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In bargaining theory (and practice), outside options play an important role. Often, an impor-
tant outside option is to wait for new developments. Maybe another agent will show up and offer 
better terms of trade, maybe new information will arrive reducing the information asymmetry, 
etc. Traders compare these potential benefits to costs of delaying trade and the risk that over time 
the opportunity to trade might disappear (or that unfavorable information will arrive, etc.). In 
this paper we study a general bargaining model that captures outside options of this nature and 
characterizes their impact on the dynamics of bargaining.

For example, suppose you have put your house on the market. So far only one buyer has 
expressed interest. He informs you that your original price is too high and asks you to reduce it. 
What do you consider before responding? Out of many factors that you may take into account, 
two important ones are: 1) How likely it is that other serious buyers will show up in the short 
run? 2) How likely it is that if you wait to reduce the price, the current buyer will find another 
house and “disappear”? In fact, these risks in many situations are likely to be more important in 
evaluating the relative costs and benefits of delay than the standard discounting costs that play a 
crucial role in many bargaining models. This intuition is confirmed by our model.

New traders arriving over time is a common feature of many markets (housing, labor, financial 
markets to name a few). A key characteristic of such markets is that trade/bargaining over price 
takes time, and the bargaining dynamics are heavily influenced by the market conditions. For 
example, the asking price of a house takes time to drop, and how long it takes may depend on 
whether it is a “sellers’ market” or a “buyers’ market.” We shed some light on how such external 
conditions affect the dynamics of bargaining.

We start with an abstract, general bargaining game: there is a buyer and a seller. The seller has 
an asset that he values at zero (normalization). The buyer has private information about his value, 
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v; only the prior distribution of values, F (v), is commonly known. The seller makes offers to the 
buyer, and the buyer, accepts or rejects. Over time, the seller can reduce his asking price, and 
he cannot commit to future prices. Over time an event can arrive that ends the game (the event 
arrives according to a Poisson process). This abstract event represents arrival of a new trader or 
information (we analyze such special cases in applications).

We characterize stationary equilibria of this game. Our first main result is that arrivals induce 
delay in equilibrium. That is, unlike in the classic Coase-conjecture dynamics, there is ineffi-
cient delay even if the seller makes offers frequently. The discrete time game is very difficult to 
analyze, but we show that as the length of periods shrinks to zero (allowing the seller to change 
asking price frequently), the equilibrium becomes incredibly tractable. This allows us to obtain 
a very clear understanding of the equilibrium dynamics. In particular, the seller’s inability to 
commit to prices decreases his payoffs to his expected outside option (that he can achieve by 
simply waiting), showing that the Coasian forces/features are still present. Finally, prices have 
the “no-ex post regret” property—every type pays the present expected payoff the seller expects 
from him upon arrival.

The intuition is as follows. Suppose that the buyer follows a stationary reservation price strategy 
P (v), which can be interpreted as a demand function and says that all types above v accept prices 
below P (v), independently of the history of the game. Moreover, suppose that the seller has a 
strictly increasing cost c (v) ≤ v of serving type v. The reason c (v) is strictly increasing in our paper 
is that we assume that upon arrival the seller expects a higher revenue if v is higher. For example, if 
the event stands for arrival of a new buyer and is followed by an auction of the asset, the higher is 
the value of the first buyer, the higher is the expected revenue from the auction. c (v) represents the 
expected discounted profit from this auction conditional on the type of the buyer and economically 
is the alternative cost of selling to type v today. Alternatively, as in papers on bargaining with inter-
dependent valuations, Robert Evans (1989), Daniel R. Vincent (1989), and Raymond Deneckere 
and Meng-Yu Liang (2006), the physical cost of serving type v may depend on v.1

Now, suppose that in equilibrium P (v) is above c (v), as shown in Figure 1. What is the seller’s 
best response? In the discrete time it is in general very difficult to calculate. The seller wants to 
collect the area between P (v) and c (v) as quickly as possible, but he is facing a complicated trade-
off: decreasing the price faster allows him to collect the profit faster but forces him to sacrifice 
some profit because if a positive mass of types trade in a period, the price drops discontinuously, 
leaving small triangles, like the one between p1 and p2 in Figure 1, unextracted. However, if we 
consider the continuous time limit, the second force disappears since the seller can smoothly 
decrease prices to collect the whole area between the curves. Doing it as fast as possible econo-
mizes on the delay costs. Hence, if the reservation price strategy P (v) were above c (v) for an 
interval of types prices would drop discretely in an instant. But, if this were the case, the reserva-
tion price strategy could not have been an equilibrium in the first place: a buyer with a high value 
would be better off by waiting for an instant and trading at a much lower price. That tells us that 
the equilibrium reservation price strategy cannot be like the one in Figure 1.

Next, suppose that P (v) and c (v) are configured as in Figure 2. The seller’s best response would 
be then to sell to types in region A as quickly as possible and not to sell to types in region B at 
all, but rather wait for the arrival of the event. However, if immediate trade is efficient (as we 
assume), it cannot be an equilibrium in region B that trade stops: if the buyer expects no trade 
until arrival then his reservation prices would be strictly higher than c (v).

Applying this reasoning to all configurations of P (v) and c (v) we get that the only possibility 
is P (v) = c (v) : every type pays the seller’s alternative cost. It also means that the seller’s ex ante 

1 For example, if the negotiations are about an insurance policy, higher types have a higher probability of having a 
claim and hence value insurance more and are more costly to insure.
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Figure 1. Choosing Prices in Discrete Time
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expected profit is equal to the outside option (and in case c (v) is a physical cost, the profit is zero). 
Moreover, we can pin down the speed at which the seller is screening down the demand curve as 
follows. When P (v) = c (v) the seller is indifferent over the speed at which he screens the types.2 
However, the buyer is not: if the seller is expected to reduce prices faster, the reservation prices, 
P (v), drop; if slower, they go up. There is a unique speed at which prices must fall so that each 
type v is willing to pay P (v) = c (v) > 0 instead of either accepting a higher price earlier or wait-
ing for a lower price later. If the seller was to reduce prices more slowly, then P (v) > c (v) in some 
region, and the seller would like to deviate and speed up the trade.

We formalize this intuition by looking at a sequence of games with period length Δ → 0 and 
show that indeed stationary equilibria (with an atomless limit) of these games converge to the 
described behavior: the seller slowly reduces prices, each buyer type pays the seller’s alternative 
cost, and the seller payoff is reduced to his outside option.

