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Collusion is a major problem in many mar-
kets and has been an important topic of study 
in both applied and theoretical economics. From 
exposed collusive cases, we know how numer-
ous real-life cartels have been organized and 
what kinds of agreements (either implicit or 
explicit) are likely to be successful in obtain-
ing collusive profits.� At least since George J. 
Stigler (1964), economists have recognized that 
imperfect monitoring may destabilize cartels. 
Nevertheless, the seminal paper of Edward J. 
Green and Robert H. Porter (1984) has shown 
that, even with imperfect monitoring, firms can 
create collusive incentives by allowing price 
wars to break out with positive probability.

� There are many papers describing explicit and tacit 
collusion among firms. For comprehensive studies, see, 
for example, George A. Hay and Daniel Kelley (1974), 
Margaret C. Levenstein and Valerie Y. Suslow (2006), or 
Joseph E. Harrington (2006).
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We show that it is impossible to achieve collusion in a duopoly when (a) goods are 
homogenous and firms compete in quantities; (b) new, noisy information arrives 
continuously, without sudden events; and (c) firms are able to respond to new 
information quickly. The result holds even if we allow for asymmetric equilibria 
or monetary transfers. The intuition is that the flexibility to respond quickly to new 
information unravels any collusive scheme. Our result applies to both a simple sta-
tionary model and a more complicated one, with prices following a mean-reverting 
Markov process, as well as to models of dynamic cooperation in many other set-
tings. (JEL D43, L12, L13)

We study the scope of collusion in a quan-
tity-setting duopoly with homogenous goods 
and flexible production—that is, if firms can 
change output flow frequently.� As in Green and 
Porter (1984), in our model firms cannot observe 
each other’s production decisions directly. They 
observe only noisy market prices/signals that 
depend on the total market supply. We show that 
collusion is impossible to achieve if:

	1 .	 New, noisy information arrives continu-
ously, without sudden events;

	2.	 The firms have flexible production technol-
ogies and can thus react to new information 
quickly; and

	3.	 Public signals depend on total market sup-
ply only, and not on individual decisions.

There are many markets that fit the general 
features of our model. For example, in markets 
with homogenous goods, e.g., chemicals, firms 
are selling both to a spot market and to clients, 
with client deals being private but affecting the 

� The term flexible production is usually understood 
as describing low costs of changing the amount and the 
variety of output. In this paper, we use this term in a nar-
rower sense, having firms face low costs of changing flow 
but restricting them to produce only one type of output. 
Flexibility on the variety dimension has separate effects 
on the scope of collusion: increased product differentiation 
may improve collusion, but increased complexity of moni-
toring may destabilize cartels.
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spot market. The spot price can be used to moni-
tor the success of collusion. One example that 
received a lot of attention was the cartel produc-
ing lysine, an amino acid.� This cartel tried to 
collude by setting and monitoring a target price 
at first. However, those early attempts failed. 
Quoting from Cabral (2005, 201):

The topic of lysine prices came up at a 
dinner meeting in Chicago between ADM 
and European executives. The latter com-
plained about low prices and accused 
ADM of being responsible for it. ADM’s 
Whitacre responded that “one can point a 
lot of fingers,” and that the best thing to do 
was to find a solution to the problem.

The cartel has encountered the difficulty 
related to condition 3: they could not identify the 
deviator.� What solution did they agree upon? 
Along the lines of Green and Porter (1984), they 
could have agreed upon a new target price, com-
mitting to go to a price war if the price fell below 
the new target. However, that would repeat the 
old story: as our results suggest, that would not 
have worked. Instead, the solution was to let 
output figures “be collected every month by the 
trade association … . If one company sold more 
than it was allotted, it would be forced to pur-
chase lysine from companies lagging behind” 
(Eichenwald 2000, 205). Thus, the cartel began 

� The lysine cartel has received a lot of attention thanks 
to the abundance of detailed information available on its 
inner workings, including FBI videotapes of cartel mem-
bers’ meetings. The cartel was described in detail by Kurt 
Eichenwald (2000) in a 600-page book, and discussed fur-
ther by Luis M. B. Cabral (2005) and Harrington (2006).

� The problems were real—ADM was indeed over- 
producing.

collecting individual company data and aggre-
gating that data over monthly periods, breaking 
conditions 1 and 3.

The practice of collecting data on market 
shares has been especially common among car-
tels.� Even the Joint Executive Committee rail-
road cartel, the motivation for the Green and 
Porter (1984) model of equilibrium price wars,� 

collected data on individual members’ market 
shares. Other cartels have also limited the flexi-
bility of its members to respond to new informa-
tion by setting strict rules regarding acceptable 
forms of contracts with customers and by col-
lecting data about suspected deviations through 
secret investigations (e.g., see the sugar trust 
cartel described in David Genesove and Wallace 
P. Mullin 2001).

The failure of the lysine cartel to collude by 
setting a target price at the beginning of its oper-
ation illustrates how the provision of incentives 
can break down under flexible production, even 
when firms have very clear information about the 
success of collusion. Figure 1 illustrates this sur-
prising fact using a theoretical model presented 
in Section VI. In this example, spot prices are 
correlated over time and have an unconditional 
mean of 1 2 Q, where Q is the total quantity. 
Figure 1 shows two sample paths of prices when 
the firms produce Cournot Nash quantities and 
when they split the monopoly quantity.� Just by 

� For a comprehensive list of such arrangements, see 
Harrington (2006).

� See Thomas Ulen (1983) and Porter (1983) for a 
detailed study of this cartel.

� In this nonstationary setting, the absence of collusion 
is characterized by a Markov perfect equilibrium (MPE), 
and the first-best collusion is similarly a state-dependent 
strategy. However, the Nash equilibrium and monopoly 
quantity of a one-shot analogue of this game (with constant 
demand 1 – Q) serve well for illustration.

Figure 1
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looking at the price level at any moment of time, 
it is obvious whether the firms are colluding 
or not. Yet, despite this apparent transparency, 
collusion is impossible when firms see prices 
continuously and act sufficiently frequently, and 
when prices depend only on the total supply.

Why? A first guess may be that fast arrival of 
information and the flexibility to respond to it 
facilitate collusion, as firms can punish poten-
tial deviators more quickly. However, although 
this intuition is true in games with perfect mon-
itoring, it does not always hold in games with 
imperfect monitoring, as demonstrated for the 
first time in the classic paper of Dilip Abreu, 
Paul Milgrom, and David Pearce (1991) (here-
after AMP).� Let us see why collusion is impos-
sible under the wide range of conditions we 
study.

First, let us consider the classic case of a 
stationary repeated game with a strongly sym-
metric collusive scheme, in which firms behave 
identically after all histories. Following Abreu, 
Pearce, and Ennio Stacchetti (1986) (hereaf-
ter APS’86), an optimal symmetric equilib-
rium has two regimes: a collusive regime and a 
price war–punishment regime. In the collusive 
regime, firms produce less than the static Nash 
equilibrium quantities. If the price drops below 
a critical level, this arouses enough suspicion of 
cheating to cause a price war. In the price war 
regime, firms strongly overproduce, because the 
intensity of the price war (i.e., low prices) makes 
the return to the collusive regime more likely.

With shorter time periods between actions, 
firms must decide whether to trigger a price war 
by looking at noisier incremental information. 
As we show, this causes firms to make type I 
errors by triggering price wars on the equilib-
rium path disproportionately often, erasing all 
benefits from collusion. To see this intuitively, 
let us compare games in which the time period 
between actions is either D or 2D, where D is 
small. Suppose that information arrives contin-
uously, so that the aggregate summary statistic 
of the information in each period is normally 
distributed. In Figure 2, the horizontal axis 
illustrates the summary statistic (e.g., average 

� AMP pioneered the theory of games with frequent 
actions. We discuss the relationship to their paper at the 
end of the introduction, and, in more detail, at the end of 
Section IIA.

price) for one period of length D, and the verti-
cal axis illustrates the summary statistic in the 
next period of length D. In an optimal symmet-
ric equilibrium, at the end of each period firms 
test the summary statistic against a cutoff level 
to decide whether to trigger a price war. Figure 2  
illustrates the critical regions 1 and 2 that trig-
ger a price war in a game with period length D.

If the time period between moves increases to 
2D, two forces influence the scope of collusion. 
First, firms learn more information per period, 
which helps collusion. Second, the gain from 
deviation in a given period increases, which 
hurts collusion.�  From Figure 2, we learn that 
the first effect is stronger when D is small, i.e., 
collusion is more difficult with smaller time 
periods between moves. Indeed, note that at the 
end of a period of length 2D we can perform 
the same tests to decide about a price war as 
in a game with periods of length D, and these 
tests provide approximately the right incentives 
against a deviation with periods 2D.10 However, 
if firms can change actions only once per time 
interval 2D, a more effective joint test (illus-
trated by the dashed diagonal line) can provide 
the same incentives more efficiently. Therefore, 
collusion is more efficient for time periods of 
length 2D.11 As we show in this paper, with infor-

� Also, punishment is delayed when firms keep quanti-
ties fixed for a period of time of 2D, which hurts collusion, 
but this effect is negligible for small D.

10 Strictly speaking, if we perform tests with criti-
cal regions 1 and 2 in a game with period 2D, they pro-
vide a bit weaker incentives than in a game with period D, 
because when the first signal falls in region 1, punishment 
is delayed by time D. However, for small D this difference 
is negligible.

11 We know from APS’86 that the most efficient equilib-
rium does not use review strategies, and so the firms can-
not use the more efficient two-period tests when the period 

Figure 2
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mation arriving continuously, the efficiency loss 
for small D is so large that collusion becomes 
impossible altogether.

In Section III we show that collusion is not 
possible in asymmetric equilibria, even if play-
ers use monetary transfers. In many games 
players can enforce collusive schemes without 
price wars by using asymmetric continuation 
equilibria or monetary transfers. Namely, rather 
than destroying value, they can transfer payoffs 
among themselves, keeping the average profits 
high. As we show, our environment causes such 
collusive schemes to fail, a result that involves 
new insights. The main intuition is that with 
a one-dimensional signal and a continuum of 
quantities to choose from, transfers used to pro-
vide incentives for one player interfere with the 
incentives of the other player. As a result, collu-
sion cannot be sustained by transfers alone. The 
provision of incentives necessarily involves the 
destruction of value.12

Figure 3 shows a stylized relationship between 
the length of the period D and the scope of col-
lusion (see Figure 6 in Section IV for a detailed 
example). As we see, the relationship is not 
monotonic and the highest collusive payoffs are 
achieved at an interior value of D. Moreover, as 
D becomes small, the highest equilibrium prof-
its decrease to the stage-game Nash equilibrium 
profits.

Besides looking at a classic stationary model 
of Cournot duopoly with constant marginal costs, 
we explore a number of extensions of applied 
interest. In Section V we consider increasing 
marginal costs and capacity constraints. In 

between actions is D. Indeed, incentives would break down 
if the firms tried to do that. First, after seeing the first-period 
prices, the firms will likely react, either by reducing pro-
duction to avoid a price war, or by increasing production if 
the first-period outcome makes it unlikely that the price war 
will be triggered after the second-period review. Second, 
anticipating that (own) reaction, each firm will overproduce 
in the first period. Third, anticipating the reaction of the 
other firm, a firm expects its opponent to share the cost of 
preventing punishment in the second period and hence will 
overproduce in the first period even more. Since a single 
decision maker benefits from more flexibility (which is cap-
tured by the first two effects), it is the third, strategic effect 
that prevents collusion as D S 0.

12 This intuition is related to the concept of identifiability 
from Drew Fudenberg, David K. Levine, and Eric Maskin 
(1994); however, lack of identifiability is not sufficient to 
establish the result.

Section VI we extend the results to a more real-
istic nonstationary model with correlated prices. 
In Section VII we show that even if the moni-
toring technology is richer (so that deviations 
of the players affect signals differently), if there 
is a high correlation between the signals used 
to monitor the two players, the scope of collu-
sion is substantially limited. Our results also 
extend to settings with more than two firms and 
multiple signals. Finally, the end of Section VII 
shows that our result holds even if we allow for 
a class of private strategies, which were shown 
in Michihiro Kandori and Ichiro Obara (2006) 
to greatly improve the players’ payoffs in other 
environments.

