading, on the other hand, does not provide many incentives to trade early since a seller suffers a negligible loss of surplus 
from delaying to the next instant. This leads to an equilibrium with smooth trading over time with only the lowest type 

7 See Appendix B for a detailed derivation of the equilibrium for �I = {0} and �C = [0,∞], and the proof of Theorem 2 for �� = {0,�,2�, ...} when 
v (c) is linear and F (c) = c. These equations have a unique solution for the linear-uniform case, but in general there could be more than one solution and 
hence more than one equilibrium for a given �. That is even true as � → ∞ so the model becomes static.

8 The intuition for the uniqueness of equilibrium for �C is that if there was an atom of trade at some time t , then at t + ε price would have to increase 
discontinuously and that would contradict optimality of the seller’s strategy. See Fuchs and Skrzypacz (2015) for a detailed discussion.



110 W. Fuchs, A. Skrzypacz / Review of Economic Dynamics 33 (2019) 105–127
Fig. 2. Efficiency relative to first best for different frequencies of trade.

trading at t = 0. While the screening of types via delay is costly, the advantage is that eventually (if T is large enough) more 
types trade. In determining which trading environment is more efficient on average, one has to weight the cost of delaying 
trade with low types with the advantage of eventually trading with more types. In our example, the trade-off is always 
resolved in favor of trading less frequently, as illustrated in Fig. 2. When the market is continuously open, only 66% of the 
available surplus is attained, and when the market opens only once, 89% of the surplus is attained. In the next section we 
discuss the generality of this finding.

3. Optimality of restricting trading opportunities with a known timing of shock

Our examples above illustrated that restricting the timing of trade can be better than allowing continuous-time trading. 
In this section we characterize the optimal � (under some regularity conditions) and discuss other choices of �. Our 
example so far compared continuous trading market with one-time trading and constant frequency of trading. There are 
many other natural possibilities when the timing of the shock is known. For example, the market could be opened at 
0, then closed for some time interval � and then be opened continuously. Or the market could start off being opened 
continuously and close for some � before T (i.e., at t = T − �).

3.1. When infrequent trading is optimal

The main result of this section is that under a relatively general set of conditions, the optimal design is to have infrequent 
trading �I = {0, T }. The result is that under the sufficient condition design �I dominates �C and any other �: closing the 
market at all intermediate periods is better than any other timing protocol (not just continuous trading).

A sufficient condition for our result is regularity defined as:

Definition 1. We say that the environment is regular if f (c)
F (c)

v(c)−c
(1−e−rT )+e−rT v ′(c)

and f (c)
F (c) (v (c) − c) are decreasing.

To understand the regularity condition, it is convenient to think of a static mechanism design problem but where the 
seller’s reservation value is some increasing function R (c). In our case, the outside option of type c is to wait to trade at 
time T at price v (c), so R (c) = (

1 − e−rT
)

c + e−rT v (c). With this notation, the first part of the regularity condition can be 
written as:

v (c) − R (c)

R ′ (c) F (c)
f (c)

is decreasing.

As we explain below, the numerator captures the gains from trade with type c at time 0, and the denominator measures 
the information rents effect of trading with this type. When this ratio is decreasing, the marginal gains from trade per unit 
cost necessary to induce higher types to trade are decreasing in c. This helps us prove that the optimal market design is 
such that some types trade at t = 0 for sure and all other types wait to trade at T . The option to wait till T has a special 
role not present in standard static mechanism design: if the mechanism calls for the seller to not trade before T , we assume 
that at that point the seller can capture the full surplus by selling his asset in the competitive market at price v (c). Hence 
his outside option is a function of the buyer’s value, v (c) (and his information rent is a function of v ′ (c)).

Theorem 1. If the environment is regular then infrequent trading, �I = {0, T }, generates higher expected gains from trade than any 
other market design.9

9 Omitted proofs can be found in Appendix A.
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We establish this theorem by proving an even stronger result. Suppose that a market designer could design an arbitrary 
direct revelation mechanism in which the seller would report c, and the buyers would obtain the good at some price, 
subject to the following constraints: (i) the buyers do not pay more than the expected value of the asset that they receive; 
(ii) the market designer has on average a balanced budget (but can cross-subsidize types); (iii) the seller finds it optimal 
to report c truthfully, and his participation constraint is satisfied (i.e., the seller payoff is at least R (c) that corresponds to 
holding the asset till T ); (iv) if the mechanism does not call the seller to sell before T , the seller obtains payoff R (c).

Such a direct revelation mechanism describes, as a function of reported type, three objects: the probability that the seller 
holds the asset till T , y (c); the probability distribution over selling times in [0, T ) conditional on selling before T , Gt (c);
and the expected net present value of the payment the seller receives, P (c). Compared to the timing design alone, this 
more general class of mechanisms gives the market designer the flexibility of taxing and subsidizing trade at different times 
and potentially cross-subsidizing trades of different types.

In the proof, we show that, under the regularity conditions, the solution to the relaxed problem is that types below a 
threshold trade immediately and types above the threshold wait till T , with no trade in the middle. That solution to the 
relaxed problem can be implemented by the �I design. (If design �I leads to multiple equilibria, our theorem applies to 
the one in which the threshold k0 is the highest across all equilibria). So indeed, design �I maximizes total surplus even in 
this much broader class of mechanisms (i.e., not only over all feasible �′s).10

A detailed proof of this result is in the Appendix. To illustrate what is new about this mechanism design problem (and 
why one of the regularity conditions involves v ′ (c) when T < ∞), consider a simpler mechanism design problem in which 
the designer tries to maximize expected gains from trade by choosing a (direct revelation) mechanism that determines 
for each type the probability of trade at time 0, z (c), and expected payment conditional on trade, P (c). We require the 
mechanism to be incentive compatible, individually rational and budget-balanced on average. If type c does not trade at 
t = 0, it obtains outside option payoff R (c) (in case the outside option is to wait till T and trade at v (c), then as we stated 
above, R (c) = (

1 − e−rT
)

c + e−rT v (c)).
The objective of the mechanism designer is to maximize

1∫
0

z (c) (v (c) − R (c)) f (c)dc.

The budget-balance condition is

1∫
0

z (c) (v (c) − P (c)) f (c)dc ≥ 0

since the most the mechanism designer can charge the buyers is v (c) and he has to pay P (c) to the seller.
The seller’s expected net surplus from trade is:

W (c) = z (c) (P (c) − R (c))

= max
c′ z

(
c′) (

P
(
c′) − R (c)

)
.

That allows us to state the budget constraint as

1∫
0

[z (c) (v (c) − R (c)) − W (c)] f (c)dc ≥ 0.

Further, we use the envelope formula to express the last term as

1∫
0

W (c) f (c)dc =
∫

z (c) R ′ (c)
F (c)

f (c)
f (c)dc

which captures the expected information rents of the seller.

10 For T = ∞, this is a problem analyzed in Samuelson (1984) and in Fuchs and Skrzypacz (2015). The novelty in Theorem 1 is that it allows for a finite 
T (and for that reason it requires new and different regularity conditions). From a practical perspective, solving the model with temporary information 
asymmetry allows us to think of situations such as stress tests or other forms or regulatory approval.
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Putting it together, the mechanism designer solves the problem

max
z(c)∈[0,1]

1∫
0

z (c) (v (c) − R (c)) f (c)dc

s.t.