The benchmark to compare our results to is the stationary equilibrium of our bargaining game 
but without the arrivals. In that case, as Δ → 0 trade becomes immediate and prices converge to 
the lowest buyer’s type. This is the remarkable Coase conjecture result shown by Nancy Stokey 
(1981); Jeremy I. Bulow (1982); Drew Fudenberg, David K. Levine, and Jean Tirole (1985) (hence-
forth FLT); and Faruk Gul, Hugo Sonnenschein, and Robert Wilson (1986) (henceforth GSW). 
We show that in that same environment, allowing for external events dramatically changes equi-
librium dynamics. Yet, the same dynamics appear in the limiting case of our model: making c (v) 
flatter and flatter (for example, by decreasing the arrival rate, which reduces the option value of 
waiting), the model and its equilibria converge to the classic Coasian dynamics: immediate trade 
at the cost to the seller.3

Equilibria of dynamic bargaining games are generally quite intractable, reducing their appeal 
for use in more applied work and severely limiting the possibility of doing comparative statics 
analysis. Our analysis of the limit as the seller loses all commitment power (and hence can adjust 
offers continuously) yields relatively simple expressions for equilibrium strategies, opening the 
doors for many applications and empirical predictions.4

For example, we show that:
•	 (Proposition 2) If the value of the seller’s outside option is less sensitive to the current 

buyer’s valuation, then trade takes place at a faster rate. In the limit, if the outside value 
is independent of the value of the current bargaining party, then trade either takes place 
immediately or only upon the arrival of the outside option.

•	 (Proposition 3i) If the outside options of both the seller and the buyer are independent of the 
distribution of types, then the path of prices through time, as well as reservation prices of 
different buyer types, are also independent of the distribution.5 Hence, in such environments 
the equilibrium structure is robust to the details of the distribution of values.

•	 (Proposition 3ii) Nonetheless, the average equilibrium outcomes still depend on the dis-
tribution of values. For example, when buyer valuations fall (in a first-order-stochastic-
dominance sense), average transaction prices drop, and the time on the market increases.

2 This indifference happens only in the continuous time limit.
3 In Section V we discuss how a durable good monopolist model with experience curve effects is mathematically 

analogous to our problem and discuss the generalized Coase conjecture: if the monopolist cannot commit to prices, the 
monopoly equilibrium prices are the same as perfect competition prices.

4 Peter M. DeMarzo and Branko Urosevic (2006) achieve a similar simplification by looking at the continuous time 
limit in a dynamic moral hazard problem.

5 This condition holds, for example, if the arrival stands for the buyer’s type being revealed and the game continuing 
as full information bargaining. It also holds if arrival means that a second buyer shows up with the same valuation as 
the current buyer and an English auction is held upon arrival.
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•	 (Section IIIA) In the setting of a thin market where the events stand for competing trad-
ers that can arrive on both sides of the market (under the pure common value assumption), 
we show how the thickness of the market and the relative likelihood of the seller’s being 
on the short side of the market determines the equilibrium prices and time on the market. 
Moreover, if the arrival rates of other traders are high enough, then the division of surplus 
and equilibrium dynamics are driven more by the relative chances of being on the short side 
of the market rather than on the relative discount factors—the impatience caused by the 
arrival rates of competition dominates the time discounting.

In most of the applications we consider, we assume that only one event can arrive—even 
though we allow for different types of events, we assume that upon arrival the game ends with 
some reduced-form payoffs. A general analysis of markets with many opportunities to trade is 
complicated, and one way to interpret our general model is that the reduced-form payoffs upon 
arrival of the event are not really terminal payoffs in the game but rather represent expected 
continuation payoffs from possibly continued bargaining. In Section IV, we explicitly analyze a 
game with infinitely many potential buyers.6

In terms of relationship to the existing literature, the main intuition why there is delay in 
equilibrium in our model is, as we described above, closely related to the bargaining models 
with interdependent values. In these models, if the lowest possible value is below the average 
cost, delay must occur. The reasoning is that otherwise the individual rationality constraint of 
at least one of the agents would be violated: if the low buyer types do not lose money, no delay 
implies prices have to drop close to the lowest type quickly and hence all prices have to be low, 
but then the seller would lose money on average. The main difference between our model and 
the previous work on bargaining with interdependent values is that the interdependence is cre-
ated by market conditions, and, hence, we can obtain interesting insights about thin markets. 
Additionally, we fully characterize the simple limit of equilibrium strategies in this environment 
and establish comparative statics results. Deneckere and Liang (2006) study a model with a gap 
and show necessary and sufficient conditions for equilibrium delay in the limit. They also show 
that if the buyer has a finite number of types, the equilibrium is unique. In their model, due to 
the gap, trade takes place via atoms, even in the limit. That makes the equilibrium less tractable.7 
Hence, we believe our contribution lies also on the methodological side: by focusing on the con-
tinuous time limit we managed to greatly simplify the analysis, and that allowed us to apply the 
model to many different situations and provide additional insights.

Beyond interdependent values, there is a rich literature about equilibrium delay in bargain-
ing.8 In terms of contributing to that literature, the novelty is that even in the simplest FLT/
GSW framework, adding only the possibility of arrival of a second buyer leads to delay. Such 
arrivals are a natural possibility of real-life transactions and hence can be a common reason for 
delay. Moreover, our paper can be viewed as a generalization of the classic Coasian dynamics: 
we show how the Coasian forces reduce the seller’s payoff down to his outside option and allow 

6 To simplify the analysis we assume that upon the arrival of a new buyer the seller can make a last take it or leave 
it offer to the current party he is bargaining with. If it’s rejected, the old trader disappears and the bargaining restarts 
with the new trader.

7 See Fuchs and Skrzypacz (2009a) for a more detailed analysis of the relationship between both papers and a proof 
that as the gap in values disappears the equilibria in Deneckere and Liang (2006) converge to the equilibria we char-
acterize here.

8 For example, delay occurs in a model with two-sided private information about fundamentals and overlap in values 
(e.g., Peter C. Cramton 1984, Kalyan Chatterjee and Larry Samuelson 1987, or In-Koo Cho 1990), with irrational play-
ers (Dilip Abreu and Faruk Gul 2000), with higher order beliefs (Yossi Feinberg and Skrzypacz 2005) with disagree-
ment about continuation play (Muhamet Yildiz 2004), with externalities (Philippe Jehiel and Benny Moldovanu 1995), 
or with the possibility that players can commit to not responding to offers (Anat R. Admati and Motty Perry 1987).
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us to easily pin down the equilibrium strategies. Although trade might not occur immediately, 
as Ronald H. Coase (1972) stated, “The competitive outcome is achieved even if there is a single 
supplier.” We therefore think that trading at marginal cost (appropriately defined) is the general 
defining property of the Coasian dynamics. When marginal costs are constant this leads to the 
classic result of immediate trade.

Finally, there are also other bargaining papers that allow for arrival of new traders (in particu-
lar buyers) without obtaining equilibrium delay. The difference in results is caused by different 
assumptions about post-arrival competition, mainly that the post-arrival profits do not depend 
on the current buyer type. For example, Roman Inderst (2008) allows the seller only to choose 
whether to keep the original buyer or switch to the new one, but if he does switch, then the value 
of the original value is irrelevant for his continuation value. As a result, in his model trade is 
immediate at a price of zero.9

The paper is organized as follows: Section I presents the general model. Section II character-
izes the atomless limit of equilibria as time becomes continuous. Section III presents appli-
cations of the general model. Section IV discusses an extension to allow multiple arrivals of 
buyers. Section V discusses the durable good monopolist problem, and Section VI concludes. 
Most proofs are in the Appendix.