Our analysis of cartels extends to coopera-
tion in many other types of dynamic interac-
tion, including, for example, moral hazard in 
teams. In particular, we present a model of a 
partnership in which efforts of team members 
are private while publicly observed outcomes 
depend (stochastically) on the sum of efforts of 
the partners. In that environment, cooperation 
over and above static Nash equilibrium is not 
possible (as long as the marginal costs of effort 
are not too concave) if the partners observe the 
outcomes continuously and can react to infor-
mation quickly.13

AMP have been the first to show that fre-
quent actions can reduce the scope of collusion. 
They study symmetric equilibria in a prison-
er’s dilemma, in which just one type of signal 
arrives at a Poisson rate. This signal can be of 

13 An example of such a partnership game is found in 
Roy Radner, Roger Myerson, and Maskin (1986), discussed 
below.

Figure 3



DECEMBER 20071798 THE AMERICAN ECONOMIC REVIEW

a good type, indicative of cooperation, or a bad 
type, indicative of defection. When players act 
frequently, it is very unlikely that more than 
one signal arrives in a given period: effectively, 
players observe at most one signal per period. If 
the signal is good, it cannot be used to trigger 
punishment, and cooperation becomes impos-
sible with frequent actions. If the signal is bad, 
it can be used to trigger punishment, and limited 
cooperation is possible.

The nature of the signals is one of the fun-
damental differences between their model 
and ours. One is tempted to think that fre-
quent actions should not hurt cooperation with 
Brownian signals. Tails of normally distributed 
signals are so informative about the players’ 
actions that perfect collusion should be possible 
if players are patient. Nevertheless, as D S 0 
(i.e., as players become more patient and per-
period information deteriorates), we show that, 
surprisingly, collusion is never possible (unlike 
with Poisson signals).14

Additionally, in comparison to AMP, we 
explore a number of other types of equilibria 
and many applied extensions. For example, we 
consider both symmetric and asymmetric equi-
libria, each possibly with monetary transfers. 
In fact, even though AMP do not explore this 
issue, in their setting, asymmetric equilibria 
may achieve some cooperation even when no 
cooperation is possible in symmetric equilib-
ria. We show that collusion becomes impossible 
even when one considers a nonstationary set-
ting and compares collusive payoffs with those 
in Markov perfect equilibria. We also explore 
the issues of increasing marginal costs, multiple 
signals, mixed strategies, and even equilibria in 
private strategies.15

Another closely related paper is Radner, 
Myerson, and Maskin (1986). They study a 
repeated partnership game in which in every 
period there are only two possible outcomes: a 
success or a failure. The probability of success 
depends on the sum of efforts. They show that 
the best equilibria in their setting are uniformly 

14 The differences between Brownian and Poisson infor-
mation have been recently further explored by Fudenberg 
and Levine (2007) and Sannikov and Skrzypacz (2007).

15 We also analyze a different game—the Green and 
Porter duopoly with a continuum of action choices per 
period.

bounded away from efficiency for all discount 
rates. The intuition roughly consists of two 
parts: first, as in our paper, because it is difficult 
to distinguish between deviations of different 
players, asymmetric equilibria do not improve 
upon symmetric ones. Second, because the sig-
nals have bounded likelihood ratios, symmetric 
equilibria are necessarily costly. In contrast, in 
our setup the likelihood ratios are unbounded, 
so taking the interest rate to zero (while keep-
ing D fixed) leads to asymptotically first-best 
cooperation. If, however, we take D to zero, no 
cooperation is possible.

There is a large and growing theoretical liter-
ature trying to assess the impact of information 
on the scope of collusion in an environment with 
imperfect monitoring. Green and Porter (1984) 
were the first to propose a symmetric collusive 
equilibrium in which price wars are used on the 
equilibrium path to prevent deviations. APS’86 
characterize optimal symmetric equilibria in this 
setting and show that they involve two extreme 
regimes. The general analysis of games with 
hidden actions has been extended to asymmet-
ric equilibria by Abreu, Pearce, and Stacchetti 
(1990), Fudenberg, Levine, and Maskin (1994), 
and Sannikov (2007), among others.16

The paper is organized as follows. Section I 
presents a simple model of a repeated game with 
stationary prices. Section II proves the main 
result for symmetric public perfect equilibria. 
Section III proves the result for asymmetric 
equilibria with and without monetary trans-

16 Many papers look at the role of asymmetric equilibria 
and monetary transfers in achieving collusion. In a static set-
ting with private information, R. Preston McAfee and John 
McMillan (1992) show the necessity of transfers for any 
collusive scheme utilizing the private information. Susan 
Athey and Kyle Bagwell (2001), Masaki Aoyagi (2003), 
Andreas Blume and Paul Heidhues (2001), and Skrzypacz 
and Hugo Hopenhayn (2004), among others, extend that 
intuition by studying collusion in repeated games without 
monetary transfers and emphasizing the need for transfers 
of continuation payoffs. Harrington and Skrzypacz (2007) 
study repeated competition with hidden prices and observed 
stochastic market shares, and show that symmetric equi-
libria (with price wars after skewed market shares) do not 
improve upon competitive outcomes, but asymmetric equi-
libria do. Similarly, Athey and Bagwell (2001) show that 
asymmetric strategies greatly improve the scope of collu-
sion (which is shown to be quite limited in the symmetric 
equilibria of Athey, Bagwell, and Chris Sanchirico (2004)). 
In contrast, our impossibility result holds even for asym-
metric equilibria and with any monetary transfers.
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fers. Section IV presents a numerical example. 
Section V explores the possibility of nonlinear 
costs and capacity constraints. Section VI proves 
our impossibility result in a more complicated 
and realistic model in which market prices are 
correlated over time. Section VII discusses vari-
ous modifications of the model. Section VIII 
concludes.

I.  The Stationary Model

Two firms compete in a stationary market 
with homogenous products. The time horizon 
is infinite and firms discount future profits with 
a common interest rate r. Firms set quantities 
every period and the resulting prices depend on 
quantities and noise. We study how the scope of 
potential collusion depends on the firms’ flex-
ibility of production. We describe the flexibility 
of production in terms of D, the duration of time 
periods between which production decisions are 
made.

In a repeated game GD, firms play the stage 
game at time points t 5 0, D, 2D, … . The stage 
game is as follows: at time t 5 nD the firms 
choose (privately) supply rates qit [ 30, q̄4 for 
a time interval 3t, t 1 D2 (where q̄ is a large, 
exogenous capacity constraint). Denote by Qt 5 
q1t 1 q2t the total supply rate of the two firms. 
During this time interval 3t, t 1 D2 firms supply 
DQt of the product. Both firms have the same 
constant marginal cost, which we normalize to 
zero.17 The profit of each firm is just the revenue, 
which depends on the price and the supply in a 
given period. Prices are publicly observable and 
depend on the total supply as well as a random 
shock

	 pt 5 P 1Qt 2 1 et ,

where the inverse demand function P: 30, 2q̄4 S 
R is strictly decreasing, twice continuously dif-
ferentiable, and P 102 . 0. Firm i’s revenue in 
time interval 3t, t 1 D2 is
	 Dqit 1P 1Qt 2 1 et 2 .

17 See Section V for the extension to increasing mar-
ginal cost.

To facilitate comparisons of equilibrium 
outcomes for different D, assume that random 
shocks come from a standard Brownian motion 
5Zt ; t $ 06. Shocks et are formed in a way that 
makes total revenue of each firm depend not on 
D, but only on the supply rates. Specifically, the 
revenue that firm i gets from time 0 to t is

	 a
s50, D, 2D...t2D

Dqis 1P 1q1s 1 q2s 2 1 es 2 

	     5 3

t

0

qis 1P 1q1s 1 q2s 2 ds 1 sdZs 2 ,

where qis with s [ 3nD, nD 1 D2 is the supply 
rate that firm i chooses at time nD, and s2 is the 
variance of the noise. Then et , the average price 
shock over time interval 3t, t 1 D2 , is simply

	 et 5 
s

D
1Zt1D 2 Zt 2 .

Therefore, et , N 10, s2/D2 . Note that random 
shocks have greater variance over small time 
intervals, so that the information that firms learn 
by observing prices is proportional to the time 
interval. We can also interpret the noise struc-
ture in the following way. Suppose that market 
prices are quoted every second and that these 
prices have a normal distribution with mean 
P(Q) and variance s2. If firms can change their 
supply rates every D seconds, then the average 
price over that interval has mean P(Q) and vari-
ance s2/D (and as firms are risk neutral, these 
two interpretations of pt are equivalent).

The fact that average prices can become 
unboundedly negative due to very high vari-
ance over short time periods is unattractive. 
However, it allows for a simple model in which 
the argument behind our main result is par-
ticularly clean.18 With the simple model, we 
develop intuition that translates easily to more 
complex situations. See Section VI for a more 
realistic nonstationary model, with bounded 
instantaneous prices. Also, Section VII explains 
how our results extend to a stationary model in 
which the distribution of per-period prices is not 

18 It is important to point out that our results do not fol-
low simply from the per-period variance increasing to infin-
ity as D S 0, but rather from the rate at which it increases.
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necessarily normal. In particular, prices can be 
a nonnegative function of total supply and ran-
dom shock, and, for example, follow a lognor-
mal distribution.

A crucial assumption is that as in Green and 
Porter (1984) and Radner, Myerson, and Maskin 
(1986), the price depends on the total supply 
only, so that the distribution of prices changes 
in the same way regardless of whether firm 1 
or firm 2 increases its production by a unit, no 
matter what production levels they start with. 
That is, we assume that the products are homog-
enous. As demonstrated in Sections VI and VII, 
the assumption that the random price shocks are 
distributed normally and independently of past 
prices is not essential for the results.

In the repeated game, firms choose sup-
ply rates after every history to maximize their 
expected discounted profit. Firm i’s (normal-
ized) expected payoff is

	 E c 11 2 e2rD2 a
t50, D, 2D...

e2rtqit 1P 1Qt 2 1 et 2 d ,

where the expectation takes into account the 
dependence of future supply rates on past 
prices.

A history of firm i at time t is the sequence 
of price realizations and own supply decisions 
up to time t. A public history contains only the 
realizations of the past prices.19 We analyze the 
pure strategy public perfect equilibria (PPE) 
of the game. A strategy of a firm is public if it 
depends only on the public history of the game. 
Two public strategies form a PPE if after any 
public history the continuation strategies form a 
Nash equilibrium. Considering only pure strat-
egies is admittedly restrictive. In Section VII 
we argue that the intuition holds also for public 
mixed strategies and for an important class of 
private mixed strategies that have been shown to 
improve collusive payoffs in other settings.20

19 One can also allow for public randomizations, so that 
before each period the players observe a realization of a 
public random variable (which becomes a part of the public 
history). It does not change any of the results: since prices 
have full support, any randomization can be supported 
using only prices.

20 When we consider pure strategies, it is not restrictive 
to focus on public strategies. Indeed, for every private strat-
egy, one can find a public strategy that induces the same 
probability measure over private histories.

Throughout the paper, we use the term PPE 
in the sense of pure strategy perfect public 
equilibria.

Remark 1: In the abstract and the introduction 
we have used extensively an informal phrase, 
“information arrives continuously.” We can now 
explain this term formally. If prices are i.i.d. 
and the average price from time 0 to time t is a 
continuous function of t, then prices must take 
the form specified in our model (in particular, 
the noise has to be generated by a Brownian 
motion). Formally speaking, if P̄t, the average 
price between times 0 and t, is continuous, then 
tP̄t is a Lévy process without jumps. Such a pro-
cess can be represented as a sum of drift and 
diffusion terms, so average prices in each period 
are normally distributed.

Remark 2: It is important to note that the flex-
ibility D plays two roles in our model: it affects 
the variance of the price distribution in a given 
period, and it affects the per-period discount 
rate d K e2rD. The first effect makes collusion 
more difficult for smaller D since it results in 
less precise statistical inference, which makes 
deviations more difficult to detect. The second 
effect (standard in repeated games) makes it 
easier to collude because the single-period ben-
efits to deviation become small relative to the 
continuation payoffs.