0 ≤
1∫

0

z (c)

(
v (c) − R (c) − R ′ (c)

F (c)

f (c)

)
f (c)dc

z (c) is weakly decreasing

where the monotonicity of z (c) is necessary for the mechanism to be incentive compatible. For now, focus on the relaxed 
problem ignoring that monotonicity constraint on z (c). For c such that the integrand in the budget constraint is positive, it 
is optimal to set z (c) = 1: this relaxes the budget constraint and improves the objective function. The regularity condition 
guarantees that 

(
v (c) − R (c) − R ′ (c) F (c)

f (c)

)
changes sign from positive to negative only once. Now consider c′s such that this 

expression is negative. Setting z (c) = 1 tightens the budget constraint but improves the objective. The optimal way to choose 
which c should trade at t = 0 is to compare the bang-for-the-buck of different c’s. That is, what is the contribution of their 
trade to the objective function per unit cost in the budget constraint. The bang-for-the-buck ratio varies one-to-one with:

v (c) − R (c)

R ′ (c) F (c)
f (c)

.

If that ratio is decreasing (as assumed in the regularity condition), the optimal solution is bang-bang: have low types trade 
for sure at t = 0 and all higher types wait till T , with the threshold c∗ determined by the budget constraint

c∗∫
0

(
v (c) − R (c) − R ′ (c)

F (c)

f (c)

)
f (c)dc = 0.

A way to implement this mechanism is to have a price equal to E [v (c) |c ≤ c∗] at t = 0, and that is consistent with an 
equilibrium with design �I = {0, T }.

The proof of the theorem is a bit more complex than this simple intuition since we allow the planner to have some 
types trade with positive probability at t ∈ (0, T ). This possibility accounts for the second regularity condition that we need 
to establish the result. In the proof we define x (c) ≡ ∫ T

0 e−rtdGt (c) as the expected discount factor at the time of trade 
before T (seller’s incentives depend on Gt (c) only via x (c)), and we use δ = e−rT .

With this notation, the seller chooses two allocation functions, y (c) ∈ [0,1] which is the probability that type c has to 
wait till T , and x (c) ∈ (δ, 1] which is the expected discount if type c is told to trade before T , and a payment function P (c). 
These are chosen to maximize expected gains from trade:

max
x,y

1∫
0

(1 − y (c)) (x (c) v (c) + (1 − x (c)) c − R (c)) f (c)dc.

Seller’s expected net surplus from is:

W (c) = (1 − y (c)) [P (c) + (1 − x (c)) c − R (c)]

= max
c′

(
1 − y

(
c′)) [

P
(
c′) + (

1 − x
(
c′)) c − R (c)

]
.

By the envelope theorem we have:

W ′ (c) = (1 − y (c))
(
1 − x (c) − R ′ (c)

)
.

The rest of the proof is similar to our discussion above when only trade at t ∈ {0, T } is allowed. The novelty of this mecha-
nism design problem with finite horizon is that there are two allocation instruments, x, and y that enter W ′ (c) differently 
(one multiplies R ′ (c) and the other not, because only y (c) is related to waiting till T ). The two regularity conditions are 
sufficient for the partial derivatives (with respect to the two instruments) of the Lagrangian to cross zero only once (as c
varies) and hence to yield a bang-bang characterization of the optimum: x (c) = 1 − y (c) = 1 for types below a threshold, 
while y (c) = 1 for types above that threshold (and that allocation is the equilibrium outcome with �I ).

If the solution to the relaxed problem does not have the property that all trade takes place only at t = 0 or t = T , then 
it involves the cross-subsidization of the buyers, and the allocation of the relaxed mechanism cannot be implemented as a 
competitive equilibrium without the use of taxes and subsidies. It is an open question how to solve for the optimal � if the 
solution to the relaxed problem calls for trade in more than one period before T .
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Commitment to infrequent trading Although it might be optimal to have just a unique trading opportunity, ex-post (i.e., after 
time 0) there would be an incentive to trade again instead of waiting till T . Hence an important practical question is if �I
can be implemented. With no commitment, no credible way of stopping parties from trading, the equilibrium would be the 
one with continuous trading opportunities that we know is inefficient (at least when the regularity conditions hold). From 
a market design perspective this paper highlights that it is valuable to be able to restrict trading opportunities credibly.

We propose anonymity and secrecy of market transactions as a possible tool a market designer could use to achieve an 
effective market closure even if the market cannot be physically closed:

Remark 1. One way to implement �I = {0, T } in practice may be via an Extreme Anonymity of the market. That is, a market 
design in which transactions and identity of traders are unobservable (for example, because goods are transacted secretly 
by a market-maker). In our model we have assumed that the initial seller of the asset can be told apart in the market 
from buyers who later become secondary sellers. However, if the trades are completely anonymous, even if � �= {0, T }, the 
equilibrium outcome would coincide with the outcome for �I .

Formally establishing this result would require modeling buyers as strategic players which would require introducing 
a lot of notation. Yet, the main idea is simple: Extreme Anonymity exacerbates the adverse selection problem after time 
0. As long as the players’ value for the asset does not change, a buyer at time t > 0 would be facing a worse adverse 
selection problem since it would potentially be trading with sellers with whom there are no gains from trade (i.e., those 
that bought the asset from the original seller at an earlier time). As a result, under Extreme Anonymity, prices can never go 
up: otherwise buyers who purchased the good earlier would resell them at the later markets, and late buyers would lose 
money. More concretely, suppose there where some time t > 0 with pt > p0. Who would sell at this price? Buyers who 
bought the asset at t = 0 and found out that v (c) < pt , and sellers whose type is below pt and who didn’t expect other 
opportunities to trade. Note that this pool of types is strictly worse than what we would obtain if pt had been offered in 
the first period. Since it was not profitable to offer pt at time zero it must lead to strict losses when offered at t > 0.

Such extreme anonymity may not be feasible in some markets (for example, IPO’s), or not practical for reasons outside 
the model. Yet, it may be feasible in some situations. For example, a government as a part of an intervention aimed at 
improving the efficiency of the market may create a trading platform in which it would act as a broker who anonymizes 
trades and traders.

3.2. Beyond the regular case: temporary closures

What if the environment is not regular? We do not have a complete characterization of this case, but can provide some 
partial answers.

First, some conditions are indeed necessary for �I to be optimal as this result illustrates:

Proposition 1. In general, the ranking of the efficiency attained with continuous trading and infrequent trading (�C vs. �I )is ambigu-
ous.

The example used in the proof of this proposition illustrates what could make the continuous trading market superior 
to the infrequent one. We need a large mass at the bottom of the distribution, so that the infrequent trading market gets 
“stuck” with only these types trading. Under continuous trading these types trade quickly, so the delay costs for these types 
are small. Additionally, we need some mass of higher types that would be reached in the continuous trading market after 
some time, generating additional surplus. Alternatively, one can construct examples in which the gains from trade are small 
for low types and large for intermediate types, so that some delay cost at the beginning is more than compensated by the 
increased overall probability of trade.

This result highlights the contrast with respect to the model of Spence (1973) in which it is always true that restricting 
all signaling opportunities is optimal. The difference is that in our setting there is no pooling offer that would simultaneously 
satisfy the break-even condition and have all types trading. This follows since the reservation value of the highest type is 1
and E [v (c) | c ∈ [0,1]] < 1.