I.  The Model

We start with a general bargaining game with arrival of a new event. In Section III we analyze 
in detail several applications and in particular a model where the event stands for the arrival of 
a new trader.

A. General Bargaining

There is a seller and a buyer. The seller has an indivisible good (or asset) to sell. The buyer has 
a privately known type v ∈ [0, 1] that represents his value of the asset. v is distributed according 
to a c.d.f. F (v) which is an atomless distribution with full support and density f (v). The seller’s 
value of the asset is zero.10

Time is discrete and periods have length Δ. The timing within periods is as follows. In the 
beginning of the period an event arrives with probability 1 − e−Δλ that ends the game (λ rep-
resents a Poisson arrival rate; for now, we treat the event as a reduced form of some continua-
tion play). If the event does not arrive, the seller makes a price offer p. The buyer then decides 
whether to accept this price or to reject it. If he accepts, the game ends. If he rejects, the game 
moves to the next period.

A strategy of the seller is a mapping from the histories of rejected prices to current period 
price offers. A strategy of the buyer of type v is a mapping from the history of rejected prices 
to an acceptance strategy (which specifies the set of prices that the buyer accepts in the current 
period).

9 The same happens in Alberto Trejos and Randall Wright (1995), where the newly arrived traders simply displace 
the old ones.

10 The only nontrivial assumption about the range of v and the seller’s value is that the seller’s value is no lower than 
the lowest buyer’s value—i.e., the “no-gap case.” The rest is a normalization.
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The payoffs are as follows. If the game ends with the buyer accepting price p at time t, then the 
seller’s payoff is e−rt p and the buyer’s payoff is e−rt (v − p), where r is a common discount rate.11 
If the game ends with the event arriving at time t, then the payoffs are:

 	  e−rt W (v) for the buyer,

 	  e−rt Π (v) for the seller.

Finally, define ​V​ A​ (k) = ​∫0​ 
k​ Π (v)​ [  f (v)/F (k)] dv = E [ Π (v) | v ≤ k ] as the seller’s expected payoff 

conditional on the arrival of the event and buyer type being distributed according to a truncated 
F (v) over v ∈ [0, k ].

To justify the reduced-form payoffs W (v) and Π (v), consider the following examples. Let the 
arrival represent a second buyer arriving and suppose the seller runs an English auction upon 
arrival. If the buyers’ valuations are i.i.d. then Π (v) = ​∫0​ 

1​ min​ {x, v } dF (x) and W (v) = ​∫0​ 
v
​ F​ (x) dx. 

If their values are perfectly correlated, then Π (v) = v and W (v) = 0. The arrival could also rep-
resent the buyer’s information becoming public and the beginning of a bargaining game with 
complete information.12 We further discuss examples in Section III.

We assume:

Assumption 1:

	 (i)	 ​ [e
−Δr (1 − e−Δλ )]  _____________  

[1 − e−Δ (r + λ) ]
  ​   (Π (v) + W (v)) < v for all v > 0.

	 (ii)	 W (v) is continuous and increasing, with v − W (v) strictly increasing.

	 (iii)	 Π (v) is continuous, strictly increasing and differentiable.

	 (iv)	 Π (0) = W (0) = 0.

These assumptions are not too restrictive and are satisfied in many environments (including 
the examples above).13

Condition (i) is assumed so that from the point of view of the two parties involved in the 
negotiation delay is inefficient, and if it were not for the information frictions there would be no 
delay in equilibrium. If it was violated, delay would be a natural consequence of waiting for the 
total surplus to grow.14 (ii) simply states that higher types are more eager to trade immediately. 
This guarantees that the skimming property holds (see below). The properties of Π (v) in (iii), in 
particular Π′ (v) > 0, play an important role in the equilibrium dynamics—they are necessary 
for slow screening over types in equilibrium. We discuss this in more detail in Section II. (iv) is 
assumed to simplify the analysis since it saves us from solving for a fix point problem to find the 
relevant lowest type that trades. In Section IV we analyze an environment in which parts (i) and 
(iii) and (iv) of Assumption 1 are relaxed.

11 We focus on the case Δ → 0, i.e., no commitment power, so it is more convenient to count time in absolute terms 
rather than in periods. Period n corresponds to real time t = nΔ.

12 If in the complete information bargaining game the seller has “bargaining power” α and trade is efficient, then 
Π (v) = αv and W (v) = (1 − α) v.

13 For comparison, Inderst’s (2008) model violates (iii) because the outside option of the seller is not increasing in 
the current buyer’s valuation in his environment.

14 A sufficient condition is Π (v) + W (v) ≤ v. 



VOL. 100 NO. 3 809Fuchs and Skrzypacz: Bargaining with Arrival of New Traders

B. Stationary Equilibrium

As usual (in dynamic bargaining games), in any equilibrium the buyer types remaining after 
any history are a truncated sample of the original distribution (even if the seller deviates from 
the equilibrium prices). This is due to the skimming property which states that in any sequential 
equilibrium after any history of offered prices pt−1 and for any current offer pt , there exists a 
cutoff valuation κ (  pt , p t−1 ; Δ ) such that buyers with valuations exceeding κ (  pt , p t−1 ; Δ ) accept 
the offer pt, and buyers with valuations less than κ (  pt , p t−1 ; Δ ) reject it. Best responses satisfy 
the skimming property because it is more costly for the high types to delay trade than it is for the 
low types (it can be easily shown using the assumption that v − W (v) is strictly increasing; see 
FLT Lemma 1 for an analogous proof).15

The current cutoff k hence describes the payoff-relevant state of the game and is a natural state 
variable on which the seller can condition his strategy. If in equilibrium the seller conditions 
his offers only on the cutoff k, and the buyer has an acceptance policy that is independent of 
the history of the game, then we call this equilibrium stationary. The classic papers in dynamic 
bargaining (FLT, GSW, Lawrence Ausubel and Deneckere (1989), henceforth AD) have shown 
existence of stationary equilibria and that these equilibria all satisfy the classic Coase conjecture: 
as Δ → 0 the expected time to trade converges to zero, and the profit of the seller converges to 
zero (and prices converge to seller’s cost). As shown by AD, there can also exist nonstationary 
equilibria that exhibit delay and a positive seller’s payoff even as Δ → 0. Since one of our goals 
is to show that equilibrium delay is a consequence of the arrival of external events alone, we limit 
our analysis to stationary equilibria.

Formally, a stationary equilibrium is characterized by two functions (κ, P ) :

	 1. 	A buyer’s acceptance rule κ (  p; Δ ) that specifies the lowest type that accepts offer p.

	 2. 	A seller’s pricing rule P (k; Δ ) that specifies the price he offers given truncated beliefs 
F (v) over v ∈ [0, k ].