Remark 3: The methods and results for the 
repeated duopoly game are applicable far beyond 
the realm of collusion. To give an illustration, let 
us present a stylized model of moral hazard in 
teams, in which payoffs above the static Nash 
equilibrium are not achievable as D S 0 for the 
same reasons as in a repeated duopoly setting. 
Two partners choose effort rates 1q1t, q2t 2 that 
affect the partnership’s profit. The average profit 
per period (gross of private costs of effort) is

	R t 5 P 1q1t 1 q2t 2 1 et,

where P9 1 · 2 . 0 and et , N 10, s2/D2 . The pay-
offs to partner i are

	 11 2 e2rD2 a
t50, D, 2D...

e2rt ARit 2 c 1qit 2 B ,
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where Rit is the share of profit flow that player 
i receives at time t and c 1q 2 is the cost of effort 
(increasing and convex). Effort by player i ben-
efits both players, but only player i pays its cost. 
This externality implies that the static Nash 
equilibrium does not yield joint profit maximi-
zation. Even though there is no direct mapping 
between this model and the duopoly model we 
study, the assumptions that information arrives 
continuously and that total profit depends only 
on joint effort drive the result that, as D S 0, 
the highest payoffs the partnership can achieve 
are the static Nash equilibrium payoffs.21 The 
stage game is similar to Radner, Myerson, and 
Maskin (1986), with the main differences being 
that we have normally distributed profits while 
they have a binary distribution, and that we take 
D S 0 while they take r S 0.

A. Structure of the Stage Game

We make the following two assumptions 
about the inverse demand function:

•	 A1: The marginal revenue (of total demand) is 
decreasing: 102/0Q22 1QP 1Q2 2 , 0.

•	 A2: The static best response to any q [ 30, q̄4 
is less than q̄, i.e., the marginal revenue of 
residual demand is negative at q̄: 

	 30 1q9P 1q9 1 q 2 2/0q94 Z q9 5 q̄ , 0.

Assumptions A1 and A2 are sufficient to guar-
antee that the best response in the stage game, 
q* 1q 2 , is unique and that the Nash equilibrium 
is symmetric and unique. Denote the Nash equi-
librium of the stage game by 1qN, qN2 . We refer 
to it also as the “competitive equilibrium” or the 
“static equilibrium,” especially when we talk 
about the repetition of 1qN, qN2 in each stage of 
the dynamic game. Define vN 5 P 12qN2qN.

Lemma 1: Assume A1 and A2. The static best 
response q* 1q 2 is unique and less than q̄. Also, 
the static Nash equilibrium is symmetric and 
unique.

21 This result holds under assumptions similar to the ones 
we make in the duopoly model. See Remark in Section VB 
(p. 1808) for further discussion.

The proof is standard and can be found in the 
Appendix.

II.  Impossibility of Collusion:  
Symmetric Equilibria

In this section, we prove that collusion be-
comes impossible as D S 0 in symmetric PPE. 
From APS’86, we know that optimal symmet-
ric PPE involve two regimes: a collusive regime 
and a price war regime. In each period, the deci-
sion whether to remain in the same regime or to 
switch is guided by the outcome of the price in 
that period alone. We show that as D S 0, tran-
sitions from the collusive regime to the price 
war regime must happen very frequently to 
provide the players with incentives. Because of 
that, price wars destroy all collusive gains, and 
payoffs above static Nash become impossible in 
the limit. The methods we develop in this sec-
tion are important for asymmetric PPE (possibly 
with monetary transfers) as well, but the analysis 
of those will require further insights. Denote by 
3v
¯
1D2 , v̄ 1D2 4 , R the set of payoffs achievable in 

symmetric PPE in the game GD. We would like to 
show that as D S 0, v̄ 1D2 converges to the “com-
petitive payoff”, vN 5 P 12qN2qN.

First, let us informally present the core of 
our argument. Using the results of APS’86, in 
the collusive regime, players expect total pay-
offs v̄ 1D2 and choose some supply rates 1q, q 2 , 
1qN, qN2 in the current period. In the next period, 
depending on the realized price, players either 
stay in the collusive regime with continuation 
payoff v̄ 1D2 or go to a price war with continu-
ation payoff v

¯
1D2 . The lower the punishment 

v
¯
1D2 is, the higher the collusive payoffs v̄ 1D2 can 

be: harsher punishments make providing incen-
tives easier. We will show that v̄ 1D2 converges 
to vN even if players can use a punishment of 
0 (clearly v

¯
1D2 $ 0 because 0 is the minmax 

payoff—a firm can guarantee itself that payoff 
by producing 0). As D S 0, collusion becomes 
impossible because the statistical test to prevent 
deviations sends players to a price war with a 
disproportionately high probability.

To see this in greater detail, consider a devia-
tion from q to a static best response q* 1q 2 . q 
that reduces the mean of the observed average 
price from m 5 P 12q 2 to m9 5 P 1q* 1q 2 1 q 2 , 
m. Lemma 3 below shows that the best statis-
tical test to prevent this deviation is a tail test, 
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which triggers a punishment when the price 
falls within a critical region 12 ,̀ c 4 . Given such 
a test, a deviation increases the probability of 
punishment by

	 likelihood difference 5 G9 1c 2 2 G 1c 2 ,
where G9 and G are normal cumulative distri-
bution functions with variance s2/D and means 
m9 and m, respectively. The probability of type I 
error, i.e., triggering punishment when no devi-
ation has occurred, is given by the size of the 
test:

	 size 5 G 1c 2 .
Because the gain from a deviation in one period 
is on the order of D, we explore tail tests with a 
likelihood difference on the order of D. Lemma 2 
shows that in such tests, as D S 0, the prob-
ability of making a type I error in each period 
blows up relative to D. Therefore, as illustrated 
in Figure 4, v̄ 1D2 cannot be sustained. The rea-
soning is as follows. The total expected payoff is 
a weighted sum of the current period payoff and 
the expected continuation payoff with weights 
equal to 11 2 d 2 and d. The continuation pay-
off is a weighted average of v̄ 1D2 and 0 (recall 
that we allow for punishments that are at least 
as harsh as the equilibrium ones, which relaxes 
the problem) with weights 1 2 G 1c 2 and G 1c 2 , 
respectively:

	 v̄ 1D2 5 11 2 d 2qP 12q 2 
	 1 d Cv̄ 1D2 A1 2 G 1c 2 B 1 0 · G 1c 2 D .
This is represented graphically as Figure 4.

Now, as D S 0, we have two effects: the pay-
off gain from colluding in the current period 
11 2 d 2 AqP 12q 2 2 qNP 12qN2 B becomes small, 
and the payoff loss due to punishment becomes 
small. However, the payoff loss of dv̄ 1D2G 1c 2 
becomes disproportionately large compared to 
the current-period payoff gain in the limit. As 
a result, any payoff above Nash cannot be sus-
tained, even if we both:

•	 Worry about only one deviation to a static 
best response; and

•	 Allow 0 as the harshest punishment, even 
though typically v

¯
1D2 . 0.

When comparing games with different D, one 
may be tempted to employ the following reason-
ing. Consider two games with respective time 
periods D and D9 5 D/2. Suppose that with D 
we can construct a profitable collusive equilib-
rium. Now, moving to D9, instead of employing 
the factorization techniques of APS’86 (namely, 
that it is sufficient to factorize the game into 
current period and continuation payoffs), con-
sider the following strategies as a candidate for 
equilibrium. In the odd periods, firms are rec-
ommended to follow the same strategies as in 
the game with D, using the average price over 
the last two periods to decide on continuation 
play. In the even periods, the recommendation is 
to ignore the current prices and keep the quanti-
ties fixed from last period.

Clearly, if firms follow these recommenda-
tions, they will obtain the same payoffs as in the 
game with D. Unfortunately, these recommen-
dations are not incentive compatible for several 
reasons. First, even if firm 2 follows the recom-
mendation, firm 1, after seeing a high first-period 
price, has incentives to increase quantity in the 
second period, and after seeing a low price, to 
decrease quantity. That “option value” will also 
make firm 1 increase its quantity in the first 
period. Second, by that same reasoning, firm 1 
will expect firm 2 to react in the second period 
to the observed first-period price. That makes 
firm 1 increase its first-period quantity even 
more: firm 1 gets all the benefit, while the cost 
of reducing quantities in the second period if 
prices turn out to be low will be shared between 
the two firms.22

22 Although the second of these two effects is the main 
reason cooperation is impossible for small D, clearly the 
two effects are related.

0v v

1 G c G c O 1/2

1 OqP 2q v

Figure 4



VOL. 97 NO. 5 1803Sannikov and Skrzypacz: Impossibility of Collusion

A. Formal Argument

First, we prove that as D S 0, the probability 
of type I error under a tail test to prevent devia-
tions becomes disproportionately high.

Lemma 2: Fix C1 . 0 and m 2 m9 . 0. If D 
. 0 is sufficiently small, then a tail test for a 
deviation with a likelihood difference of C1D 
has a probability of type I error greater than  
O 1D0.51e 2 for any e . 0.

Proof:
See Appendix.

Next, we want to show that a tail test is an opti-
mal way to deter any given deviation. Consider 
a deviation with instantaneous gain DD, which 
reduces the mean of observed prices from m to 
m9. The optimal test maximizes the expected 
continuation payoff subject to providing incen-
tives against this deviation. Lemma 3 shows that 
if we are worried about only one deviation, a tail 
test with a bang-bang property is best.

Lemma 3: Suppose D . 0. Consider the problem

	 max
v1x2 3

`

2`

v 1x 2g 1x 2 dx

s.t

	 DD # d3
`

2`

v 1x 2 1g 1x 2 2 g9 1x 2 2 dx 

and 	 5x [ R, v 1x 2 [ 3v
¯

, v̄ 4 ,

where g and g9 are the densities of normal dis-
tributions with variance s²/D and means m and 
m9 , m, respectively. If this problem has a solu-
tion, then it takes the form

	 v̄  if x . c
(1)  	 v 1x 2 5 e	 v

¯  
if x # c

for some c [ 12`, 1m 1 m92/24 .

Proof:
See Appendix.

With the help of Lemmas 2 and 3 we are 
ready to formulate our main result.

Proposition 1: As the time period between 
actions converges to zero, the maximal payoff 
achievable in symmetric PPE converges to the 
static Nash equilibrium payoff, i.e., v̄ 1D2 S vN 
as D S 0.

Proof:
See Appendix.

As D S 0, two effects influence the scope 
of collusion: more frequent moves lead to both 
weaker statistical tests (which makes collusion 
more difficult to sustain) and smaller immedi-
ate benefits to deviation (which makes collusion 
easier to sustain). The proof shows that as D S 0, 
the deterioration of information is so extreme 
that collusion becomes impossible altogether.

We finish this section by comparing the results 
to AMP, where information arrives discontinu-
ously via Poisson jumps. Suppose that instead 
of continuous monitoring via prices, the players 
can monitor deviations through public signals 
that arrive according to a Poisson arrival rate, 
which depends on the total supply Q. To facili-
tate comparison, focus on a single deviation to a 
static best response. This makes the setup very 
similar to the repeated prisoner’s dilemma game 
in AMP. There are two cases to consider with 
such discontinuous monitoring: the bad news 
case (arrival rate increasing in Q, so that arrival 
rate is higher upon deviation) and the good news 
case (arrival rate decreasing in Q). In the best 
collusive symmetric equilibria, incentives are 
provided quite differently in these two cases: 
in the bad news case, price wars are triggered 
when the signal arrives, while in the good news 
case, they are triggered when the signal does not 
arrive.

It is very difficult to provide incentives in 
the good news case even for a fixed small D. In 
fact, for small D, the probability of type I error 
required to provide incentives is so high that 
even as r S 0, no collusion is possible in AMP 
(AMP Proposition 4). In contrast, in our model, 
for any given D, as r S 0, the best equilibrium 
converges to first-best collusion. The reason 
is that, with a smaller r, harsher punishments 
allow players to use more efficient statistical 
tests with cutoffs further in the tails of the price 
distribution.

On the other hand, in the bad news case, in-
centives can be provided much more efficiently 
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he becomes tempted to overproduce to stay in 
the role of the monopolist longer. Therefore, the 
scheme fails to keep the total supply low. The 
reason for such failure, which is formalized in 
the proof of Proposition 2, is that the individual 
incentives created by transfers of future payoffs 
interfere with one another and cause the play-
ers to jointly produce the Cournot Nash sum of 
quantities.