Second, we can show quite generally that �C is not optimal for any F or v . In particular, consider the design �EC ≡
{0} ∪ [�, T ]: trade is allowed at t = 0, then the market is closed till � > 0 and then it is opened continuously till T . We call 
this design “early closure”. We show that one can always find � > 0 that improves upon continuous trading:

Result 1. Allowing for continuous trading is never optimal. For every r, T , F (c), and v (c), there exists � > 0 such that 
with the early closure market design �EC = {0} ∪ [�, T ] all types are weakly better off with �EC relative to the continuous 
trading design �C = [0, T ] and some are strictly better off.

The proof of this result follows from the proof of Lemma 2 in FS so we do not repeat it here. The key is that for small �
with �EC there is more trade overall and all types that trade do it sooner. So, the social surplus is higher type-by-type. To 
see this, let kEC

� be the highest type that trades at t = 0 when the design is �EC and let kC
� the equilibrium cutoff at time 

� in design �C . We show that for small �, kC < kEC . Since with �EC once the market re-opens at � the equilibrium is 
� �
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Fig. 3. Trade at time zero with early closure of size � vs. amount of trade by time � with continuous trading.

Fig. 4. Surplus in Early Closure vs. Discrete Grid of Trading Times.

the same as in case of �C but with the different boundary condition (i.e., the lowest type that trades at t = �), the claim 
follows. In the example in Fig. 3, all early closures with � < 14 have kC

� < kEC
� and thus lead to a Pareto improvement. In 

Fig. 3 we can also observe that as � → 0 both kEC
� and kC

� converge to 0 but that the slope at the origin is higher for kEC
�

than for kC
� . Indeed, this is a general feature and we can show that lim�→0

∂kEC
�

∂�
= 2 lim�→0

∂kC
�

∂�
.

To understand the economics behind this result, note first that when the market is closed in (0,�) even if the price at 0 
does not change, some types that were planning to trade in (0,�) now prefer to trade at 0 rather than at �. This of course 
implies that the pool of sellers at t = 0 is strictly better and thus p0 must increase. The increase in p0 leads to more types 
wanting to trade at t = 0 and so on. The effect on p0 of adding additional types is reduced as the pool gets larger so this 
virtuous circle eventually comes to a stop. Thus, while true for small �, the result does not hold for arbitrary � as seen in 
Fig. 3.11

It is perhaps natural to expect that if a first closure of size � followed by continuous trading, �EC = {0} ∪ [�, T ], leads 
to an improvement, a grid of trades at intervals �, �� = {0,�,2�, ...}, would lead to further improvements. However, it 
turns out that this is generally not the case, as we illustrate in Fig. 4.

The main reason �� yields a lower total surplus than �EC is that the size of the first atom is smaller in the former 
timing design. Suppose we started with �EC and eliminated the opportunities to trade in (�,2�). Now, some types that 
were trading in (�,2�) would choose to trade at �, which would lead to an increase of p� . But now, some of the types 
that were trading at t = 0 would prefer to delay their trade to time �. That would reduce p0 and reinforce the incentives 
for some types to delay their trade to time �.12 Thus, in equilibrium we have less trade at t = 0 with �� than with �EC . 
It seems natural to argue that there must be some gain from types originally trading in (�,2�) now trading at �. But this 
gain is offset by the loss that arises from the higher types that used to trade in (�,2�) now trading at 2� instead. We 
explore this intuition further in the appendix (Section C.1) when we analyze � with one closure before T .

11 The fact that lim�→0
∂kEC

�

∂�
= 2 lim�→0

∂kC
�

∂�
follows from f (c) and v (c) being positive and continuous. For small � they are thus locally approximately 

linear-uniform (as in the example plotted in Fig. 3), hence when types start pooling at t = 0, in equilibrium prices grow at half the speed of v (kC
�

)
, which 

leads to kEC
� being approximately twice as high as kC

� .
12 Indeed, this partially undoes the virtuous circle we described above and the slope of the welfare at the origin with �� can be shown to be half of that 

with �EC in the linear-uniform case.
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Fig. 5. The differential effects of frequency of trade depending on the seller being present or randomly arriving.

4. Optimal frequency of trade with stochastic arrival of shocks

The analysis thus far assumes that the seller is present at time zero or that opportunities to trade can be tailored to 
individual sellers. This abstraction works well when thinking of clear distress episodes or formal bankruptcy proceedings 
but not the day to day workings of a financial exchange. In such settings it is natural to assume instead that traders arrive 
randomly over time and any restriction to trade must be uniformly applied to all those present, regardless of when they 
arrived. We consider this case next. To do so, we assume the sellers arrive at a Poisson rate λ and that the market timing 
cannot be tailored to the realized time of the arrival. In this case, it is less natural to think of a finite horizon. Thus, we 
limit our analysis to the case T = ∞. For prices, we still assume that the market observes when the seller starts looking 
for a buyer. That is, the arrival time of the seller is observable by the market but not by the market designer. Since there is 
no sense of a time zero, it is also natural to consider only the set of equally spaced trading times �� = {0,�,2�,3�, ...}
(where �C corresponds to the limiting case � → 0). Thus, the question of interest is what is the optimal �.

Equilibrium properties and welfare for a given �.
First, let’s consider the equilibrium objects at times the market is open conditional on the seller having arrived (recall 

that the arrival is observable by the market):
For prices:

pt = E [v (c) |c ∈ [kt−�,kt]]

For cutoffs:

(pt − kt) = e−r� (pt+� − kt)

Combining both equilibrium conditions we get:

E [v (c) |c ∈ [kt−�,kt]] − kt = e−r� (E [v (c) |c ∈ [kt,kt+�]] − kt)

In general, this second-order difference equation is quite hard to work with. However, in the linear-uniform case, i.e., 
v (c) = αc + (1 − α) and F (c) = c, we get a tractable second-order linear difference equation for kt . We can solve this 
equation (see the Appendix) and calculate the expected welfare for different values of �, which we denote by S (��). 
Importantly, S (��) accounts for the cost of waiting for the market to reopen if the seller arrives at a time the market is 
closed.

As we showed in Theorem 1, since the linear-uniform case satisfies the regularity condition, it is optimal in to set � = ∞
if the seller arrives at t = 0. Albeit, now there is the additional consideration that the trader might arrive when the market 
is closed, in which event he would have to wait for the market to reopen. As a result, since the probability that the trader 
arrives at t = 0 is zero, lim�→∞ S (��) = 0. Thus � = ∞ can not be optimal. On the other hand, in the other limit (� → 0), 
the market is always open, so once the seller arrives it can start trading immediately. For that design, the expected gains 
from trade from the time the seller arrives are the same whether the seller is known to arrive at t = 0 or to arrive randomly.

Fig. 5 plots the expected welfare conditional on the seller being present at t = 0 (dashed) versus S (��) (solid) (i.e., 
when the seller arrives with intensity λ = 1 and r = 10%) for the linear-uniform case with α = 1

2 .
As this example clearly shows, once we take into consideration the fact that traders might not be present at t = 0

our conclusions change dramatically: now, the expected surplus is increasing in the frequency of trade. This suggests that 
while we might want to allow anonymous financial markets to trade continuously, when deciding bankruptcy proceedings 
in which there is a clear start date for the liquidation of assets, restricted trading opportunities might be more beneficial. 
Theorem 2 formalizes this finding.
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Theorem 2. For v (c) = αc + (1 − α) and F (c) = c, if sellers arrive randomly over time with Poisson intensity λ then for any � > 0, 
S (��) < S (�C ). Moreover, S (��) is decreasing in � for all � > 0.