A pure stationary equilibrium characterized by (κ, P ) is a profile of strategies such that the 
seller offers P (1) in the first period, and then in any future period, if pmin is the lowest offered 
price in the past, he offers P (κ (  pmin; Δ ); Δ ); the buyer follows the acceptance strategy κ (  p; Δ ) 
on and off the equilibrium path. In other words, if the seller ever deviates, the equilibrium strate-
gies call for a return to the equilibrium path as if the seller made the offer pmin in the last period. 
A general stationary equilibrium allows additionally for mixing by the seller over some prices. 
However, as shown by AD (Proposition 4.3) in any stationary equilibrium the seller’s pricing 
rule is pure along the equilibrium path except for possibly the first price, P (1; Δ ).16 We will refer 
to (κ, P ) as strategies with the understanding that these functions induce proper equilibrium 
strategies.

15 The skimming property (implied by Assumption 1 (ii)) differentiates our model from the dynamic market for 
lemons/dynamic signaling models with arrival of new information in Ilan Kremer and Skrzypacz (2007) or Brendan 
Daley and Brett Green (2008). In these models higher types of the informed player are less eager to trade quickly than 
the low types, which dramatically changes the equilibrium dynamics, in particular creating periods with no trade.

16 Additionally, there can be randomization off the equilibrium path if the seller deviates to a price p′ such that 
k′ = κ (  p′; Δ ) and yet p′ ≠ max {  p | κ (  p; Δ ) = k′ }. This can happen only if κ (  p; Δ ) is constant over a range and would 
never be a seller best response since he could increase the price without changing the probability of trade. After such a 
deviation the seller randomizes between prices p1 and p2 to rationalize the acceptance of p′ by type k′. The prices p1 and 
p2 are the maximum and minimum elements of the seller maximization problem given the cutoff k′. 
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Note that the pair (κ, P ) determines the future sequence of prices starting at any history 
described by k: the current equilibrium price is p = P (k; Δ ), the next period price is P ( κ (  p; Δ ); Δ ) 
and so on. They induce a decreasing step function K (t; Δ ) which specifies the highest remain-
ing type in equilibrium as a function of time (with K (0; Δ ) = 1) and a decreasing step function 
T (v; Δ ) (with T (1; Δ) = 0) which specifies the time at which each type v trades conditional on 
no arrival. For notational purposes, we let k+ = κ (P (k; Δ); Δ ) denote next period cutoff given 
current cutoff k and the strategies (κ, P ).

Definition 1: Functions (κ, P ) describe a stationary sequential equilibrium if after every 
history with the induced belief v ∈ [0, k ]:

	 a) 	given κ, for any k, the seller maximizes his expected discounted payoffs by choosing 
price p = P (k; Δ ).

	 b) 	 for any k, given the induced future sequence of prices, the acceptance strategy κ maxi-
mizes the buyer expected discounted payoff.

Remark: To fully specify the equilibrium strategies, the functions (κ, P ) may need to be aug-
mented by appropriate mixed strategies off the equilibrium path, as discussed above (yet, the 
equilibrium-path behavior is completely described by (κ, P )).

AD call stationary equilibria weak Markov (and strong Markov when κ (  p; Δ ) is strictly increas-
ing, which implies that there is no randomization off-equilibrium). The existence of these equi-
libria is proven in FLT and in AD for the game without arrival of events, and in Deneckere and 
Liang (2006) in a set-up with interdependent values. These proofs can be extended to the present 
set-up. Since we are in the no-gap case these equilibria may not be unique. 17

Let V (k; Δ ) be the expected continuation payoff of the seller given a cutoff k and the strategy 
pair (κ, P ). We can express V (k; Δ ) recursively as:

(1)      V (k; Δ )  =  a1  −  e−Δλ b ​V​ A​ (k)  +  e−Δλ c a​ F (k)  −  F (k+ )  ___________ 
F (k) ​ bP (k; Δ ) 

	 + ​ 
F (k+ ) _____ 
F (k) ​ e

−Δr V (k+ ; Δ ) d .

The seller’s strategy is a best response to the buyer’s strategy κ( p;Δ) if:

(2)  	P(k; Δ )  ∈  ​arg max    
p
  ​ c a​ F (k)  −  F (κ(  p; Δ ))  _______________  

F (k) ​ b p  + ​ 
F (κ (  p; Δ ))  _________ 

F (k) ​  e−Δr V (κ (  p; Δ ); Δ) d .

This best response problem captures the seller’s lack of commitment: in every period he 
chooses a price to maximize his payoff (instead of committing to a whole sequence of prices at 
time 0).

17 Finally, in case the equilibria are not unique, there also exist equilibria in which the seller randomizes in the first 
period over a set of prices that correspond to a set of equilibria without initial randomization.
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Instead of analyzing the seller’s full best response problem, we will focus on the follow-
ing necessary conditions. Given an equilibrium, (κ, P ), let ΩΔ be the set of cutoff types on the 
equilibrium path. That is, k ∈ ΩΔ if and only if there exists a t ≥ 0 such that in this equilibrium 
k = K (t; Δ ) (ΩΔ depends on Δ and the particular equilibrium, but we omit the second depen-
dence in notation). A necessary condition for seller’s optimality is that for all k ∈ ΩΔ:

(3)  	 V (k; Δ )  = ​   max     
k+∈ΩΔ, k+≤k

​ A1  −  e−ΔλB ​V​ A​ (k)  +  e−Δλ c a​ F (k)  −  F (k+ )  ___________ 
F (k) ​ b κ−1 (k+ ; Δ ) 

	 + ​ 
F (k+ ) _____ 
F (k) ​ e

−Δr V (k+ ; Δ ) d

where κ−1 (k+ ; Δ ) is the price the seller asks on the equilibrium path to reach the new cutoff k+ 
(and we require that P (k; Δ ) = κ−1 (k+ ; Δ ) for a k+ that solves (3)).18

Regarding the buyer best response, we will focus on the necessary conditions that the buyer 
plays a best response for all histories such that the current cutoff k ∈ ΩΔ , i.e., histories in which 
the seller offered only equilibrium-path prices. Denote by B (v; Δ) the expected payoff of buyer 
with value v (at the beginning of the game). Looking at the direct-revelation representation of 
the buyer’s strategy, he plays a best response (to the seller’s equilibrium strategy) if and only if:

(4)  	 B (v ; Δ )  = ​ max    
v′
  ​ e−(r+λ) T (v′ ; Δ) (v  −  P (k (v′ ); Δ ))  + ​ ∫ 

0
​ 
T (v′ ; Δ )

​ λ​W (v) e−(λ+r)s ds

and v′ = v is a solution to this problem, where k (v′ ) = K (T (v′ ;Δ ); Δ ) is the highest type that 
trades at time T (v′ ; Δ ). In words, the buyer can mimic another type v′ to trade at a different price 
and time, P (k (v′ ); Δ ) and T (v′ ; Δ ). The first part on the RHS reflects the surplus from trading 
before the arrival of an event, and the second part stands for the possibility that the arrival hap-
pens before T (v′ ; Δ ).