The proof that collusion is impossible in 
asymmetric equilibria depends crucially on the 
assumption that deviations of different players 
cannot be statistically distinguished. The intu-
ition is as follows. Consider a pair of quantities 
1q1, q22 with Q 5 q1 1 q2 # 2qN and potential 
upward deviations of e by each player. Both such 
deviations change the density of prices from g to 
g9 and therefore are observationally equivalent. 
The incentive constraints against those devia-
tions are

(2) 	  rD A 1q1 1 e 2P 1Q 1 e 2 2 q1P 1Q2 B 
	     # 3

`

2`

v11x 2 Ag 1x 2 2 g9 1x 2 B dx;

	 rD A 1q2 1 e 2P 1Q 1 e 2 2 q2P 1Q2 B 
	     # 3

`

2`

v2 1x 2 Ag 1x 2 2 g9 1x 2 B dx,

where v11x 2 and v2 1x 2 are next-period continua-
tion values as a function of price x. Adding up 
the two constraints and dividing by two, we get 
a joint constraint

(3) 	 rD c aQ
2

 1 ebP 1Q 1 e 2 2 
Q
2

 P 1Q2 d 

�     # 3
`

2`

v1 1x 2 1 v2 1x 2
2

 Ag 1x 2 2 g91x 2 B dx.

than in our model. Conditioning punishment on 
exactly one signal arriving during the period23 

allows for statistical tests with likelihood differ-
ence and type I error probability, both on the 
order of D. In fact, the ratio of these two remains 
roughly constant as D changes, (unlike in our 
model) because the probability of one signal 
arriving is approximately D times the appropri-
ate arrival rate, so that the optimal probability 
of going to a price war conditional on arrival 
is roughly constant for all D. That difference 
makes collusion possible in the AMP model, 
even as D S 0 (AMP Proposition 5), while no 
collusion is possible in our model, i.e., when 
monitoring is based on information arriving 
continuously.

III.  Asymmetric Equilibria and  
Monetary Transfers

As we discussed in the introduction, in many 
games, asymmetric equilibria achieve much 
higher payoffs than symmetric ones. The reason 
is that, in symmetric equilibria, incentives are 
provided via price wars, and hence they require 
destruction of value. In asymmetric equilibria, 
incentives can often be provided by transfer-
ring payoffs between players, keeping the sum 
of profits high. Can firms sustain some collusion 
in our setting using asymmetric strategies? We 
claim the answer is no.

To see the intuition behind this claim, let 
us informally attempt to construct a natural 
asymmetric equilibrium and show why it fails. 
Consider a hypothetical collusive scheme in 
which one of the players always produces the 
monopoly quantity while the other produces 
nothing, and they change roles over time (see 
Figure 5). One may hope that this collusive 
scheme can be made successful, because only 
the player who produces nothing is tempted 
to deviate in any period. We can then provide 
incentives against that deviation by letting the 
opponent, who is in the role of a monopolist, stay 
in that role longer if price drops below a cutoff 
c. This arrangement fails, however, because it 
interferes with the incentives of the monopolist: 

23 For small D, it is sufficient, since the probability of 
multiple jumps arriving is on the order of D2 and hence such 
events have negligible effect on incentives.

p
t

 c p
t

 c

Figure 5



VOL. 97 NO. 5 1805Sannikov and Skrzypacz: Impossibility of Collusion

This joint constraint is identical to the incen-
tive constraint in a symmetric equilibrium with 
quantity pair 1Q/2, Q/22 that counters an upward 
deviation of e. In order to satisfy this constraint 
(while sustaining current-period collusive prof-
its), the problem is that too much value has to be 
destroyed per period for D S 0, as we argued in 
the previous section.24 Proposition 2 formalizes 
the preceding argument. Let v̄a 1D2 be the high-
est sum of payoffs that the players can achieve 
in equilibrium.

Proposition 2: As the time period between 
actions converges to 0, the maximal sum of 
payoffs achievable in any PPE converges to 
twice the static Nash equilibrium payoff, i.e., 
v̄a 1D2 S 2vN as D S 0.

Proof:
     See Appendix.

A.  Monetary Transfers

Thus far, we have assumed that the players 
cannot use any monetary transfers. This is a 
realistic assumption for some cartels (especially 
tacit ones). However, if we apply our analysis to 
other environments (for example, partnerships) 
in which transfers are legal and/or often used, 
we should relax that assumption. It turns out that 
the proof of Proposition 2 easily extends to show 
that collusion becomes impossible as D S 0, 
even if firms can use monetary transfers.

To allow for transfers, we assume that the 
players can write binding contracts that specify 
a transfer of money conditional on the observed 
realization of prices. Such a contract specifies 
an amount of money ti 1x 2 each firm is supposed 
to pay (or receive if ti is negative), depending 
on the price realization. The case of balanced 
transfers, i.e., t11x 2 1 t2 1x 2 5 0, is particularly 
simple. The incentive constraints against an

24 A similar method can be used to show that in the 
partnership game of Radner, Myerson, and Maskin (1986), 
asymmetric equilibria cannot improve upon symmetric 
ones.

upward deviation of e by each player separately 
are now

(4) 	  rD A 1q1 1 e 2P 1Q 1 e 2 2 q1P 1Q2 B
	     # 3

`

2`

Av11x 2 2 t11x 2 B Ag 1x 2 2 g9 1x 2 B dx;

	 rD A 1q2 1 e 2P 1Q 1 e 2 2 q2P 1Q2 B
	     # 3

`

2`

Av11x 2 2 t2 1x 2 B Ag 1x 2 2 g9 1x 2 B dx.

Adding those two constraints and dividing by 
two, we obtain the same joint constraint as (3):

	 rD c aQ
2

 1 ebP 1Q 1 e 2 2 
Q
2

 P 1Q2 d 

�     # 3
`

2`

v1 1x 2 1 v2 1x 2
2

 Ag 1x 2 2 g91x 2 B dx.

From this point, the proof of Proposition 2 
applies to balanced transfers without any change. 
The intuition behind this result is the same: the 
provision of joint incentives destroys too much 
value, as measured by the sum of the players’ 
payoffs.

If we allow unbalanced transfers (t11x 2 , t2 1x 2), 
we assume that they satisfy t11x 2 1 t2 1x 2 5 
b 1x 2 $ 0, where b 1x 2 is the amount of money 
burning (e.g., payments made to a third party). 
Unbalanced transfers can improve somewhat the 
scope of collusion for a fixed D, as they allow for 
punishments stronger than the previous minmax 
payoff. Our limit results still hold, however, as 
long as the amount of money burning per period 
stays bounded. The reason is that, as long as 
punishment is bounded, the likelihood differ-
ence for a statistical test to prevent a particular 
deviation must be still on the order of D. Such 
tests trigger punishment with a disproportion-
ately high probability on the equilibrium path.

We summarize our findings in the following 
corollary.

Corollary 1: Even if monetary transfers 
are allowed (but the amount of money burning 
is bounded), as the time period between actions 
converges to zero, the maximal sum of payoffs 
achievable in any PPE converges to twice the 
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where v̄a 1D2 is calculated at the beginning of 
the game.

Proof:
See Appendix.

IV.  A Numerical Example

We now provide a numerical example that 
illustrates the effects of changes in D on v̄ 1D2 . 
The inverse demand is P 1Q2 5 1 2 Q. It cor-
responds to a monopoly supply Q 5 ½ and 
expected price P 1Q2 5 ½. In the static Nash 
(Cournot) equilibrium, quantities are qN 5 1/3, 
average price is P 12qN2 5 1/3, and payoffs are 
vN 5 1/9.

We take r 5 10 percent to be the annual inter-
est rate, so we interpret D 5 1 as the firms mak-
ing supply rate decisions every year. We take 
s  5 0.03, so that the daily standard deviation 
of average price is s/ !D 5 0.03/ !1/365 < 
0.57, which is on the order of the average daily 
monopoly price.

static Nash equilibrium payoff, i.e., v̄a 1D2 S 2vN 
as D S 0.

Proof:
See Appendix.

We conclude this section with two observa-
tions related to bounds on money burning.

Remark: Suppose that the players can sign 
binding contracts that specify a transfer ti 1x 2 
from player i to a third party when the realiza-
tion of the signal is x, with t11x 2 1 t2 1x 2 $ 0. 
Then:

•	 If there is no bound on the transfers, for any 
D . 0 and e . 0 there exists an equilibrium 
in which v̄a 1D2 $ vM 2 e (where vM is the 
monopoly profit);

•	 If the amount of money burning is bounded 
by current wealth and the players start the 
game with finite wealth, v̄a 1D2 S 2vN as D S 0, 

Figure 6
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We do not compute the actual best collusive 
payoff, because it depends on whether we con-
sider symmetric or asymmetric equilibria and 
various details of the model (e.g., the produc-
tion capacity q̄, which directly affects the worst 
equilibria, and hence indirectly the highest equi-
librium payoffs). Instead, we compute a robust 
lower bound by finding the best symmetric equi-
librium with Nash reversion as a punishment, 
and a robust upper bound by finding the best 
symmetric equilibrium with the minmax payoff 
of 0 as a punishment. Both bounds are valid for 
both symmetric and asymmetric equilibria,25 

as well as collusion enforced by balanced mon-
etary transfers. Figure 6 shows the two bounds. 
The horizontal axis is log10 1D2 . The value of 0 
corresponds to a move once a year, the value of 
22, 100 times a year.

The behavior on the right-hand side of the 
graph is standard: as the moves get less frequent 
the benefits from one-period deviation are large 
compared to continuation payoffs, and collusion 
is difficult to sustain. The effect we focus on is 
the nonmonotonicity of v̄ 1D2 in D: as we move 
to frequencies higher than once a year (we move 
to the left on the graph), v̄ 1D2 decreases. In fact, 
if the players move 100 times a year, then v̄ 1D2 
# 0.113, which is at most a 1.5 percent improve-
ment over static Nash payoffs, while half of 
monopoly profit would represent a 12.5 percent 
improvement.

V.  Convex Costs and Capacity Constraints

In this section, we extend our results to the 
case of increasing marginal costs. Recall that in 
our basic model, we assume constant marginal 
costs and normalize them to zero. Suppose that 
the costs of production accrue at rate c 1q 2 when 
the output flow is q, so that per-period profits 
are
	 D Cqit AP 1Qt 2 1 etB 2 c 1qit 2 D .

Assume that costs are increasing and convex:

•	 A3: c 102 5 0, c9 1q 2 $ 0, c0 1q 2 $ 0.

25 According to the proof of Proposition 2, asymmet-
ric equilibria cannot improve upon symmetric equilibria if 
punishment 0 is allowed.

We show that with increasing marginal costs 
under A3, still no collusion can be sustained in 
symmetric equilibria. The scope of collusion in 
asymmetric equilibria depends on the convex-
ity of marginal costs (i.e., on the third deriva-
tive of c). If they are not too convex, then even 
asymmetric equilibria with monetary trans-
fers do not improve upon static Nash payoffs. 
Otherwise, as we show in the extreme case of 
capacity constraints, collusion may be sustain-
able with transfers. The analysis of this section 
is brief, as it directly applies the methodology of 
Sections II and III.

A. Symmetric Equilibria

Let us summarize the argument why collu-
sion is impossible in a symmetric equilibrium as 
D S 0. To improve upon static Nash equilibrium 
payoffs, firms must use a pair of quantities 1q, q 2 
less than Nash. At any such pair, both firms can 
improve upon static payoffs by deviating upward. 
A statistical test to prevent such deviations must 
have a likelihood difference on the order of D. 
As D S 0, such a test gives false positives with 
a disproportionately high probability, O 1D0.51e 2 , 
and destroys all the benefits of collusion.

We now suggest that this argument still applies 
with increasing marginal costs. The symmetric 
static Nash equilibrium is unique. It is given by 
the first-order condition

(5) 	  P9 12qN2qN 1 P 1qN2 2 c9 1qN2 5 0.

Note that by A1 and A3, the left-hand side of 
(5) is decreasing. When the firms produce 1q, q 2 , 
the sum of profits is given by

	 P 12q 2 5 P 12q 22q 2 2c 1q 2 .
By A1 and A3, this is a strictly concave func-
tion. As P9 12qN2 , 0, firms must choose quan-
tities less than qN to improve upon static Nash 
equilibrium profits. But because the derivative of 
each firm’s static profit with respect to quantity 
P9 12q 2q 1 P 1q 2 2 c9 1q 2 is positive when q , qN, 
each firm is tempted to overproduce. Moreover, 
the gain D from the most profitable static devia-
tion is uniformly bounded away from 0 by some 
number ep . 0 for all q , qN 2 e. Now, the 
argument in the proof of Proposition 1 applies 
directly. Quantities q , qN 2 e cannot be used for 
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If for any pair 1q1, q22 such that P 1q1, q22 . 
P 1qN, qN2 , the sum of derivatives (6) is strictly 
positive, then asymmetric quantities do not 
facilitate incentive provision. The intuition is 
that because signals depend only on aggregate 
quantity, balanced transfers (of continuation 
values or money) between the firms can pro-
vide incentives for one of the firms only at the 
cost of interfering with incentives of the other 
firm. Indeed, adding up two IC constraints 
for an upward deviation by each firm of e,  
we obtain a joint constraint analogous to (3), 
where balanced transfers cancel out. Therefore, 
as in the proof of Proposition 2, jointly providing 
incentives requires a disproportionately large 
destruction of value. Therefore, if the value of 
(6) is positive whenever P 1q1, q22 2 P 1qN, qN2 . 
0, collusion is impossible as D S 0.