5. Conclusions

In this paper we analyzed a dynamic market with asymmetric information. The main observation is that there is a 
big difference between the case in which there is a clear shock that generates the gains from trade and normal times in 
which the gains from trade arise stochastically over time. In the former case, it is typically optimal to restrict trades to only 
take place once and as early as possible. In the latter case, we have shown that it is best to allow trades to take place 
continuously, so that as soon as there are gains from trade, the seller can start trying to sell its asset.

We have shown that increasing the opportunities to trade makes the adverse selection problem worse since the common 
knowledge of gains from trading today vis a vis the next opportunity to trade shrink as that next opportunity becomes more 
immediate. Despite this effect, when opportunities to trade arise randomly, the cost of waiting till the next trading time 
when the seller arrives in between trading times is more severe than these benefits.

Although the model is stylized, the policy implications of our findings would be that normal times call for a laissez-faire 
approach, but when there is a big shock, such as the recent financial crisis, intervention and trade restrictions can increase 
welfare. The latter implication also applies to situations such as bankruptcy proceedings in which trading restrictions can 
be targeted to a particular firm. In this case, after the management decides on which assets to sell in the re-organization, it 
would be optimal to have just one organized auction in which these assets are sold.

Many open questions remain. First, if we think of a rich market setting with many sellers and buyers that both arrive 
over time, restricting opportunities to trade would have additional effects from the potential change on the demand side. 
This might be of little consequence when the size of the assets being sold is “small” relative to the market (our implicit 
assumption in this model) but could have an important effect when the size of the assets being sold is “large,” where 
liquidity would become of first-order importance. On a more technical direction, it is an open question as to how to compute 
the optimal � in Theorem 1 if our regularity conditions do not hold. Lastly, it would be interesting to enrich the market 
micro-structure aspects of the model to study in more detail the benefits of allowing for high-frequency trading in an 
environment where there could be front-running or stale quotes.

One could also think of adding more dimensions of heterogeneity. For example, as pointed out recently by Roy (2014), 
a dynamic market can suffer from an additional inefficiency if buyers are heterogeneous. High valuation buyers are more 
eager to trade sooner and they may be the efficient buyers of the high-quality goods. Incorporating these considerations 
into our design questions may introduce new trade-offs.

When regulating or designing markets, regulators or designers may not have at their disposal the full set of tools of 
Mechanism Design. But in dynamic environments, Timing Design may still be available and lead to important welfare effects.

Appendix A. Omitted proofs

Proof of Theorem 1. We use mechanism design to establish the result. Consider the following relaxed problem. There is 
a mechanism designer who chooses a direct revelation mechanism that maps reports of the seller to (i) a probability 
distribution over times he trades, and (ii) transfers from the buyers to the mechanism designer, and (iii) transfers from the 
designer to the seller. The constraints on the mechanism are: incentive compatibility for the seller (to report truthfully); 
individual rationality for the seller and buyers (the seller prefers to participate in the mechanism rather than wait till T and 
get v (c), and the buyers do not lose money on average); and that the mechanism designer does not lose money on average. 
Additionally, we require that the highest type, c = 1, does not trade until T (as in any equilibrium he does not).

For every game with a fixed �, the equilibrium outcome can be replicated by such a mechanism, but not necessarily 
vice versa – if the mechanism calls for the designer cross-subsidizing buyers across periods, it cannot be replicated by a 
competitive equilibrium.

Within this class of direct mechanisms we characterize one that maximizes ex-ante expected gains from trade. We then 
show that if the environment is regular, infrequent trading replicates the outcome of the best mechanism and hence any 
other timing design generates lower expected gains from trade.

A general direct revelation mechanism can be described by 3 functions y (c) , x (c) and P (c), where y (c) is the probability 
that the seller will not trade before information is released, x (c) is the discounted probability of trade over all possible 
trading times and P (c) is the transfer received by the seller conditional on trading before information is released.13 Note 
that y (c) ∈ [0,1] but x (c) ∈ [δ,1] where δ = e−rT .

13 Letting Gt (c) denote for a given type the distribution function over the times of trade:

x (c) ≡
T∫

0

e−rtdGt (c) .
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The seller’s value function in the mechanism is:

U (c) = y (c) [(1 − δ) c + δv (c)] + (1 − y (c)) [P (c) + (1 − x (c)) c]

= max
c′ y

(
c′) [(1 − δ) c + δv (c)] + (

1 − y
(
c′)) [

P
(
c′) + (

1 − x
(
c′)) c

]
(1)

Using the envelope theorem14:

U ′ (c) = y (c)
[
(1 − δ) + δv ′ (c)

] + (1 − y (c)) (1 − x (c))

= δy (c)
(

v ′ (c) − 1
) + 1 − x (c) (1 − y (c))

Let V (c) = δv (c) + (1 − δ) c be the surplus from not trading until T , so:

U ′ (c) − V ′ (c) = δy (c)
(

v ′ (c) − 1
) + 1 − x (c) (1 − y (c)) − (

δv ′ (c) + (1 − δ)
)

= (1 − y (c))
(−x (c) − δ

(
v ′ (c) − 1

))
As a result, we can write the expected seller’s gains from trade as a function of the allocations x (c) and y (c) only:

S =
1∫

0

(U (c) − V (c)) f (c)dc

= (U (c) − V (c)) F (c) |c=1
c=0 −

1∫
0

(
U ′ (c) − V ′ (c)

)
F (c)dc

=
1∫

0

(1 − y (c))
[
x (c) − δ

(
1 − v ′ (c)

)]
F (c)dc (2)

Clearly, the mechanism designer will leave the buyers with no surplus (since he could use it to increase efficiency of trade), 
and so maximizing S is the designer’s objective. That also means that the no-losses-on-average constraint simplifies to:

1∫
0

(1 − y (c)) (x (c) v (c) − P (c)) f (c)dc ≥ 0

From the expression for U (c) we have

U (c) − y (c) [(1 − δ) c + δv (c)] − (1 − y (c)) (1 − x (c)) c = (1 − y (c)) P (c)

U (c) − V (c) + (1 − y (c)) (δ (v (c) − c) + x (c) c) = (1 − y (c)) P (c)

So the constraint can be re-written as a function of the allocations alone (where the last term expands as in (2)):

1∫
0

(1 − y (c)) (x (c) − δ) (v (c) − c) f (c)dc −
1∫

0

(U (c) − V (c)) f (c)dc ≥ 0 (3)

We now optimize (2) subject to (3), ignoring necessary monotonicity constraints on x (c) and y (c) that assure that 
reporting c truthfully is incentive compatible (we check later that they are satisfied in the solution).

The derivatives of the Lagrangian with respect to x (c) and y (c) are:

Lx (c) = (1 − y (c)) [F (c) + 	((v (c) − c) f (c) − F (c))]

−L y (c) = (
x (c) − δ

(
1 − v ′ (c)

))
F (c) + 	

[
(x (c) − δ) (v (c) − c) f (c) − (

x (c) − δ
(
1 − v ′ (c)

))
F (c)

]
where 	 > 0 is the Lagrange multiplier.