We prove in the Appendix in Lemma 2 (No Quiet Period) that for every Δ, in every station-
ary equilibrium, there is trade with positive probability in every period. As a result, a necessary 
condition for the buyer’s strategy, κ (  p; Δ ), to be a best response is that for every k that is reached 
on the equilibrium path and type k+ = κ (P (k; Δ ); Δ) we have:

(5) 	  k+  −  P (k; Δ )  =  e−Δr A1  −  e−Δλ B W(k+ )  +  e−Δ(r+λ) (k+  −  P (k+ ; Δ))
	 5	 3	 5 

.	 trade now	 arrival	 trade tomorrow

The interpretation is that the lowest type trading today (the new cutoff type k+ ) has to be indif-
ferent between accepting P (k; Δ ) today and trading next period at P (k+ ; Δ ) (while facing the risk 
of arrival and getting W (k+ ) instead).

Instead of working with the general buyer problem, we will describe the equilibria using only 
the necessary optimality condition, (5).19

18 Note that since we have restricted in (3) the seller to choose k+ only from ΩΔ, κ−1 (k+ ; Δ ) is well defined: it is the 
price he asks on the equilibrium path in time T (k+ ; Δ ) − 1. 

19 The RHS of (4) is supermodular in v and v′ if T (v′) is weakly decreasing. Hence, the skimming property guar-
antees that the local incentive compatibility conditions—(5)—are not only necessary for optimality of the buyer’s 
strategy, but they are also sufficient.
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C. (Continuous-time) Limit of Equilibria

The equilibrium strategies in discrete time are known to be in general analytically intractable 
(other than in special cases, as in Nancy Stokey 1981 or Jeremy Bulow 1982); however, in our 
game with arrivals, even in the uniform case they are not tractable). In contrast, the continuous-
time limit of equilibria turns out to be relatively easy to characterize (if the limit is atomless). In 
the next section we fully characterize this limit, which is the main result of the paper. Throughout 
the paper we focus on atomless limits:

Definition 2 (Atomless Limit): Take a selection of stationary equilibria from a sequence 
of games indexed by the period lengths Δ asymptotically decreasing to 0. This sequence of 
equilibria is said to have an atomless limit if for all t > 0, as limΔ→0 (F (K (t; Δ ); Δ ) − F (K (t + 
Δ; Δ ); Δ )) = 0. That is, in the limit there are no atoms of trade on the equilibrium path (after 
possibly time zero).

We focus on stationary equilibria with an atomless limit for three reasons.20 First, as we 
show, the continuous time limit of such equilibria is unique, analytically tractable and intuitive. 
Second, Deneckere and Liang (2006) have shown for a game with a gap (i.e., v > c (v) uniformly 
for all v) and the distribution of types approximated arbitrarily finely by a step function (i.e., by 
finite types) that the equilibrium is unique. In a companion paper (Fuchs and Skrzypacz 2009a) 
we have shown that taking a sequence of games with a gap that converges to our game without 
a gap, the limit of equilibria they characterize become atomless. Third, if one studies a finite 
horizon version of the game, then under some mild regularity conditions on F and Π and W, this 
game has a unique equilibrium for small Δ. If one takes the limit of Δ → 0 and then the hori-
zon going to infinity, the unique equilibrium converges to the stationary atomless limit that we 
describe below.21 Importantly, the last two results imply existence of stationary equilibria with an 
atomless limit in our game. It is an open question if there exist any stationary equilibria without 
an atomless limit.

Theorem 1:

	 (i)	 There exist strictly increasing functions V (k), P (k) and a strictly decreasing function 
K (t) such that for any sequence of games indexed by the period lengths Δ → 0 and any 
selection of stationary equilibria with an atomless limit, the sequences of acceptance 
rules and pricing rules {κ (  p; Δ ), P (k; Δ )} and the corresponding sequences of seller’s 
payoffs and trading times {V(k; Δ), K(t; Δ)} converge for all k ∈ ΩΔ to these functions: 
V(k; Δ) → V(k), P (k; Δ ) → P (k) and K (t; Δ ) → K (t). 

		  That is, V (k), P (k), and K (t) describe the unique limit of stationary equilibria with an 
atomless limit as Δ → 0.

	 (ii)	 These functions are characterized below by (8), (9), (12), and the boundary condition 
K (0) = 1.

20 We could weaken the requirement of an atomless limit by requiring instead that there exist a t* such that for all 
t > t* there are no atoms in the limit, because the proof of Lemma 6 could be used to show that this implies no atoms 
for all t. 

21 See Fuchs and Skrzypacz (2009b) for a derivation of this result.
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The main force behind the proof comes from taking the continuous-time limits of the optimal-
ity conditions that have to be satisfied in any equilibrium, (3) and (5). The proof of this result is in 
the Appendix, but we recommend the reader study Section II first since the proof relates to some 
of the expressions derived there.

Formally, we prove the convergence for k ∈ ΩΔ , i.e., cutoffs reached on the equilibrium path. 
However, k ∈ΩΔ becomes dense in the limit (since we assume an atomless limit and prove in 
Lemma 6 that in the limit there is no atom at t = 0), so the convergence of (V, P) is actually for 
all k. In case of K (t; Δ), which is defined only for t ∈ {0, Δ, …}, we extend it to the real line by a 
step function which changes value only at times on the time grid and show that this step function 
converges to K (t).

II.  Characterization of V (k), P (k), and K (t )

We now heuristically characterize the limiting functions V (k), P (k), and K (t ) (these results are 
proved more formally in the Appendix). We first take the continuous-time limit of the seller’s 
problem to derive V (k) and P (k). Second, we take the continuous-time limit of the buyer’s prob-
lem and derive K (t ). We then establish some important properties of the limit. At some points of 
the analysis it is convenient to use the continuous and strictly decreasing function T (v) = K −1 (v) 
which specifies the (equilibrium path) time at which a buyer of type v trades (and is the unique 
limit of the corresponding T (v; Δ ) functions).