A sufficient condition for this to be the case is

•	 A4: c- 1q 2 # 0, i.e., marginal costs are weakly 
concave.

A4 guarantees that asymmetric quantities are 
more difficult to support in equilibrium than 
symmetric ones (and, due to increasing marginal 
costs, they are also less efficient than symmetric 
quantity pairs). Indeed, if A4 holds, then for a 
fixed total quantity Q 5 q1 1 q2 # 2qN, the sum 
of derivatives at asymmetric quantities is higher 
than the sum at symmetric quantities:

	P 91Q2Q 1 2P 1Q2 2 c91q12 2 c91q22 

	     $ P91Q2Q 1 2P 1Q2 2 2c9aQ
2
b $ 0.

We summarize our conclusion in a propo- 
sition.

Proposition 4: Suppose total costs satisfy 
A3 and A4. Then, as the time period between 
actions converges to zero, the maximal sum of 
payoffs achievable in any PPE converges to 
twice the static Nash equilibrium payoff, i.e., 
v̄a 1D2 S 2vN as D S 0.

Remark—Moral Hazard in Teams: In Section I,  
we presented a model of moral hazard in a 
repeated partnership and said that our analysis 
can be applied to that model as well. In par-
ticular, Proposition 4 holds for that model. In 

collusion due to false positives as D S 0. Letting 
e S 0 shows that collusion becomes impossible. 
Therefore, even with convex costs, symmet-
ric equilibria cannot improve upon static Nash 
payoffs.

Proposition 3: Suppose total costs satisfy 
A3 (i.e., they are increasing and convex). As the 
time period between actions converges to zero, 
the maximal payoff achievable in symmetric 
PPE converges to the static Nash equilibrium 
payoff, i.e., v̄ 1D2 S vN as D S 0.

B. Asymmetric Equilibria with  
Monetary Transfers

Can asymmetric equilibria help sustain col-
lusion? With increasing marginal costs, asym-
metric quantities are inefficient and may help 
collusion only if asymmetries significantly facil-
itate the provision of incentives. In most cases, 
the provision of asymmetric incentives is just 
as difficult as it is with constant marginal costs, 
and the provision of joint incentives destroys too 
much value. In a limited set of cases, e.g., with 
capacity constraints as discussed in the next 
subsection, collusion may be possible.

Let us go through the details of our argument. 
First, note that if firms move from a symmet-
ric quantity pair 1Q/2, Q/22 to an asymmetric pair 
1q1, q22 with Q 5 q1 1 q2, their total profits are 
hurt due to convex total costs (A3), i.e.,

	 P 1q1, q22 5 QP 1Q2 2 c 1q12 2 c 1q22 

	 # P 1Q2 2 2c aQ
2
b .

Therefore, as in the case of symmetric quan-
tity pairs, the sum of profits from 1q1, q22 can be 
higher than twice the static Nash payoffs only if 
Q 5 q1 1 q2 , 2qN. Following our reasoning in 
Proposition 2, we consider the sum of the firms’ 
IC constraints when each considers increasing 
its quantity by some e. The sum of derivatives of 
single firms’ profits at 1q1, q22 is

(6) 	
'p1 1q1, q2 2

'q1
 1 

'p2 1q1, q2 2
'q2

 

�     5 P91Q2Q 1 2P 1Q2 2 c91q12 2 c91q22 .
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the partnership game, sufficient assumptions 
that correspond to A1–A3 are that profits are 
increasing in total effort, weakly concave, and 
twice differentiable, and that the private costs 
of effort are increasing and convex. Finally, an 
assumption analogous to A4 is that marginal 
costs of effort are weakly convex.26

C. Capacity Constraints

We finish this section by showing that if A4 
is violated, then sometimes collusion is possible 
with asymmetric equilibria that use balanced 
monetary transfers. We illustrate this fact in an 
extreme case of capacity constraints. In this case, 
the concavity assumption A4 is violated because 
marginal costs jump to infinity at capacity. We 
show that although the result for symmetric 
equilibria is very robust, for asymmetric equi-
libria it is somewhat delicate. Technically, once 
one of the firms is at capacity, the sum in equa-
tion (6) is minus infinity, and therefore it is pos-
sible to provide incentives via transfers to one of 
the firms without disturbing incentives for the 
firm producing at capacity.

For example, suppose that both firms have 
zero marginal costs and that capacity con-
straints are at the monopoly level of production. 
Then, it is still not possible to sustain profitable 
collusion with symmetric equilibria. In contrast, 
asymmetric equilibria with monetary transfers 
solve the monitoring problem. The way to build 
such equilibria is to allow the firms to alternate 
between being a monopolist and producing noth-
ing. When a firm produces nothing, its incen-
tives come from punishments when the price is 
low and from rewards when the price is high. 
Unlike in Section III, these incentives can be 
provided with just monetary transfers between 
the firms, without money burning. Because 
the firm that acts as a monopolist is at capac-
ity, it cannot overproduce to receive transfers by 
driving prices down. Through that mechanism, 
capacity constraints help us resolve the problem 
of separating deviators from nondeviators.

To see in greater detail how a collusive 
equilibrium may look, consider the following 

26 The difference from A4 in the duopoly model arises 
because in the duopoly case colluding firms want to over-
produce, while in the partnership cooperating agents want 
to undersupply effort.

strategies. In odd periods, firm 1 is recom-
mended to produce at capacity (qM) and firm 2 
to produce nothing. In even periods, the roles 
are reversed. After every period, the firm that 
is supposed to produce nothing receives a trans-
fer of DqM AP 1qM2 1 etB , i.e., the realized profit 
(assuming no deviation). In such a scheme, the 
current monopolist clearly has no incentives to 
deviate: lower quantity means lower profits and 
higher transfers. The other firm, which maxi-
mizes D 1qM 1 qit 2 AP 1qM 1 qit 2 1 etB , has no 
incentives to deviate either. Therefore, the pro-
posed strategies form an equilibrium (assum-
ing the transfers can be enforced). That scheme 
achieves first-best.

This scheme requires the transfer to be very 
large after some extreme realizations; hence, if 
transfers cannot be contractually enforced, play-
ers will have incentives to deviate. This can be 
resolved by truncating the realized price at ten 
standard deviations away from the mean and 
slightly increasing the transfer within this range. 
This preserves incentives and keeps transfers on 
the order of !D. Note that firms do not need to 
sign a binding contract to enforce such transfers: 
they can be enforced by a threat of Nash rever-
sion. For small enough D, this threat is credible 
and prevents deviations of players refusing to 
pay the transfer: since the equilibrium achieves 
first best, the expected continuation payoffs are 
almost half the monopoly profits forever. Not 
paying the transfer saves much less than the 
benefit of continued cooperation.

Remark: This setup has three ingredients that 
allow us to sustain collusion: monetary trans-
fers, asymmetric equilibria, and capacity con-
straints. We know that without either of the last 
two, collusion is not possible for small D. It can 
also be shown that the monetary transfers are 
necessary; in other words, using only transfers 
of continuation payoffs (say, promises to be a 
monopolist longer in the future) is not sufficient 
to provide incentives (for small D). This may be 
surprising, since in repeated games when play-
ers are sufficiently patient, often transfers of 
continuation payoffs are asymptotically as good 
as monetary transfers.

The intuition behind the result is as follows. 
First, in order to sustain the highest sum of pay-
offs, in the current period one of the players 
must be at capacity and the other player must 
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as D S 0. However, the impact on prices of a 
one-period deviation is on the order of D, and 
the standard deviation of noise is on the order of 
!D. As the ratio of these two orders is the same 
as in the stationary model, similar issues arise: it 
is more difficult to detect deviations over smaller 
periods of time. Assume that f1 , 0, f11 , 0, f2 , 
0, and f 1Q, · 2 has root P 1Q2 , the mean of prices 
when the total supply is Q.29

The timing is as before: at periods t [ 
50, D, 2D …6, firms observe the current price pt 
and decide on supply rates to be held constant for 
D units of time. The first price p0 is given exog-
enously. Per-period profits are 11 2 d 2qt  pt1D.30

To understand the potential for collusion 
in this model, denote by FM 1pt 2 the monopoly 
profit. A monopolist’s Bellman equation when 
the current price is pt is

	 FM 1pt 2 5 max
Q

 E C 11 2 d 2Qpt1D 1 dFM 1pt1D2 D ,

and the first-order condition is E 3 11 2 d 2pt1D 
1 Df11Q, pt 2 1 11 2 d 2Q 1 dF9M 1pt1D2 2 4 5 0. 
Monopoly profit cannot be achieved in an equi-
librium with two firms. Indeed, if a firm antici-
pated half the monopoly profit as its continuation 
value, currently it must solve

	 max
q

 E c 11 2 d 2qpt1D 1 d 
1
2

 FM 1pt1D2 d .

Taking the first-order condition at half the 
monopoly quantity, we get

  E c11 2 d 2pt1D 1 Df11Q, pt 2 1 11 2 d 2Q 
	 (+)1*
	 , 0

	 1 
1
2

 dF9M 1pt1D2 2d . 0.
	 (++)11*
	 . 0

29 For example, we can have that pt1D 5 11 2 aD2pt 1 
aDP 1Q2 1 et1D, which yields f 1Q, pt 2 K a 1P 1Q2 2 pt 2 .

30 We can model correlated demand in many other ways. 
For example, we can imagine that the noise is correlated 
over time. Such a model is much less tractable, because a 
deviating firm would have private information about future 
distribution of prices. That introduces the problem of pri-
vate monitoring, making the analysis very difficult.

choose strictly less than his static best response. 
In order to provide incentives for this player 
not to overproduce, the transfers have to be at 
least on the order of !D. The second part of the 
reasoning is about the largest difference in con-
tinuation payoffs that can be achieved in equi-
librium for small D. Using arguments similar 
to the ones we have used so far, one can show 
that this upper bound on the continuation payoff 
transfer decreases to zero at a rate much faster 
than O 1!D2 .27 To put it differently, the whole set 
of continuation payoffs rapidly collapses toward 
the 45-degree line as D gets small. Combining 
the two steps, for very flexible production, the 
range of feasible transfers via continuation pay-
offs alone is too small to provide incentives to 
reduce quantity below the static best response.

VI.  Correlated Demand

We have presented the simplest duopoly 
model with homogenous goods to illustrate the 
idea that collusion becomes impossible if firms 
can act frequently. This standard model with 
i.i.d. prices is motivated by Green and Porter 
(1984). As firms act frequently, a few unrealistic 
features arise in this model if we keep it simple. 
For example, prices are unbounded (positive and 
negative) and the variance of per-period average 
prices grows to infinity as we take D S 0. Here, 
we illustrate how the intuition that we have 
developed extends to a more complicated and 
realistic model.

In particular, assume that prices follow a 
mean-reverting process with mean that depends 
on the total supply:

	 pt1D 5 pt 1 Df 1Q, pt 2 1 et1D,

where et1D , N 10, Ds2 1pt 2 2 .28 This price process 
is different from the previous model; in par-
ticular, it is nonstationary and the conditional 
variance of per-period prices decreases to zero 

27 We subtract the local incentive compatibility con-
straints to arrive at a relaxed problem. This relaxed prob-
lem has a solution given by a cutoff rule. Then, bounding 
the type-I errors, we can prove that the maximal difference 
in equilibrium continuation payoffs drops to zero at a rate 
much faster than O 1!D2 .

28 To guarantee that prices are bounded, we could trun-
cate the distribution of et in far tails. This would not affect 
results.
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Therefore, each firm would be tempted to over- 
produce.

We argue that collusion is impossible in this 
setting as D S 0. First, we will discuss Markov 
Perfect Equilibria, which are analogous to Cour
not competition in the simple model. Second, we 
will prove that it is impossible to achieve payoffs 
greater than those of an MPE.