Consider Lx (c) first. Note that [F (c) + 	((v (c) − c) f (c) − F (c))] is positive for c = 0. Suppose f (c)
F (c) (v (c) − c) is de-

creasing (which is part of the regularity assumption). Let c∗ be the unique solution to 1 − f (c)
F (c) (v (c) − c) = 1

	
(if it exists, 

otherwise, let c∗ = 1). If c∗ < 1 then the second term in Lx (c) changes sign once at c∗ . An optimal x (c) is therefore:

14 This derivative exists almost everywhere and hence we can use the integral-form of the envelope formula, (2).
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x (c) =
{

1 if c ≤ c∗
δ if c > c∗

Now consider −L y (c). For all c ≤ c∗ , using the optimal x (c), it simplifies to:

−L y (c) = (
1 − δ + δv ′ (c)

)
F (c) + 	

[
(1 − δ) (v (c) − c) f (c) − (

1 − δ + δv ′ (c)
)

F (c)
]

for x (c) = 1

If f (c)
F (c)

v(c)−c
1+ δ

(1−δ)
v ′(c)

is decreasing in c, (which is part of the regularity assumption), L y (c) changes sign once in this 

range. It is negative for c ≤ c∗∗ and positive for c > c∗∗ , where c∗∗ ≤ c∗ is a solution to (1 − δ)
f (c)
F (c) (v (c) − c) =(

1 − 1
	

)(
1 + δ

(1−δ)
v ′ (c)

)
. Therefore the optimal y (c) in this range is

y (c) =
{

0 if c ≤ c∗∗
1 if c > c∗∗

For c > c∗ , using the optimal x (c), the derivative L y (c) simplifies to

L y (c) = − (1 − 	)δv ′ (c) F (c) for x (c) = δ

If 	 > 1, this is positive and the optimal y (c) is equal to 1. If 	 ≤ 1, c∗ = 1 and hence this case would be empty.
That finishes the description of the optimal allocations in the relaxed problem: there exists a c∗ such that types below 

c∗ trade immediately and types above it wait till after information is revealed at T . The higher the c∗ the higher the gains 
from trade. The largest c∗ that satisfies the constraint (3) is the largest solution of:

E
[
v (c) |c ≤ c∗] = (1 − δ) c∗ + δv

(
c∗)

since the LHS is the IR constraint of the buyers and the RHS is the IR constraint of the c∗ seller. This is also the equilibrium 
condition in a market with design �I = {0, T }, so that equilibrium implements the solution to the relaxed problem. �
Proof of Proposition 1. Consider a distribution that approximates the following: with probability ε, c is drawn uniformly 
on [0,1]; with probability α (1 − ε) it is uniform on [0, ε]; and with probability (1 − α) (1 − ε) it is uniform on [c1, c1 + ε]
for some c1 > v (0). In other words, the mass is concentrated around 0 and c1. Let v (c) = 1+c

2 as in our example.
For small ε there exists α < 1 such that

E [v (c) |c ≤ c1 + ε] < c1

so that in the infrequent trading market trade will happen only with the low types. In particular, if α is such that

αv (0) + (1 − α) v (c1) < c1

then as ε → 0 and T → ∞, the infrequent trading equilibrium price converges to v (0) and the surplus converges to

lim
ε→0,T →∞ S I = αv (0) + (1 − α) c1

The equilibrium path for the continuous trading market is independent of the distribution and hence

lim
ε→0,T →∞ SC = αv (0) + (1 − α)

[
e−rτ (c1)v (c1) +

(
1 − e−rτ (c1)

)
c1

]

= lim
ε→0,T →∞ S I + (1 − α)

(
e−rτ (c1) (v (c1) − c1)

)

where τ (k) is the inverse of the function kt . The last term is strictly positive for any c1 < v (c1). In particular, as we show 
in Appendix B, with v (c) = 1+c

2 , e−rτ (c) = (1 − c) and v (c1) − c1 = 1
2 (1 − c1), so

lim
ε→0,T →∞ SC = lim

ε→0,T →∞ S I + 1

2
(1 − α) (1 − c1)

2 . �
Proof of Proposition 4. In this case the equilibrium conditions (12), (13) and (14) simplify to

1

2
+ kt∗ + kT −�

4
= pT −� (4)

(
1 − e−r�)

kT −� +
(

1

2
+ kT −�

2

)
e−r� = pT −� (5)

(
1 − e−r�2

)
kt∗ + e−r�2 pT −� = 1

2
+ kt∗

2
(6)

where �2 = T − � − t∗ .
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The solution of the first two equations is:

kT −� = kt∗ + 2 − 2e−r�

3 − 2e−r�

pT −� = 1

2

(
2 − e−r�

3 − 2e−r�
kt∗ + 4 − 3e−r�

3 − 2e−r�

)

Substituting the price to the last condition yields

(
1 − e−r�2

)
kt∗ + e−r�2

(
1

2

(
2 − e−r�

3 − 2e−r�
kt∗ + 4 − 3e−r�

3 − 2e−r�

))
= 1

2
+ kt∗

2

which can be solved for �2 independently of kt∗ (given our assumptions about v (c) and F (c)).

r�2 = − ln
3 − 2e−r�

4 − 3e−r�

Note that

lim
�→0

∂�2

∂�
= lim

�→0

∂

∂�

1

r

(
− ln

3 − 2e−r�

4 − 3e−r�

)
= 1

so �2 is approximately equal to �.
In the continuous trading design, �C, cutoffs follow kt = 1 − e−rt , k̇t = re−rt . Normalize T = 1 (and re-scale r appropri-

ately). Then

kt∗ = 1 − e−r(1−�−�2) = 1 − 4 − 3e−r�

3 − 2e−r�
er�δ

where δ = e−r and

t∗ = 1 − � − �2 = 1 − � + 1

r
ln

3 − 2e−r�

4 − 3e−r�

We can now compare gains from trade in the two cases. The surplus starting at time t∗ is (including discounting):

Sc (�) =
1−e−r∫
kt∗

e−rτ (c) (v (c) − c)dc + δ

1∫
1−e−r

(v (c) − c)dc

=
1−e−r∫
kt∗

(1 − c)

(
1 − c

2

)
dc + δ

1∫
1−e−r

(
1 − c

2

)
dc

where we used e−rτ (c) = 1 − c.