Seller’s Problem.—Subtracting e−Δr V (k; Δ ) from both sides of the seller optimality condition 
(3), dividing it by Δ and taking the limit as Δ → 0, we can show that the seller’s best response 
problem can be thought of as finding the optimal rate at which he goes through types:22

(6)  	 r V (k)  = ​   max    
​ · 
   

 K​∈(−∞, 0]
​ λ (​V​ A​ (k)  −  V (k))  +  (P (k)  −  V (k)) ​ f (k) ____ 

F (k) ​ (− ​ · 
   

 K​ )  +  V′ (k) ​ ·    
 K​

where ​ · 
   

 K​ = K′ (t ) is the speed at which the seller screens the types in equilibrium.23

This condition has a direct interpretation if we know that in the limit the seller smoothly screens 
down the “demand curve.” The left-hand side is the expected equilibrium payoff expressed in 
flow terms. The right-hand side represents the possible sources of the flow: upon arrival of the 
event (which happens with a probability flow λ) the game ends with the seller earning in expec-
tation ​V​ A​ (k) (and since the game ends he forgoes V (k)). With a flow probability [  f (k)/F (k)](− ​ · 

   
 K​ ) 

the buyer accepts the current offer, P (k), which also ends the game. Finally, if the game does not 
end immediately, the continuation payoff drops, as the seller becomes more pessimistic about v, 
as captured by V′ (k) ​ ·    

 K​.
Note that (6) is linear in ​ · 

   
 K​.24 This linearity is the source of Coasian dynamics when λ = 0. In 

that case, for any strictly increasing P (k), the seller wants to run down the demand function as 
fast as possible. Therefore the equilibrium P (k) in the limit becomes flat at 0. The outside option 

22 When taking the limit we use the following: a) Prices become continuous in time and in types (Lemma 3, 
Prices Don’t Jump), and b) the limit is atomless, i.e., that the probability of trade in every period converges to zero 
(F (k+ ) → F (k)). Since T (v) is continuous and strictly decreasing, the set ΩΔ becomes dense in the limit, covering the 
whole interval [0, 1]. We also use that choosing k+ is equivalent to choosing (k+ − k)/Δ, which becomes ​ · 

   
 K​ in the limit.

23 More precisely, ​ · 
   

 K​ = limΔ→0 (k+ − k)/Δ . 
24 The intuition for linearity is that the seller has the option to “speed up the clock” and smoothly screen down 

the demand function twice as fast. We use this reasoning in Lemma 4 (Payoffs Converge) to show that V (k; Δ) →
[λ/(λ+r)] ​V​ 

A
​ (k).
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in our model provides a counterbalance for the seller’s temptation to run down the demand curve, 
leading to a strictly downward-sloping P (k).

If the coefficients on ​ · 
   

 K​ in (6) add up to something negative (over a range of k), the seller would 
maximize payoffs by trading as fast as possible; this would imply jumps which cannot happen 
in equilibria with an atomless limit. If the coefficients on ​ · 

   
 K​ add up to something positive (over a 

range of k), then the seller would maximize payoffs by not trading over that range at all, so that 
after reaching this range the trade would stop. That can be shown to be inconsistent with equilib-
rium following the reasoning in Lemma 2 (No Quiet Period). Therefore, in the limit of equilibria 
the coefficients on ​ · 

   
 K​ need to add up to 0 (almost everywhere), and the seller has to be indifferent 

over all possible ​ · 
   

 K​ making any interior ​ · 
   

 K​ optimal:

(7)  	 (P (k)  −  V (k)) ​ f (k) ____ 
F (k) ​  =  V′ (k)

  	 ⇕

 	  P (k)  = ​  ∂ ___ ∂k
 ​ [ V (k) F (k)]/f (k) .

If (7) holds, then we can calculate V (k) by simply substituting (7) in (6):

(8)  	 V (k)  = ​   λ ______ λ  +  r
 ​ ​V​ A​ (k) .

That implies the equilibrium prices must satisfy:

(9)  	 P (k)  = ​   λ ______ λ  +  r
 ​ Π (k) .

These two equations pin down the unique candidates for the limiting functions P (k) and V (k).
Note that, interestingly, V (k) has the property that at any point in the game (for any k) the 

expected payoff of the seller is equal to his payoff from waiting for the arrival of the event. 
Hence, although the Coase conjecture does not hold in terms of the price dropping immediately 
to zero, the Coasian dynamics force down the seller’s profit to his outside option.25 Moreover, 
for each type k, P (k) is exactly the expected present value the seller would have earned from this 
type if he waited for the arrival—a kind of no–ex post regret property—and upon the price being 
accepted the seller does not regret not slowing down the trade.

In discrete time [λ/(λ + r)] ​V​ A​ (k) bounds equilibrium payoffs from below (V (k; Δ ) ≥
[λ/(λ + r)] ​V​ A​ (k)) because the seller has the option not to trade until the arrival.26 In discrete 
time the seller can commit not to reduce the price for Δ units of time. This allows him to earn 
more than his outside option, which makes the analysis of the equilibrium much more difficult. 
In the continuous-time limit the seller loses all commitment power, and as we have shown, 
V (k; Δ) → [λ/(λ + r )] ​V​ A​ (k): the value of the outside option also becomes the upper bound on 
equilibrium payoffs!27 This generalization of the Coase conjecture (that as the seller loses com-
mitment, he cannot earn more than his outside option) makes the limit very simple and intuitive.

25 Interestingly, in the continuous time limit of DeMarzo and Urosevic (2006) (see their Proposition 4) a similar 
property arises.

26 If τ is the random Poisson arrival time, then [λ/(λ + r)] = E [e−r τ ] is the expected present value of a dollar received 
at the arrival time.

27 See Lemma 4 for a formal derivation of this statement.
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Buyer’s Problem.—We now turn to the buyer’s best response problem. Recall that for any 
Δ > 0 we have a necessary optimality condition:

(10)  	 k+  −  P (k; Δ )  =  e−Δr (1  −  e−Δλ ) W (k+ )  +  e−Δ(r+λ) (k+  −  P (k+ ; Δ ))
	 5	 3	 5 

.	 trade now	 arrival	 trade tomorrow

Subtracting e−Δ(r+λ) (k+ − P (k; Δ )) from both sides, dividing by Δ and taking Δ → 0 we get 
the following limit of the indifference condition:28

(11)  	 r (k  −  P (k))  +  λ (k  −  P (k)  −  W (k))  =  − P′ (k) ​ ·    
 K​ .

It also has a direct interpretation: the LHS is the cost of delaying trade (due to discounting and 
possibility of arrival), and the RHS is the benefit of waiting from the reduction in price. The 
benefits and costs are evaluated at the current cutoff type.

Using P (k) we found above, the buyer’s indifference condition allows us to find K (t). 
Substituting (9) in (11) yields:

(12)  	 −​  · 
   

 K​  =  (λ  +  r)   ​ (r  +  λ) K (t)  −  λ (Π (K (t ))  +  W (K (t )))    ______________________________   λΠ′ (K (t )) ​

which together with the boundary condition K (0)  =  1 pins down K (t ).29 By assumption, for 
all v > 0, [λ/(λ + r)](Π (v) + W (v)) < v and Π′ (v) > 0, so the numerator and denominator are 
strictly positive for all K (t ) > 0. Therefore, this differential equation (with the boundary condi-
tion) uniquely defines a strictly decreasing and continuous K (t ).

Additionally, we can calculate the buyer’s expected payoff using (4). Note that the limit 
B (v) = limΔ→0 B (v; Δ ) is simply equal to:

(13)  	 B (v)  = ​ max    
v′
  ​ ​e​ −(r+λ) T (v′   )​ (v  −  P (v′ ))  + ​ ∫ 

0
​ 
T (v′ )

​ λ​W (v) e−(λ+r)s ds .