A. Markov Perfect Equilibria

A (symmetric) MPE is a sequential equilib-
rium in which current supply rates 1q̃1pt 2 , q̃1pt 2 2 
depend only on current price. Denote by F 1pt 2 
the expected discounted payoff of each firm in 
a MPE. We will assume that F 1pt 2 is a smooth 
function. Then F 1pt 2 satisfies the following 
Bellman equation:

F 1pt 2 5 E 3 11 2 d 2qpt1D 1 dF 1pt1D2 4 

	 5 11 2 d 2qpt 

	 1 d cF 1pt2 1 Df 12q, pt2F91pt2 

	 1 
Ds2 1pt 2

2
 F0 1pt2 d 1 O 1D22 ,

where, to generate the second line, we have used 
a Taylor expansion, the fact that 1 2 d 5 1 2 
e2rD 5 O 1D2 and the fact that q 5 q̃1pt 2 satisfies 
the first-order condition

	 11 2 d 2pt 1 dDf112q, pt2F91pt2 1 O 1D22 5 0.

We are not concerned with existence, unique-
ness, or further characterization of MPE. Assum
ing that at least one MPE exists, let us show that 
firms cannot achieve higher payoffs in any PPE 
than in the best MPE as D S 0.

B. Impossibility of Collusion

Denote by F̄ 1pt2 the expected discounted 
payoff from the best symmetric PPE. We will 
assume that as F 1pt 2 (which now denotes the 
payoffs in the best MPE), it is smooth and that 
there is an interior pt at which the difference 
between these two functions is maximized.

Proposition 5: As the time period between 
actions shrinks to zero, the best collusive pay-
offs from symmetric PPE converge to Markov 
perfect equilibrium payoffs for all price levels, 
i.e., F̄ S F as D S 0.

For a sketch of the proof, see the Appendix. 
The logic behind this proof is the same as in the 
simple model that we have analyzed in detail. In 
order to enforce collusion, firms must execute 
a statistical test of a normally distributed ran-
dom variable that sends them to a punishment 
regime if there is enough evidence of cheating. 
The probability of punishment becomes dispro-
portionately large as D S 0.

The unifying feature of the two models is that 
when D gets smaller, a deviation changes the 
mean of the signal by an amount that is O 1!D2 
relative to the standard deviation of this signal. 
In the nonstationary model presented in this sec-
tion, the signal is the innovation in price; in the 
stationary model, the signal is the price itself.

VII.  Discussion and  
Further Extensions

Thus far, we have established the impossibil-
ity result and shown that the same reasoning can 
be applied in a model with monetary transfers 
or serially correlated demand. There are many 
additional ways in which one may modify the 
benchmark model, so we conclude the paper by 
informally discussing some of them.

Nonhomogenous Goods.—In our model, 
an important assumption that prevents asym-
metric equilibria from helping collusion is that 
the goods are homogenous, so that the signal 
depends on the sum of quantities only. In fact, 
our results suggest that colluding firms may try 
to increase product differentiation to resolve 
this monitoring problem. As we argue below, 
however, product differentiation has to be suf-
ficiently large in order to avoid the obstacles that 
prevent successful collusion in our setting.

Suppose that the firms can observe two 
signals:

	 dX1t 5 1aq1t 1 (1 2 a 2q2t 2 dt 1 dZ1t ;

	 dX2t 5 1aq2t 1 (1 2 a 2q1t 2 dt 1 dZ2t ,
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f are such that P 1Q2 satisfies A1 and A2. Such 
a model separates the monitoring variable 1s 2 
from the prices.

Assume s is sufficiently large. If firms have 
a production technology that allows them to 
change output flows every D seconds, then the 
expected per-period profits are Dqt P 1Q2 . After 
observing one-second prices over the time 
period, an optimal way to test for deviations 
is to invert g and calculate the average st over 
that period. The average st has mean f 1Q2 and 
variance s2/D. Applying the same reasoning as 
before, we can show that as D gets small, the 
highest average payoffs that can be sustained in 
equilibrium become very close to static Nash 
payoffs.

Frequency of Market Data.—In the game 
we have studied, there are, in fact, two frequen-
cies that determine the scope of collusion: the 
frequency of moves (1/D) and the frequency at 
which the players observe prices. In Section I we 
have assumed that these two frequencies are the 
same but remarked that nothing would change if 
firms observed prices at higher frequencies (in 
particular, observing the continuous price pro-
cess). One could also imagine a market in which 
firms can move frequently, but the market data 
are collected by a third party and available only 
infrequently.

In general, what is important for the scope of 
collusion is the minimum of the two frequen-
cies. The intuition is that if more prices are 
observed while quantities are fixed, then the 
sufficient statistic is the mean. On the other 
hand, if frequencies can be adjusted in between 
price observations, then given that there is no 
new information available to act on (and mar-
ginal revenue of residual demand is downward-
sloping, making output smoothing optimal), 
such deviations are not profitable.

Endogenous Selection of D.—We have assumed 
that D is fixed exogenously. What would hap-
pen if it were chosen by the firms before any 
output game? Assume that the different choices 
of technology have the same costs (in the sense 
that lowering D is costless). It is easy to consider 
the following two scenarios.

First, suppose that choice of D by each firm 
is easily monitored. Then, as a corollary to 
Propositions 1 and 2, in the payoff-maximizing 

where a [ 31/2, 14 is a measure of how related 
the products are (and hence how difficult it is to 
distinguish between deviations by each player) 
and dZit are independent Brownian motions. 
For a 5 1/2, this is our model, although with two 
signals (see “Additional Signals” on p. 1813). 
Analysis of such a game is beyond the scope of 
this paper, but we can provide some intuition 
and conjectures (based on Sannikov (2007) and 
this paper). First, the best symmetric equilib-
rium payoff converges to vN for the same reasons 
as in Section II. For any fixed r we expect that as 
a S ½, the best asymmetric equilibrium payoffs 
achievable for small D converge to Nash equi-
librium payoffs. Also, the quantities involved in 
the best collusive equilibrium converge to qN. 
The intuition is that even though asymmetric 
equilibria are helpful, the higher the correlation 
between the two signals, the more sensitive the 
continuation payoffs have to be to signal real-
izations to provide incentives. That leads to a 
higher volatility of continuation payoffs, which 
is costly since the set of continuation payoffs is 
convex. Thus, only quantity pairs close to qN can 
be successfully enforced without destroying too 
much value. Summing up, we expect that for 
a given r and a close to 1/2, the best collusive 
equilibrium payoff is non-monotonic in D, as in 
Figure 3, and as D S 0 it approaches vN.

Stationary Model with Nonnegative Prices.—
In our basic model of Section I, the average price 
over any interval of time D is normally distrib-
uted. This allows us to divide the time line into 
an arbitrarily fine grid in which at each point 
the firms adjust quantities, and to show that 
collusion is impossible in the limit. The basic 
model has an unattractive feature that prices can 
become unboundedly negative over short inter-
vals of time. We can construct an alternative 
model with bounded prices as follows. Suppose 
that spot-market prices, observed every second, 
are given by

	 pt 5 g 1st 2 , t 5 0, 1, … ,

where g is an increasing nonnegative function, 
st 5 f 1Q2 1 et is a signal with et , N 10, s22 , 
and f is a decreasing function. For example, if 
g 1s 2 5 exp 1s 2 , then prices would be lognormal. 
In this model, the expected inverse demand is 
P 1Q2 5  E 3g 1  f 1Q2 1 et 2 4 . Assume that g and 
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equilibrium, firms would choose an interior D—
neither too small nor too large.

Second, suppose that the firms can secretly 
choose their D and expect to play a collusive 
equilibrium afterward. Then, each will choose 
D as small as possible. The reason is that having 
a lower D gives the firm the option to react to 
the path of prices. As a result, firms will endoge-
nously destroy any hope for collusion. The same 
reasoning applies if D 5 0, but the firms can 
choose the frequency (or delay) at which they 
observe prices.

Additional Signals.—Assume that D is close 
to zero and that prices are observed continuously. 
Suppose there exists another source of informa-
tion yt 5 G 1Qt 2 1 ht observed at intervals Dy 
. 0, where ht is normal noise independent of et 
with variance inversely proportional to Dy.

If the time interval between observations Dy 
is fixed independently of D, then profitable col-
lusion would be achievable in equilibrium: the 
players can disregard prices and focus on Y to 
provide incentives to restrict supply. This situ-
ation can arise if yt is a signal from an industry 
survey released by an independent agency at 
regular time intervals. If, however, Dy 5 O 1D2 , 
then as D S 0, still no collusion is achievable. 
This can be the case if yt is the price of an input 
commonly used in production by the two com-
peting firms.

Delay of Information.—Finally, suppose D > 0 
and that the information arrives continuously 
but with a delay of length d. As in AMP, such 
delay allows for some information aggregation, 
and hence it can improve the scope of collusion. 
To see why collusion above Nash is possible, let 
us construct an equilibrium of this game based 
on the best equilibrium of a game without delay 
with D 5 d and d 5 e2r2d. Divide time into time 
segments of length d. In the odd segments, the 
players are recommended to play as in the best 
equilibrium with D 5 d and with d 5 e2r2d. In 
the even segments, they are recommended to 
play static Nash. At the end of even segments, 
players calculate the average price observed 
between times t 2 d and t (which contains infor-
mation about supply rates in the time interval 1t 
2 2d, t 2 d 2), and then players decide on con-
tinuation payoffs based on that price.

Mixed Strategy Perfect Public Equilibria.—
Throughout the paper we have restricted our 
attention to pure strategy PPE. As we know 
from Fudenberg, Levine, and Maskin (1994), in 
some games, even if all pure strategy profiles are 
not identifiable, mixed strategy profiles may be. 
If some mixed strategy profiles have pairwise 
full rank, i.e., they allow the statistical distinc-
tion between deviations by different players and 
between different deviations by the same player, 
then those profiles can be sustained with bal-
anced monetary transfers. In our game, the exis-
tence of such profiles depends on whether the 
action space (the range of quantities the firms 
can choose) is bounded. If in the mixed strategy 
profile both firms mix over quantities that can 
be locally increased, then a deviation by firm 1 
to increase quantity by a unit (for all realizations 
of the mixing) is observationally equivalent to 
the analogous deviation by firm 2. Therefore, if 
there are no bounds on quantity flows, then devi-
ations from any mixed strategy profile are not 
identifiable and hence all our results still hold. 
If, however, as we have assumed in Section I, the 
firms have a capacity constraint q̄, then a mixed 
strategy profile in which the two firms produce 
at capacity with some small probabilities could 
be both profitable and identifiable. Hence, it may 
be possible to sustain collusion with balanced 
monetary transfers.

The Use of Private Strategies.—While PPE 
present a natural class of equilibria for games 
with public monitoring, recent theoretical lit-
erature has devoted a lot of attention to games 
with private monitoring and the use of private 
strategies. In a private strategy, a player’s cur-
rent action may depend not only on past public 
signals, but also on the private history of that 
player’s actions.31 Equilibria in private strategies 
present a lot of theoretical challenges, as they are 
not connected with a convenient recursive struc-
ture of PPE. In fact, games with private monitor-
ing are so difficult that even the Folk Theorem 
for those games has been proved only in a lim-
ited class of settings.32 Nevertheless, equilibria 
in private strategies allow for a wider range of 

31 Conditioning on past actions can be advantageous 
only if the player mixed in the past (see footnote 20).

32 For example, see Hitoshi Matsushima (2004) and 
Johannes Hörner and Wojciech Olszewski (2006).
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ria. We conjecture that the deterioration of infor-
mation in our model is so severe that the whole 
set of PBE payoffs collapses to the static Nash 
payoffs as D S 0, but a proof of that conjecture 
remains an open question.