∂ Sc (�)

∂�
= −∂kt∗

∂�

(1 − kt∗)
2

2

and since lim�→0
∂kt∗
∂�

= −2rδ we get that

lim
�→0

∂ Sc (�)

∂�
= rδ3

For the “late closure” market the gains from trade are

SLC (�) = e−r(1−�)

kT −�∫
kt∗

(v (c) − c)dc + e−r

1∫
kT −�

(v (c) − c)dc

after substituting the computed values for kt∗ and kT −� it can be verified that

lim
�→0

∂ SLC (�)

∂�
= rδ3

which is the same as in the case of continuous market, so to the first approximation even conditional on reaching t∗ the 
gains from trade are approximately the same in the two market designs.
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We can compare the second derivatives:

lim
�→0

∂2 SLC (�)

∂2�
= 3δ3r2

lim
�→0

∂2 Sc (�)

∂2�
= 3δ3r2

and even these are the same. Finally, comparing third derivatives:

lim
�→0

∂3 SLC (�)

∂3�
= 13r3δ3

lim
�→0

∂3 Sc (�)

∂3�
= 9r3δ3

so we get that for small �, the “late closure” market generates slightly higher expected surplus, but the effects are really 
small. �
Proof of Theorem 2. Let’s consider first the equilibrium objects at times the market is open conditional on the seller having 
arrived:

For prices:

pt = E [v (c) |c ∈ [kt−�,kt]]

For cutoffs:

(pt − kt) = e−r� (pt+� − kt)

Let v (c) = αc + (1 − α) F (c) = c, so that these conditions become:

pt =
(

(1 − α) + α
kt−� + kt

2

)
((

(1 − α) + α
kt−� + kt

2

)
− kt

)
= e−r�

((
(1 − α) + α

kt+� + kt

2

)
− kt

)

Combining these two and rearranging, we get a second-order linear difference equation for kt :

2 (1 − α)
(
1 − e−r�) = e−r�αkt+� + (2 − α)

(
1 − e−r�)

kt − αkt−� (7)

Guess kt = Akt−1 + B .
For kt → 1 we must have

B + AB + A2 B + ... = 1 ⇒ B = 1 − A.

Plugging-in our guess to (7) we get

2 (1 − α)
(
1 − e−r�) = e−r�α ((A (Akt−� + (1 − A)) + (1 − A))) +

(2 − α)
(
1 − e−r�)

(Akt−� + (1 − A)) − αkt−�

Since this must hold for all t , we must have:

0 = e−r�αA2 + (2 − α)
(
1 − e−r�)

A − α

Solving for A we get:

A =
⎛
⎜⎝− (2 − α)

(
1 − e−r�

) +
√[

(2 − α)
(
1 − e−r�

)]2 + 4e−r�α2

2e−r�α

⎞
⎟⎠ .

This implies that for any t ∈ {0,�, ...}

kt = 1 −
⎛
⎜⎝− (2 − α)

(
1 − e−r�

) +
√[

(2 − α)
(
1 − e−r�

)]2 + 4e−r�α2

2e−r�α

⎞
⎟⎠

t

.
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Next we need to calculate welfare. As a first step, calculate the surplus assuming the seller is present at time 0:

s (�) =
∞∑
j=0

e−r� j

⎛
⎜⎝

k j+1∫
k j

(v (c) − c)dc

⎞
⎟⎠

=
∞∑
j=0

e−r� j

⎛
⎜⎝

k j+1∫
k j

((1 − α) (1 − c))dc

⎞
⎟⎠ .

Let δ = e−r� to express the surplus as:

s (δ) =
(

1 − α

2

) ∞∑
n=0

δn (kn+1 − kn) (2 − (kn + kn+1)) .

Let

G (δ,α) ≡
⎛
⎜⎝− (2 − α) (1 − δ) +

√
[(2 − α) (1 − δ)]2 + 4δα2

2δα

⎞
⎟⎠

and

X (δ,α) ≡ (G (δ,α))2

We can then simplify the expression for the conditional surplus to:

s (δ) =
(

1 − α

2

)
1 − X (δ,α)

1 − δX (δ,α)

As the second step, we need to calculate the expected present value of that surplus. Given an arrival at time t ∈ (0,�) the 
discount factor is e−r(�−t) . Given that the arrival is governed by a Poisson process, the expected discount factor is:

�∫
0

e−r(�−t)λe−λt

1 − e−λ�
dt

So the unconditional surplus is:

S (��) =
⎛
⎝

�∫
0

e−r(�−t)λe−λt

1 − e−λ�
dt

⎞
⎠(

1 − α

2

)
1 − X (δ,α)

1 − δX (δ,α)

Although the analytical expressions are a bit cumbersome, one can easily compute numerically the difference in surplus 
between continuous trading and trading at intervals of time � to show that this difference is positive and increasing in �
for all α ∈ (0,1), λ > 0 and � > 0. �
Appendix B. Computing equilibria for continuous and infrequent trading

Infrequent trading The infrequent trading market design corresponds to the classic market for lemons as in Akerlof (1970). 
The equilibrium in this case is described by a price p0 and a cutoff k0 that satisfy that the cutoff type is indifferent between 
trading at t = 0 and waiting till T :

p0 = (1 − δ)k0 + δ
1 + k0

2
and that the buyers break even on average:

p0 = E [v (c) |c ≤ k0]

The solution is k0 = 2−2δ
3−2δ

and p0 = 4−3δ
6−4δ

. The expected gains from trade are

S I =
k0∫

(v (c) − c)dc + δ

1∫
(v (c) − c)dc = 4δ2 − 11δ + 8

4 (2δ − 3)2
0 k0
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With infrequent trading, �I , for general f and v we have the following characterization of equilibria15:

Proposition 2 (Infrequent/Restricted Trading). For �I = {0, T } there exists a competitive equilibrium {p0,k0}. Equilibria are a solution 
to:

p0 = E [v (c) |c ∈ [0,k0]] (8)

p0 =
(

1 − e−rT
)

k0 + e−rT v (k0) (9)

If f (c)
F (c) (v (c) − c) − δ

1−δ
v ′ (c) is strictly decreasing, the equilibrium is unique.

Proof of Proposition 2. 1) Existence. The equilibrium conditions follow from the definition of equilibrium. To see that there 
exists at least one solution to (8) and (9) note that if we write the condition for the cutoff as:

E [v (c) |c ≤ k0] −
((

1 − e−rT
)

k0 + e−rT v (k0)
)

= 0 (10)

then the LHS is continuous in k0, it is positive at k0 = 0 and negative at k0 = 1. So there exists at least one solution.16

2) Uniqueness. To see that there is a unique solution under the two assumptions, note that the derivative of the LHS of 
(10) at any k is

f (k)

F (k)
(v (k) − E [v (c) |c ≤ k]) − (1 − δ) − δv ′ (k)

When we evaluate it at points where (10) holds, the derivative is

f (k)

F (k)
(v (k) − k) (1 − δ) − (1 − δ) − δv ′ (k)

and that is by assumption decreasing in k.
Suppose that there are at least two solutions and select two: the lowest kL and second-lowest kH . Since kL is the 

lowest solution, at that point the curve on the LHS of (10) must have a weakly negative slope (since the curve crosses 
zero from above). However, our assumption implies that curve has even strictly more negative slope at kH . That leads to a 
contradiction since by assumption between [kL,kH ] the LHS is negative, so with this ranking of derivatives it cannot become 
0 at kH �
Continuous trading The above outcome cannot be sustained in equilibrium if there are multiple occasions to trade before 
T . If at t = 0 types below k0 trade, the next time the market opens price would be at least v (k0). If so, types close to k0
would be strictly better off delaying trade. As a result, for any set � richer than �I , in equilibrium there is less trade in 
period 0.

If we look at the case of continuous trading, �C = [0, T ], then the equilibrium with continuous trade is a pair of two 
processes {pt ,kt} that satisfy:

pt = v (kt)

r (pt − kt) = ṗt

The intuition is as follows. Since the process kt is continuous, the zero profit condition is that the price is equal to the 
value of the current cutoff type. The second condition is the indifference of the current cutoff type between trading now 
and waiting for a dt and trading at a higher price. These conditions yield a differential equation for the cutoff type

r (v (kt) − kt) = v ′ (kt) k̇t

with the boundary condition k0 = 0. In our example it has a simple solution:

kt = 1 − e−rt .