We can either use { T (v), P (v) } to calculate B (v) directly, or we can apply the envelope theorem:

(14)  	 B′ (v)  =  e−(r+λ) T (v)  + ​   λ ______ λ  +  r
 ​ a1  −  e−(r+ λ) T (v) bW′ (v)

and use the boundary condition B (0) = 0 to pin down B (v).

A. Properties of the Atomless Limit of Equilibria

We now present some general properties of the unique atomless limit of equilibria.
In the previous section we implicitly characterized T (v) = K−1 (v), the time at which type v 

trades conditional on no arrival. If we interpret that the arrival of the event ends the game with 
an immediate trade (which is true in the applications we present in Section III and not true in 

28 For this result we use Lemma 5, which shows that P (k; Δ ) converges to P (k), and that the limit is atomless.
29 The boundary condition is proven in Lemma 6, which shows that there is no atom of trade at time 0, but rather the 

seller starts smoothly screening the buyer types immediately.
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the application with multiple arrivals in Section IV), we can further define the expected time at 
which type v trades, τ (v). It takes into account the possibility that arrival takes place before T (v):

  	 τ (v)  = 	 a​∫ 
0
​ 
T (v)

​ λ​e−λs dsb  × 	 a​∫ 
0
​ 
T (v)

​ s​ ​  λe−λs
 _________  

1  −  e−λ T (v) ​  dsb
	 	 5	 8
	 Pr arrival before T (v)	 E [ arrival time | arrival before T (v)]

	 +  a1  − ​ ∫ 
0
​ 
T (v)

​ λ​e−λs dsb	 T (v)
	 8	

3

	 Pr no arrival before T (v)	 time to trade conditional  .
	 	 	 on no arrival

Finally, we can define the (unconditional) expected time to trade as ​∫0​ 
1​ τ (v)​ dF (v).

Proposition 1:

	 (i) 	(Delay): For all 0 < λ < ∞ the expected time to trade is strictly positive.

	 (ii) 	(Coase conjecture): as λ → 0, the expected time to trade and transaction prices con-
verge to 0 for all types (i.e., T (v) → 0 and P (k) → 0).

Part (i) shows that when the bargaining is subject to external influences, delay is to be expected, 
which is one of our main results.

It follows directly from our characterization, but the intuition is as follows: suppose that there 
is no delay in equilibrium. Then the transaction prices for all types have to be close to zero, 
implying seller’s payoff close to zero, in particular, less than [λ/(λ + r)] ​V​ A​(k) > 0. But that leads 
to a contradiction since the seller can guarantee himself that by just waiting for the arrival of 
the event. Moreover, the bargaining cannot stop at any type k > 0 with the buyer and seller 
waiting for the arrival of the event, since then for all types v ≤ k the reserve price would be 
P (v) = v − [λ/(λ + r)] W (v). But then, by Assumption 1 that v > [λ/(λ + r)] (W (v) + Π (v)), the 
seller would be strictly better off screening through the types quickly than waiting for the arrival.

Part (ii) shows that our limit of equilibria converges to the equilibria in GSW and FLT: as we 
take the probability of arrivals to zero (convergence of the model), trade takes place immediately 
and the buyer captures all the surplus (convergence of equilibrium).

Since both results follow directly from our characterization above, we omit the proof of this 
proposition.

Arrival of new traders or outside options is necessary for delay, but another important ingredi-
ent for slow equilibrium screening is that the seller’s outside value depends on the buyer’s type. 
In particular, we can establish the following general comparative statics:

Proposition 2:

	 (i) 	Consider two environments, one with Π1 (v) and the other with Π2 (v) and either 
W1 (v) = W2 (v) or Π1 (v) + W1 (v) = Π2 (v) + W2 (v). Then if Π′1 (v) > Π′2 (v) ∀v > 0, the 
expected time to trade is shorter in the environment with Π2 (v) .
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	 (ii) 	 In the limit as Π′ (v) → 0 ∀v, expected time to trade converges to zero and the buyer 
asymptotically captures all the surplus.

The second part of this proposition shows that the Coase conjecture holds in the limit as 
Π′ (v) → 0 ∀v. Given our assumption Π (0) = 0, Π′ (v) → 0 ∀v implies that Π (v) → 0 ∀v. To sepa-
rate slope versus level effects, consider the case where Π′ (v) = 0 but Π (v) = c > 0 ∀v (that is, 
the arrival stands for somebody coming to offer the seller price c). In this case, in equilibrium 
the seller offers price p = [λ/(λ + r)] c and either trade happens immediately or there is no trade 
until arrival. For there to be trade with delay it is necessary that Π′ (v) > 0. Intuitively, the seller 
makes a first offer p = [λ/(λ + r)] Π (1). Since this offer is accepted by the highest types, the 
seller’s outside option decreases a bit and next period he is willing to make lower offers. In this 
way he slowly skims through all buyer types.

But why does it happen slowly? Why don’t we get almost immediately to p = 0? The reason is 
that if the seller ran “the clock” too fast then some buyer types would have an incentive to wait 
for a lower price—their reservation prices would decrease. But then the seller would prefer to 
stop trading, since he would get a higher expected payoff from just waiting for an arrival than 
from trading at these low prices. On the other hand, the seller cannot run too slowly through the 
demand either, since then the reservation prices would be so high that the seller would prefer to 
collect the whole area below the demand before the arrival. Therefore the speed at which price 
decreases has to be such that the reservation prices of the buyer keep the balance between the 
incentive to speed up and slow down the trade.

Following this logic, if Π′1 (v) ≥ Π′2 (v) ∀v, then under Π1 the seller’s outside option drops faster 
as his belief of the current buyer cutoff type falls. This makes prices as a function of k decrease 
at a faster rate for the steeper Π (v). Hence, if the seller ran the clock (with respect to K (t )) at the 
same speed, prices would drop faster in time under Π1. But then the buyers would have an incen-
tive to wait for lower prices, leading to a contradiction that the k changes through time. To keep 
the current cutoff types willing to trade at the current prices the seller has to go through the types 
slower under Π1, as claimed in the first part of the last proposition.

This result allows us to compare our dynamics to existing literature. For example, in Inderst 
(2008) (and other papers that have the new buyers replace the existing buyer), Π′ (v) = 0 and there is 
no delay. Taking the limit Π′ (v) → 0 in our model leads to the same limiting outcome. It is essential 
for there to be delay/slow screening of buyers, that the outside value of the seller depends on the 
buyer’s type. The more sensitive the outside value of the seller to the buyer’s private information, 
the greater the delay/inefficiency. As we explained in the introduction, the correlation of the seller’s 
outside option with the buyer value endogenously creates a bargaining environment with interde-
pendent values, as studied by Evans (1989), Vincent (1989), and Deneckere and Liang (2006), and 
hence the main economic intuition behind the delay is similar to that in those papers.