VIII.  Conclusion

We have shown that scope of collusion can be 
affected very negatively by the ability of firms 
to react to information quickly if information 
about potential deviations comes to the market 
in a continuous fashion—in particular, if the 
monitoring technology is such that it is difficult 
to tell deviations by different players apart. We 
have explored in great detail many forces that 
affect the scope of collusion: the use of asym-
metric collusive schemes and monetary trans-
fers, the existence of capacity constraints, less 
than homogenous goods, and delay of informa-
tion. We have also investigated how these forces 
affect collusion/cooperation in various other set-
tings, e.g., in the case of nonstationary demand 
or moral hazard in teams. Our results explain 
many reasons why collusion may fail, and pro-
vide a rationale for some special arrangements 
that firms establish to achieve collusion. For 
example, as we discussed in the introduction, 
firms often seek signals that go beyond the aver-
age market price in order to obtain collusion at 
least in asymmetric schemes. Such asymmet-
ric arrangements have been observed in many 
recent cases (see for example, François Arbault 
et al. 2002; the European Commission 2002; 
or Harrington 2006). Other arrangements that 
help collusion may include those that delay the 
release of information or take away firms’ abil-
ity to adjust their production strategies quickly. 
We hope that our results will lead to a new, more 
complete understanding of how flexibility of 
actions affects dynamic collusion and coopera-
tion, and that this paper will help and encour-
age further theoretical and empirical research in 
this area.

strategic interaction than PPE. George Mailath, 
Steven Matthews, and Tadashi Sekiguchi (2002) 
find several intriguing examples of private-strat-
egy equilibria in games with public monitoring. 
Kandori and Obara (2006) show that players 
may improve upon payoffs achievable in public 
perfect equilibria by using private strategies.33

The idea of Kandori and Obara (2006) is that, 
by mixing, a player can sometimes detect devia-
tions of her opponent more efficiently so as to 
minimize the likelihood of type I errors. This 
requires private strategies, because the decision 
to trigger punishment depends not only on the 
public signal but also on the action, which may 
have been used to test the opponent. Can such 
strategies help in our setting?

It turns out that such strategies may produce 
more efficient statistical tests for a fixed D, but as 
D S 0, type I errors still blow up disproportion-
ately for all tests, as long as P9 1Q2 is bounded. 
Consider a pair of collusive quantities 1q, q 2 and 
let q9 be an action used by one of the players 
to test her opponent. When one of the players 
deviates from q to q 1 e while the opponent is 
playing q, the mean of the public signal shifts 
from P 12q 2 to P 12q 1 e 2 (by about P9 12q 2e). 
If the opponent is “checking” the action of the 
former player by supplying the market at rate 
q9, the mean of the public signal shifts up by 
about P9 1q 1 q92e. While detection is improved 
when Z P9 1q1q92e Z . Z P9 12q 2e Z , there is still a 
uniform lower bound on type I errors from such 
statistical tests. That bound is on the order of 
about !D, when P9 1Q2 is bounded.

We conclude that the main known way by 
which private mixed strategies can be useful in 
other settings cannot be used to facilitate col-
lusion when actions are frequent. Unfortunately 
equilibria with private strategies are not under-
stood well enough to show that our impossibility 
result holds for the entire class of such equilib-

33 Blume and Heidhues (2006) show that, by condition-
ing on their past actions, players can improve upon PPE in 
a game with private signals.
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Appendix

Proof of Lemma 1:
First, let us prove that the static best response is unique and less than q. The static best response 

problem is

	 max
q

 P 1q 1 qj 2q.

Let us show that this problem is concave. Differentiating twice with respect to q, we obtain:

	 if	 P0 1q 1 qj 2 , 0:    P0 1q 1 qj 2q 1 2P9 1q 1 qj 2 , 0;

	 otherwise,  	P0 1q 1 qj 2q 1 2P9 1q 1 qj 2 # P0 1q 1 qj 2 1q 1 qj 2 1 2P9 1q 1 qj 2 , 0,

where the last inequality follows from A1. So the problem is strictly concave. That establishes unique-
ness. Directly from A2, we have q* 1qj 2 , q̄.

The best response is defined by the first-order condition

	 P9 1q 1 qj 2q 1 P 1q 1 qj 2 5 0

whenever P 1qj 2 . 0, and it is equal to 0 otherwise. Now, if both firms choose positive quantities in 
equilibrium, then the equilibrium satisfies the two first-order conditions:

	 P9 1Q2qi 1 P 1Q2 5 0;

	 P9 1Q2qj 1 P 1Q2 5 0.

Indeed, there does not exist an equilibrium with either of the quantities equal to zero. Suppose that 
qj  5 0. That would require P 1qi 2 # 0. But, then, the marginal profit of firm i is negative and hence it 
is not playing a best response. So in equilibrium both first-order conditions have to hold. Now, sub-
tracting them from one another we get

	 P9 1Q2 1qi 2 qj 2 5 0,

which can be satisfied only if qi 5 qj.
Finally, using this symmetry we can write Q 5 2q and then the equilibrium has to satisfy

(7) 	  P9 1Q2Q 1 2P 1Q2 5 0.

The left-hand side of this equation is decreasing, as by A1:

	 P0 1Q2Q 1 3P9 1Q2 , P0 1Q2Q 1 2P9 1Q2 , 0.

Furthermore, at Q 5 0 the left-hand side of (7) is positive, and at Q 5 2q̄ it is negative by A2. 
Therefore, equation (7) has a unique interior solution Q 5 2qN.

Proof of Lemma 2:
There are two ways of representing the likelihood difference of a tail test on a graph, as shown on 

Figure 7. Using the area to the right, we see that there exists x* [ 1c, c 1 1m 2 m92 2 such that

	 likelihood difference 5 1m 2 m92g 1x*2 5 1m 2 m92  !D

!2ps
 exp a2

1x* 2 m 2 2D

2s2 b.
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Then, if the likelihood difference is equal to C1D:34

	 1m 2 m92  !D

!2ps
 exp a2

1x* 2 m 2 2D

2s2 b 5 C1D 1 m 2 x* 5 
s

!D
  Å2log a2pD 

C1
2s2

1m 2 m r 2 2b .

Let a . 1 be a number to be specified later. Let y* satisfy 1m 2 y*2 5 a 1m 2 x*2 . Because x* 2 1m 
2 m92 , c, the probability of type I error (i.e., the size of the test) is greater than the shaded area in 
Figure 8, i.e.,

	 1x* 2 1m 2 m92 2 y*2g 1y*2 

	     5 A 1a 2 12 1m 2 x*2 2 1m 2 m92 B  !D

!2ps
 exp a2

a2 1x* 2 m 2 2D

2s2 b 

	     5 a 1a 2 1 2  

s

!D
  Å2log a2pD 

C1
2s2

1m 2 m r 2 2b 2 1m 2 m r 2 b  
!D

!2ps
  a

C1D!2ps

1m 2 m r 2 !D
b

a2

	 . O ADa2/2B .

Taking a sufficiently close to 1 proves the Lemma.

Proof of Lemma 3:
Write the Lagrangian for the maximization problem

	 L 5 3
`

2`

v 1x 2g 1x 2 dx 1 l ad3
`

2`

v 1x 2 1g 1x 2 2 g9 1x 2 2 dx 2 DDb

	 1 3
`

2`

r11x 2 1v 1x 2 2 v
¯
2 dx 1 3

`

2`

r2 1x 2 1v̄  2 v 1x 2 2 dx,

where r11x 2 . 0 only if v 1x 2 5 v
¯

, and r2 1x 2 . 0 only if v 1x 2 5 v̄ . Taking first-order conditions with 
respect to v 1x 2 gives

	 g 1x 2 1 ld 1g 1x 2 2 g9 1x 2 2 1 1r11x 2 2 r2 1x 2 2 5 0.

34 From now on, we take x* , m9. Otherwise, the size is strictly positive as D S 0 and the lemma is trivially satisfied.

c c

x

g x
g x

Figure 7
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If g 1x 2 1 ld 1g 1x 2 2 g9 1x 2 2 , 0, then r11x 2 . 0 and v 1x 2 5 v
¯

. If g 1x 2 1 ld 1g 1x 2 2 g9 1x 2 2 . 0, then 
r2 1x 2 . 0 and v 1x 2 5 v̄ . We have

	 g 1x 2 1 ld 1g 1x 2 2 g9 1x 2 2 , 0 3 
g r 1x 2
g 1x 2  . 

ld 1 1
ld

.

Because g9 1x 2/g 1x 2 is decreasing in x, the last inequality holds when x , c for some constant c. 
Moreover, since g9 1x 2/g 1x 2 5 1 , 1ld 1 12/ld, when x 5 1m 1 m92/2, c , 1m 1 m92/2. We conclude 
that the solution to the maximization problem satisfies (1).

Lemma 4 is technical. It investigates profitable deviations.

Lemma 4: Consider symmetric supply rates 1q, q 2 for q [ 30, qN 2 e 4 . For any e . 0, the gain from 
the most profitable deviation is bounded away from zero, i.e., there exists ep . 0 such that

	 5q [ 30, qN 2 e 4 ,    P Aq* 1q 2 1 q Bq* 1q 2 2 P 12q 2q . ep ,

where q* 1q 2 is a static best response to q.
Also, the price reduction in the most profitable deviation is bounded, i.e., there exists M such 

that

	 5q [ 30, qN 2 e 4 ,    P 12q 2 2 P Aq* 1q 2 1 q B , M.

Proof of Lemma 4:
First, the gains from deviations are bounded away from 0. Indeed, for all q [ 30, qN 2 e 4 , q* 1q 2 Z 

q, so

	 P Aq* 1q 2 1 q Bq* 1q 2 2 P 12q 2q . 0.

Also, P Aq* 1q 2 1 q Bq* 1q 2 2 P 12q 2q is continuous. (In fact, it is differentiable by the envelope theo-
rem, with derivative P9 Aq* 1q 2 1 q Bq* 1q 2 .) A positive continuous function on a compact set 30, qN 2 e 4 
must be bounded away from zero.

Second, the price reduction from the most profitable deviation is bounded because q [ 30, qN 2 e 4 , 
q* 1q 2 [ 30, q̄4 , and prices are continuous over this range.

Proof of Proposition 1:
We can characterize the best symmetric equilibrium (using methods from APS’86) as a solution 

g x

g x

x

cx* x*y*

Figure 8
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to the following problem:

(8) 	  v̄ 1D2 5 max
q, v1x2

 11 2 e2rD2qP 12q 2 1 e2rD3
`

2`

v 1x 2g 1x 2 dx

s.t.	 5q9 [ 30, q̄4 :   11 2 e2rD2 Aq9P 1q 1 q92 2 qP 12q 2 B # e2rD3
`

2`

v 1x 2 Ag 1x 2 2 gq91x 2 B dx

	 v 1x 2 [ 3v
¯
1D2 , v̄ 1D2 4 ,

where 1q, q 2 is the quantity pair chosen in the current period, g denotes the density of prices for total 
supply 2q, gq9 denotes the density for total supply q 1 q9, and v 1x 2 denotes the continuation payoff when 
the realized price is x. The first constraint is a standard one-period incentive compatibility constraint 
and the second constraint states that continuation payoffs must be achievable in equilibrium.

Let us relax the problem. First, consider only one incentive constraint against a deviation to a 
static best response. Second, allow a wider range of continuation payoffs. Third, weaken slightly the 
incentive constraint by noting that rD , 11 2 e2rD2/e2rD. In this way we obtain the following relaxed 
problem:

(9) 	  v̄R 1D2 5 max
q, v1x2

 11 2 e2rD2qP 12q 2 1 e2rD3
`

2`

v 1x 2g 1x 2 dx

s.t.	 q9 5 q* 1q 2 :   rD Aq9P 1q 1 q92 2 qP 12q 2 B # 3
`

2`

v 1x 2 Ag 1x 2 2 g9 1x 2 B dx

	 v 1x 2 [ 30, v̄R 1D2 4 , 

where g9 denotes the density of prices for total supply q 1 q* 1q 2 . Clearly, v̄R 1D2 $ v̄ 1D2 $ vN, so it 
will be sufficient to show that v̄R 1D2 S vN as D S 0. Consider any e . 0. Let us show that if D is suf-
ficiently small, then no supply rates q [ 30, qN 2 e 4 can achieve v̄R 1D2 . We will follow the reasoning 
presented in Figure 4.

Suppose the solution to (9) is q [ 30, qN 2 e 4 . Let ep . 0 be a lower bound on the static profit gain 
from any deviation q* 1q 2 for q [ 30, qN 2 e 4 , and let M be an upper bound on the drop in prices from 
such deviations (see Lemma 4 above). Denote the static gain from q* 1q 2 by

	D  5 P Aq* 1q 2 1 q Bq* 1q 2 2 P 12q 2q $ ep.

This deviation makes the expected price drop by P 12q 2 2 P Aq* 1q 2 1 q B # M.
Keeping the q that solves (9) fixed, v 1x 2 solves

(10) 	  vmax
v 1x2

 3
`

2`

v 1x 2g 1x 2 dx

s.t.	 q9 5 q* 1q 2 :   rDD # 3
`

2`

v 1x 2 Ag 1x 2 2 g9 1x 2 B dx

	 v 1x 2 [ 30, v̄R 1D2 4 .
By Lemma 3, v 1x 2 takes the form

	 v̄R 1D2	 if x . c
(11)  	 v 1x 2 5 e	 0	 if x # c   

.
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This form of v is associated with a tail test with critical region 12 ,̀ c 4 . The likelihood difference in 
this test is:

	 likelihood difference 5 3

c

2`

Ag9 1x 2 2 g 1x 2 B dx.