The total surplus from continuous trading is

SC =
T∫

0

e−rt (v (kt) − kt) k̇tdt + e−rT

1∫
kT

(v (c) − c)dc = 1

12

(
2 + δ3

)
.

15 The infrequent trading model is the same as the model in Akerlof (1970) if T = ∞.
16 If there are multiple solutions, a game theoretic-model would refine some of them, see section 13.B of Mas-Colell, Whinston and Green (1995) for a 

discussion.
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For general f and v , with continuous trading opportunities �C , the equilibrium is unique:

Proposition 3 (Continuous trading). For �C = [0, T ] a competitive equilibrium (unique up to measure zero of times) is the unique 
solution to:

pt = v (kt)

k0 = 0

r (v (kt) − kt) = v ′ (kt) k̇t (11)

Proof of Proposition 3. This proof follows very closely the proof of Proposition 1 in FS.
First note that our requirement pt ≥ v (kt−) implies that there cannot be any atoms of trade, i.e., that kt has to be 

continuous. Suppose not, that at time s types [ks−,ks] trade with ks− < ks . Then at time s + ε the price would be at 
least v (ks) while at s the price would be strictly smaller to satisfy the zero-profit condition. But then for small ε types 
close to ks would be better off not trading at s, a contradiction. Therefore we are left with processes such that kt is 
continuous and pt = v (kt). For kt to be strictly increasing over time we need that r (pt − kt) = ṗt for almost all t: if the 
price was rising faster, current cutoffs would like to wait, a contradiction. If prices were rising slower over any time interval 
starting at s, there would be an atom of types trading at s, another contradiction. So the only remaining possibility is that 
{pt ,kt} are constant over some interval [s1, s2]. Since the price at s1 is v 

(
ks1−

)
and the price at s2 is v 

(
ks2

)
, we would 

obtain a contradiction that there is no atom of trade in equilibrium. In particular, if ps1 = ps2 (which holds if and only if 
ks1− = ks1 = ks2 ) then there exist types k > ks1 such that

v
(
ks1

)
>

(
1 − er(s2−s1)

)
k + er(s2−s1)v

(
ks1

)
and these types would strictly prefer to trade at t = s1 than to wait till s2, a contradiction again. �
Remark 2. In this paper we analyze competitive equilibria. In this benchmark example it is possible to write a game-
theoretic version of the model allowing two buyers to make public offers every time the market is open. If we write the 
model having � = {0,�,2�, ..., T } then we can show that there is a unique Perfect Bayesian Equilibrium for every T and 
� > 0. When � = T then the equilibrium coincides with the equilibrium in the infrequent trading market we identify above. 
Moreover, taking the sequence of equilibria as � → 0, the equilibrium path converges to the competitive equilibrium we 
identify for the continuous trading design. In other words, the equilibria we describe in this section have a game-theoretic 
foundation.

Appendix C. Extensions and discussion

C.1. Closing the market briefly before information arrives

The final design we consider is the possibility of keeping the market open continuously from t = 0 till T − � and then 
closing it till T . Such a design seems realistic and in some practical situations may be easier to implement than �EC . It 
may be easier to determine when some private information is expected to arrive (i.e., when t = T ) than when it is that the 
seller of the asset is hit by liquidity needs (i.e., when t = 0).

The comparison of this “late closure” market with the continuous trading market is much more complicated than in 
Section 3.2 for two related reasons. First, if the market is closed from T − � to T , there will be an atom of types trading 
at T − �. As a result, there will be a “quiet period” before T − �: there will be some time interval [t∗, T − �] such that 
despite the market being open, no types will trade on the equilibrium path in that interval. The equilibrium outcome until 
t∗ is the same in the “late closure” as in the continuous trading design, but diverges from that point on. That brings the 
second complication: starting at time t∗ , the continuous trading market benefits from some types trading earlier than in 
the “late closure” market. Therefore it is not sufficient to show that by T there are more types that trade in the late closure 
market. We actually have to compare directly the total surplus generated between t∗ and T . These two complications are 
not present when we consider the “early closure” design since there is no t∗ before t = 0.

An equilibrium in the “late closure” design is as follows. Let p∗
T −�, k∗

T −� and t∗ be a solution to the following system of 
equations:

E [v (c) |c ∈ [kt∗ ,kT −�]] = pT −� (12)(
1 − e−r�)

kT −� + e−r�v (kT −�) = pT −� (13)(
1 − e−r

(
T −�−t∗

))
kt∗ + e−r

(
T −�−t∗

)
pT −� = v (kt∗) (14)
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Fig. 6. Late Closure path of prices and cutoffs in case T = 10, � = 1, r = 0.1, v (c) = c+1
2 , and F (c) = c.

where the first equation is the zero-profit condition at t = T − �, the second equation is the indifference condition for the 
highest type trading at T −� and the last equation is the indifference condition of the lowest type that reaches T −�, who 
chooses between trading at t∗ and at T − �. The equilibrium for the late closure market is then:
1) at times t ∈ [0, t∗], (pt ,kt) are the same as in the continuous trading market
2) at times t ∈ (t∗, T − �), (pt ,kt) = (v (kt∗ ) ,kt∗ )
3) at t = T − �, (pt ,kt) = (

p∗
T −�,k∗

T −�

)
Condition (14) guarantees that given the constant price at times t ∈ (t∗, T − �) it is indeed optimal for the seller not to 

trade. There are other equilibria that differ from this equilibrium in terms of the prices in the “quiet period” time: any price 
process that satisfies in this time period(

1 − e−r(T −�−t)
)

kt∗ + e−r(T −�−t)pT −� ≥ pt ≥ v (kt∗)

satisfies all our equilibrium conditions. Yet, all these paths yield the same equilibrium outcome in terms of trade and surplus 
(of course, the system (12)–(14) may have multiple solutions that would have different equilibrium outcomes).

Despite this countervailing inefficiency, for our leading linear-uniform example:

Proposition 4. Suppose v (c) = 1+c
2 and F (c) = c. For every r and T there exists a � > 0 such that the “late closure” market design, 

�LC = [0, T − �] ∪ {T }, generates higher expected gains from trade than the continuous trading market, �C . Yet, for small �, the 
gains from late closure are smaller than the gains from early closure.

The proof (in the Appendix) shows third-order gains of welfare from the late closure, while the gains from early closure 
are first-order. Fig. 6 illustrates the reason the gains from closing the market are small relative to when the market is 
closed at time zero. The bottom two lines show the evolution of the cutoff type in �C (continuous curve) and in �LC

(discontinuous at t = T − � = 0.9). The top two lines show the corresponding path of prices. The gains from bringing 
forward trades that occur when the market is exogenously closed in t ∈ (9,10) (i.e., the jump in types at t = 0.9) are 
partially offset by the delay of types in the endogenous quiet period t ∈ (8.23,9). If we close the market for t ∈ (0,�)

instead, there is no loss from some types postponing trade because there is no time before 0.
The intuition why the gains (if any) are in general very small is that we prove that the endogenous quiet period is 

approximately of the length � (up to first-order approximation at � close to zero). The reasoning in Result 1 implies that 
the jump in types at time T −� is approximately twice as large as the continuous increase in the cutoff when the market is 
opened continuously over a time interval of length �. Putting these two observations together implies that the final cutoff 
at time T is approximately (using a first-order approximation in �) the same for these two designs, as seen in Fig. 6. Hence, 
any welfare effects are tiny.