Denote by vM $ v̄R 1D2 half the monopoly profit. From the incentive compatibility constraint in (10), 
we have

(12) 	 rDD # 3

`

c

v̄R 1D2 Ag 1x 2 2 g9 1x 2 B dx # vM 3

`

c

Ag 1x 2 2 g9 1x 2 B dx 5 vM 3

c

2`

Ag9 1x 2 2 g 1x 2 B dx  .

	 (+++)111*
	 likelihood difference

That implies:

(13) 	  likelihood difference $ rDD/vM $ rDep  /vM,

so it is of order D.
Referring to Lemma 2, let D* . 0 be such that for all D # D*, a tail test for a difference in mean of 

M with likelihood difference epDr/vM has a probability of type I error greater than CDa for some C . 
0 and a , 1. Then, any test for a difference in mean of less than M with the same likelihood differ-
ence has an even greater probability of type I error.

Consider D , D*. The probability of making a type I error is

(14) 	  3

c

2`

g 1x 2 dx . CDa.

This implies:

(15) 	  3
`

2`

v 1x 2g 1x 2 dx 5 3

`

c

v̄R 1D2g 1x 2 dx , v̄R 1D2 11 2 CDa2 .

Finally, returning to (9), for any a , 1,

(16) 	  11 2 e2rD2P 12q 2q 1 e2rD  3
`

2`

v 1x 2g 1x 2 dx , v̄R 1D2
	 (+++)111*	 ()*	 (+++)111*
	 O ADB	 1 2 OADB	 , v̄R 1D2 2 O ADaB

for sufficiently small D. (From Lemma 2 we know that we can pick any a . ½.) This leads to a 
contradiction because, according to (9), we must have equality in (16). Therefore, if q is the current-
period supply rate that achieves value v̄R 1D2 , then q . qN 2 e. But then

	 v̄R 1D2 # 11 2 e2rD2P 12q 2q 1 e2rD v̄R 1D2 1 v̄R 1D2 # P 12q 2q.

Note that P(2q)q is continuous and (by A1) decreasing for q greater than a half of the monopoly 
quantity. Letting e S 0, we conclude that v̄R 1D2 S vN as D S 0.

Proof of Proposition 2 and its Corollary:
Denote by Ea 1D2 the set of payoff pairs achievable in asymmetric PPE (without monetary transfers) 

of game GD.
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Letting Q 5 q1 1 q2, v̄a 1D2 solves

(17) 	  v̄a 1D2 5 max
q1, q2, v11x2, v21x2

 11 2 e2rD2QP 1Q2 1 e2rD3
`

2`

Av11x 2 1 v2 1x 2 Bg 1x 2 dx,

subject to the players’ incentive constraints and the constraint that future continuation values 
Av11x 2 , v2 1x 2 B must be in the set Ea 1D2 , i.e., Av11x 2 , v2 1x 2 B [ Ea 1D2 . We relax the problem in several 
steps. First, as in the proof of Proposition 1, we relax the problem by keeping only the incentive 
constraints against upward deviations of e by each firm, where e will be specified later. Each devia-
tion has the same effect on the distribution of prices, decreasing the mean of the observed price to 
P 1Q 1 e 2 . The incentive constraints against those deviations are given above by (2). We further 
relax the problem by replacing constraints (2) with their sum (see (3)) and by replacing the constraint 
Av11x 2 , v2 1x 2 B [ Ea 1D2 with a weaker constraint v11x 2 1 v2 1x 2 [ 30, v̄a 1D2 4 . As a result, we arrive at 
the problem

(18) 	  v̄a, R 1D2 5 max
q1, q2, v11x2, v21x2

 11 2 e2rD2QP 1Q2 1 e2rD3
`

2`

Av11x 2 1 v2 1x 2 Bg 1x 2 dx

s.t.	 rDaaQ
2

1 ebP 1Q 1 e 2 2
Q
2

 P 1Q 2 b # 3
`

2`

v1 1x 2 1 v2 1x 2
2

  Ag 1x 2 2 g9 1x 2 B dx

	 v11x 2 1 v2 1x 2 [ 30, v̄a, R 1D2 4 .

Clearly, v̄a, R 1D2 $ v̄a 1D2 $ 2vN. Problem (18) is the same as problem (9) multiplied by 2 (here v11x 2 1 
v2 1x 2 plays the same role as 2v 1x 2 in problem (9)), so v̄a, R 1D2 5 2 v̄R 1D2 . It was shown in the proof of 
Proposition 1 that v̄R 1D2 S vN as D S 0. Therefore, v̄a, R 1D2 S 2vN and v̄a 1D2 S 2vN.

With monetary transfers and money burning bounded by b̄ in each period, we conclude similarly 
that the best collusive profits are bounded by the solution of the relaxed problem

	 v̄a, R91D2 5 max
q1, q2, v11x2, v21x2

 11 2 e2rD2QP 1Q2 1 e2rD3
`

2`

Av11x 2 1 v2 1x 2 2 b 1x 2 Bg 1x 2 dx

s.t.	 rDaaQ
2

1 ebP 1Q 1 e 2 2
Q
2

 P 1Q 2 b # 3
`

2`

v1 1x 2 1 v2 1x 2 2 b 1x 2
2

  Ag 1x 2 2 g9 1x 2 B dx

	 v11x 2 1 v2 1x 2 2 b 1x 2 [ 32b̄, v̄a, R91D2 4 .

As in the proof of Proposition 1, a solution to this problem is based on a tail test with a likelihood 
difference on the order of D. We know that such tests destroy too much value as D S 0.

Proof of Remark in Section IIIA:
(i) Fix D . 0 and e . 0. Denote by qM the monopoly output. Suppose that the transfers are 

unbounded, in particular that the players can each commit to burning any amount of money T (in the 
sense that they each pay T to the third party). Then we can provide incentives statically, period by 
period. Suppose that the players sign a contract

	 0 	 if x $ c
	 ti 1x 2 5 e
	 T	 if x , c 

,

which acts as a tail test that prescribes the players to burn T if the average price in the given period 
drops below c. The continuation payoff is independent of current prices.
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Let us fix c and show that firms will choose quantity pair 1qM/2, qM/22 for an appropriate choice of 
T. We have to make sure that q9 5 qM/2 maximizes

(19) 	  Dq9P 1q9 1 qM/22 2 T 3

c2P 1  qr 1 qM / 22

2`

f 1x 2 dx,

where f is the density of a normal distribution with mean 0 and variance s2/D. The choice of q9  affects 
the current-period profit and the probability of punishment. Taking the first-order condition, we get

	 T 5 2D
P 1qM 2 1 P r 1qM 2qM/2
f 1c 2 P 1qM 2 2P r 1qM 2

 . 0.

Since there is no bound on T, for any small c we can find T that provides the players with incentives 
to choose 1qM/2, qM/22 . Then the per-period expected payoffs are

	
1
2

 DvM 2 TF 1c 2 P 1qM2 2 5 Da1
2

  vM 2 K 

F 1c 2 P 1qM 2 2
f 1c 2 P 1qM 2 2 b

,

where K 5 2 3P 1qM2 1 P9 1qM2qM/24/P9 1qM2 does not depend on c (F is the cdf of the standard normal 
distribution). As limzS2`F 1z 2/f 1z 2 5 0, the firms can achieve arbitrarily close to the monopoly profit 
by choosing a sufficiently small c.

(ii) We sketch the reasoning behind this proof. Suppose that we want to obtain collusion with v̄a 1D2 
. 2vN 1 e. From the previous part we know that to obtain payoffs v̄a 1D2 . 2vN 1 11/n 2e we need to 
be able to burn at least T 1D2 in a given period with limDS0T 1D2 5 .̀ Now, we pick D small enough so 
that the initial wealth is smaller than T 1D2 and that with probability 1 2 e9 the wealth of the players at 
any time t [ 30, t 4 is smaller than T 1D2 as well. Then the expected payoffs at time 0 are bounded by

	 11 2 e2rt2 a2vN 1
1
n

 eb 1 e9vM 1 11 2 e92 e2rtvM  ,

which, as n, t S ̀  and e9 S 0, converges to 2vN.

Sketch of Proof of Proposition 5:
Let p* be the price that maximizes F̄ 1p 2 2 F 1p 2 , which implies that F̄9 1p* 2 5 F9 1p* 2 and F̄0 1p* 2 # 

F0 1p* 2 . Let q̃ 5 q̃1p* 2 . Let us show that players cannot achieve payoffs higher than F 1p* 2 by choos-
ing a quantity pair 1q, q 2 $ 1q̃, q̃2 in the current period. Intuitively, if players wanted to collude, they 
would need to cut quantities, not to increase them. Indeed, if 1q, q 2 is used currently, then the Bellman 
equation implies

	 F̄ 1pt 2 5 11 2 d 2qpt 1 d aF̄ 1pt 2 1 Df 12q, pt 2F̄9 1pt 2 1 
Ds2 1pt 2

2
 F̄0 1pt 2 2 exp. punishmentb 1 O 1D22 

	 1 11 2 d 2F̄ 1pt 2 # 11 2 d 2qpt 1 d aDf 12q, pt 2F̄9 1pt 2 1 
Ds2 1pt 2

2
 F̄0 1pt 2b 1 O 1D22

	 # 11 2 d 2qpt 1 d aDf 12q, pt 2F9 1pt 2 1 
Ds2 1pt 2

2
 F0 1pt 2b 1 O 1D22 

	 # 11 2 d 2 q̃pt 1 d aDf 12q̃, pt 2F9 1pt 2 1 
Ds2 1pt 2

2
 F0 1pt 2b 1 O 1D22

	 5 11 2 d 2F 1pt 2 ,

11

22

33
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where the inequality      follows from ignoring punishment and inequality      follows because F̄9 1p* 2 5 
F9 1p* 2 and F̄0 1p* 2 # F0 1p* 2 . For inequality     , the first-order condition in a MPE at price p* implies 
that

	11 2 d 2pt 1 dDf112q̃, pt 2F91pt 2 1 O 1D22 5 0 1 5q $ q̃, 11 2 d 2pt 1 2dDf112q, pt 2F91pt 2 1 O 1D22 , 0 ,

so 11 2 d 2qpt 1 dDf 12q, pt 2F91pt 2 must be decreasing in q for all q $ q̃.
We claim that it is impossible to achieve payoffs larger than F 1pt 2 , even by using a quantity pair 

1q, q 2 , 1q̃, q̃2 . Intuitively, this happens because a statistical test to detect potential deviations is too 
costly. Let M be an upper bound on the size of punishment possible in an equilibrium. If firms use 
quantity pair 1q̂, q̂2 , 1q̃, q̃2 to achieve F̄ 1pt 2 , they must perform a statistical test on pt1D to decide when 
to go to punishment. Let q* 1q̂2 be a supply rate that maximizes

	 11 2 d 2qpt 1 dDf 1q 1 q̂, pt 2F̄9 1pt 2 ,
i.e., that maximizes expected payoffs (modulo constants and terms of order D2) without taking into 
account the possibility of switching to the punishment phase. Let T be the best tail test on 3 1pt1D 2 
pt 2/D4 , N 3  f 1q 1 q̂, pt 2 , s2 1pt 2/D4 that prevents deviation toward q* 1q̂2 through a punishment of mag-
nitude M. Then we have

	 11 2 d 2F̄ 1pt 2 # 11 2 d 2 q̂pt 1 d aDf 12q̂, pt 2F9 1pt 2 1 
Ds2 1pt 2

2
 F̄ 0 1pt 2 2 M · size 1T2b 1 O 1D22

and the incentive compatibility constraint

	 11 2 d 2q* 1q̂2pt 1 dDf 1q* 1q̂2 1 q̂, pt 2F̄9 1pt 2 2 11 2 d 2 q̂pt 2 dDf 12q̂, pt 2F̄9 1pt 2 # M · LD 1T2 .
Unless q̂ < q̃, the likelihood difference LD 1T2 must be on the order of D. But then size 1T2 is on the 

order of D0.51e and it becomes impossible to sustain F̄ 1pt 2 . F 1pt 2 .

11 22

33
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