C.2. Stochastic arrival of information

So far we have assumed that it is known that the private information is revealed at T . However, in some markets, the 
market participants may be uncertain about the timing of its revelation even if the private information is short-lived.

To capture that idea we have analyzed a version of our model in which there is no fixed time T when information 
is revealed, so that � ⊆ [0,∞], but over time exogenous information that publicly reveals the seller’s type arrives with a 
constant Poisson rate λ. We assume that for any � trade is immediate at price p = v (c) once the information arrives.

The following results can be established for this model:

1. If � = [0,∞], then for all λ the equilibrium is as described in Proposition 3.
2. If f (c)

F (c)
v(c)−c

λv ′(c)+r is decreasing, then the analog of Theorem 1 holds (i.e., with this new condition replacing the regularity 
condition, fully restricting trade between t = 0 and the time information is revealed maximizes total surplus).

The proofs of these claims are analogous to the proofs in the original and hence are omitted (but they are available from 
the authors upon request). The intuition for why the equilibrium path of prices and cutoffs before information arrives is the 
same in the stochastic and deterministic arrival of information cases is as follows. In the deterministic case, the benefit of 
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delaying trade by dt is that the price increases by ṗtdt . In the stochastic case, the price also increases, but additionally with 
probability λdt the news arrives. If so, the current cutoff type gets a price v (kt) instead of pt+dt . However, since pt = v (kt), 
price pt+dt is only of order dt higher than what the current cutoff gets upon arrival. Therefore, the additional effect of 
delaying trade is a term on the order of dt2. So with continuous trading stochastic arrival of information does not affect 
incentives to delay, and the equilibrium path of cutoffs is unchanged.

To illustrate the model with random arrival, return to our benchmark example with v (c) = 1+c
2 and F (c) = c. In the 

infrequent trading market, the equilibrium (p0,k0) is determined by:

p0 = λ

λ + r
v (k0) + r

λ + r
k0

p0 = E [v (c) |c ≤ k0]

where the first equation is the indifference condition of the cutoff type and the second equation is the usual zero-profit 
condition. In our example we get

k0 = 2r

3r + λ
, p0 = 4r + λ

6r + 2λ

We now can compare the gains from trade. The total gains from trade in the infrequent trading market are:

S I =
k0∫

0

(v (c) − c)dc + λ

λ + r

1∫
k0

(v (c) − c)dc.

In the continuous trading market (since the path of types is the same as we computed before) the gains are:

SC =
+∞∫
0

λe−λt

⎛
⎜⎝

kt∫
0

e−rτ (c) (v (c) − c)dc + e−rt

1∫
kt

(v (c) − c)dc

⎞
⎟⎠dt

where τ (c) = − ln(1−c)
r is the time type c trades if there is no arrival before τ (c). Direct calculations yield:

S I (z) − SC (z) = 1

2
(z + 3)−2 > 0

where z ≡ λ
r . So, for every λ, the infrequent trading market is more efficient than the continuous trading market, consistent 

with the analog of Theorem 1.

C.3. Beyond design of �: affecting T

In this paper we analyze different choices of �. A natural question is what else could a market designer affect to improve 
market efficiency. One such possibility is information structure, as we have discussed in Remark 1. There are of course other 
options for changing information (for example, should past rejected offers be observed or not?), but that is beyond the 
scope of this paper.

Another possibility is changing T . Clearly, if the market designer could make T very small, it would be good for welfare 
since it would make the market imperfections short-lived. That may not be feasible though. Suppose instead that the 
designer could only increase T (for example, by making some verification take longer).17 Surprisingly, it turns out that in 
some cases increasing T could improve efficiency. While it is never beneficial in the continuous-trading case (since it does 
not affect trade before T and only delays subsequent trades), it can help in other cases. To illustrate it, Fig. 7 graphs the 
expected gains from trade in our leading example for �I = {0, T } as a function of δ = e−rT . It turns out that if and only if 
e−rT < 1

2 , increasing T is welfare improving.

C.4. Common knowledge of gains from trade

We have assumed that v (0) > 0 and v (1) = 1, that is, strictly positive gains from trade for the lowest type and no gains 
on the top. Can we relax these assumptions?

17 We thank Marina Halac for suggesting this question.
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Fig. 7. Surplus with infrequent trading as a function of T .

C.4.1. Role of v (0) > 0
If v (0) = 0 then Theorem 1 still applies. As we argued above, if the market is opened continuously, in equilibrium there 

is no trade before T (to see this note that the starting price would leave the lowest type with no surplus, so that type 
would always prefer to wait for a price increase). That does not need to be true for other �. For example, if v (c) = √

c
and F (c) = c, then for all T the conditions in Theorem 1 are satisfied. Therefore, �I = {0, T } is welfare-maximizing and 
�C = [0, T ] is welfare-minimizing over all �; and if δ < 2

3 then the ranking is strict since there is some trade with �I .

C.4.2. Role of v (1) = 1
The main reason we assume v (1) = 1 is that in this way we do not need to define equilibrium market prices after 

histories where the seller trades with probability 1. That is, when v (1) = 1, the highest type never trades in equilibrium 
no matter how large is T . This makes our definition of competitive equilibrium simpler than in Daley and Green (2012)
(compare our condition (3) “Market Clearing” with Definition 2.1 there).

To illustrate how the freedom in selecting off-equilibrium-path beliefs can lead to a multiplicity of equilibria with radi-
cally different outcomes, consider the following heuristic reasoning. Assume:

F (c) = c ; v (c) = c + s

Suppose that � = {0,�,2�, ..., T } for � > 0. Let s > 1
2 so that in a static problem trade would be efficient.

Case 1: Assume that when an offer that all types accept on the equilibrium path is rejected, buyers believe the seller has 
the highest type, c = 1. That is, post-rejection price is 1 + s. Then, taking a sequence of equilibria as � → 0, we can show 
that in the limit trade is smooth over time (no atoms) with:

pt(k) = v (kt)

kt = rst

On equilibrium path all types trade by:

τ = 1

rs

unless τ < T . If the last offer, pτ = 1 + s is rejected, the price stays constant after that, consistently with the beliefs and 
competition.

Case 2: Alternatively, assume that when an offer that all types accept on the equilibrium path is rejected, buyers do not 
update their beliefs. That is, after that history they believe the seller type is distributed uniformly over [kt ,1], where kt is 
derived from the history of the game. In that case we can construct the following equilibrium for all � > 0. At t = 0 there 
is an initial offer p0 = 1

2 + s and all types trade. If that initial offer is rejected, the buyers believe c ∼ U [0,1] and continue 
to offer pt = p0 for all t > 0 (and again all types trade). This is indeed an equilibrium since the buyers break even at time 
zero (and at all future times given their beliefs) and no seller type is better off by rejecting the initial offer.

These equilibria are radically different in terms of efficiency: only the second one is efficient. It is beyond the scope of 
this paper to study in what situations or under what model extensions this multiplicity could be resolved and how. v (1) > 1
creates similar problems for large T even if immediate efficient trade is not possible. On the other hand, if the gap on top 
is small so that for a given T in equilibrium it is not possible that all types trade before T , our analysis still applies.
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