The next proposition characterizes how the time on the market and the ex ante expected pay-
offs depend on the distribution of values:

Proposition 3: Suppose Π (v) and W (v) are independent of the distribution of values, F (v). 
Then:

	 (i) 	(Distribution Independent) P (k) and K (t) are independent of the distribution of values, 
F (v).

	 (ii)	 (Weak markets and time on the market) Consider two distributions of buyer’s values F 
and H such that F first order stochastically dominates H. The expected time to trade is 
longer if the distribution of values is H (and average prices are lower).
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	 (iii) 	(Dispersion of values and efficiency of trade) Suppose Π (v) and W (v) are weakly convex. 
Consider two distributions of values F and H such that F second order stochastically 
dominates H. Then the ex ante expected sum of payoffs is higher under distribution of 
values H.

To illustrate this surprising result (part (i)—that the equilibrium P (k) and K (t ) can be indepen-
dent of the distribution of values), consider the following example. Suppose that the event rep-
resents an arrival of one more buyer who has the same valuation as the original buyer, and that 
upon arrival the seller runs an English auction.30 As a result, Π (v) = v and W (v) = 0 indepen-
dently of the distribution. In that case, the proposition states that the equilibrium prices P (k) and 
the time each type trades, T (v) (and hence, how prices change over time), are independent of F (v)!

The intuition behind this result is as follows. The equilibrium outcome can be thought of as a 
screening of the buyer types with a menu of prices and times to trade. Now, since the inability 
to commit drives the expected payoff of the seller down to his outside option for any k (V (k) 
= [λ/(λ + r)] ​V​ A​ (k)), he collects from each type just the outside option from this type. That is, the 
prices are P (k) = [λ/(λ + r)] Π (k), independently of the distribution. But then, as in any separat-
ing equilibrium, the whole menu is independent of the distribution as well! Mechanically, K (t ) 
is pinned down by the indifference condition of the buyers. Since the current marginal buyer’s 
incentives do not depend on the distribution (unless W (v) does), the limit K (t ) is independent of 
F (v). Clearly low valuation buyers would like the seller not to spend time sorting through high 
types. The problem is that they have no credible way in which to signal to the seller that they 
have a low value.

Part (ii) of the proposition follows then immediately: since T (v) = K   −1 (t ) and P (k) is indepen-
dent of the distribution, and T is decreasing while P is increasing, the average time to trade is 
higher and transaction prices lower under the weaker distribution that puts higher weight on the 
lower types.

Finally, part (iii) follows from payoff calculations: V (1) = [λ/(λ + r)] E [ Π (v)], i.e., the seller’s 
expected payoff at the beginning of the game when k = 1 is weakly higher under H if Π (v) is 
weakly convex. Similarly, if W (v) is weakly convex then so is B (v), which makes the average 
buyer payoff, E [ B (v)], also higher under H. Intuitively, a higher dispersion of values has two 
effects for total surplus: there is a gain from early trade with high types and a loss from later 
trade with low types. But since the surplus from high types is higher, the total surplus on average 
goes up.

One may expect results (ii) and (iii) to be more robust, holding even when the post-arrival 
payoffs depend on the distribution of values. We discuss this issue further in Section IIIB.

III.  Applications

We now turn to three examples to demonstrate how the general model can be adapted to dif-
ferent applications and used to derive additional predictions.

A. Arrival of New Traders with Common Value

Suppose that the event represents two possibilities: either a second seller with an identical good 
arrives, or a second buyer with identical valuation arrives (we call it the common value case).31 

30 Alternatively, the event can represent an arrival of information that reveals the value of the buyer.
31 It can be also described as private values with perfect correlation, since the buyers know their valuations and are 

not concerned with the winner’s curse.
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The arrival rates are λs and λb respectively with λ = λb + λs . Upon arrival there is Bertrand 
competition on the long side of the market (for example, the agent on the short side of the market 
runs an English auction). As a result, the expected payoffs conditional on arrival in this case are:

 	  W (v)  = ​ 
λs __ λ ​ v ,  Π (v)  = ​ 

λb __ λ ​ v,

and clearly they satisfy Assumption 1 (and the assumptions in Proposition 3).32 Using the equilib-
rium conditions (9) and (12) we can calculate the limit P (k) and T (v) = K −1 (v) in a closed form:

(15)  	 P (v)  = ​ 
λb ______ λ  +  r

 ​ v,  T (v)  =  −  ​  λb ________ 
r (λ  +  r) ​ ln v,

and combining these two we get that the seller reduces the asking price over time according to:

 	  p (t )  = ​ 
λb ______ λ  +  r

 ​ exp a− rt ​ λ  +  r ______ λb
 ​ b .

The corresponding value functions are:

(16)  	 V (k)  = ​ 
λb ______ λ  +  r

 ​ ​∫ 
0
​ 
k

​ v​ ​ 
f (v) ____ 

F (k) ​  dv,

	 B (v)  = ​ 
λs v  +  r​v​ (λb+r)/r​

  ____________ λ  +  r
 ​  .

Using the results in the previous section, we can observe that in the atomless limit of station-
ary equilibria:

	 1) 	Market Tightness: Keeping λ = λb + λs constant (the sum of arrival rates of the second 
buyer and seller), a decrease in the ratio λb/λs  implies a shorter equilibrium time on 
the market, a lower seller’s expected payoff and a higher buyer’s payoff. In the limit, as 
(λb/λs) → 0 we get immediate trade with the buyer capturing all the surplus.

	 2)	 Market Thickness: Keeping the ratio λb/λs fixed, delay is non-monotonic in the sum 
λ = λb + λs . It converges to zero as λ → ∞ and also as λ → 0, while it is greater than 
zero for intermediate values.

The first result shows that trade is faster when it is a buyers’ market. This is because the higher 
the likelihood of arrival of the second seller, the more impatient the current seller gets, which 
makes him offer lower prices. In the limit, if only new sellers can arrive then trade takes place 
immediately and the buyers capture all the surplus as in FLT or GSW.

The second result, which follows from Proposition (1), shows that the delay is nonmonotonic 
in the liquidity of the market. In the limit as we approach perfect competition (λb + λs → ∞) 
arrivals and hence trade takes place immediately. Trade is also immediate when there is a bilat-
eral monopoly with no possibility of arrival. But when we have a thin market there is some delay 
in trade.

32 These reduced-form payoffs are analogous in a model where the arrival means information arrives to the market 
that reveals the buyer value, and upon revelation they split the surplus efficiently, giving the seller a λb/λ share.



June 2010820 THE AMERICAN ECONOMIC REVIEW

Since Π (v) and W (v) are independent of the distribution F (v), Proposition 3 applies, and the 
equilibrium P (k) and K (t ) are independent of the distribution. Does it mean that the distribution 
of values has no impact on the expected trade dynamics? No. In fact, as a corollary to Proposition 
3 we get two additional observations:

	 3) 	Weak markets and time on the market: Consider two distributions of buyer’s values 
F and H such that F first order stochastically dominates H. The expected time to trade is 
longer if the distribution of values is H (and average prices are lower).

	 4) 	Dispersion of values and efficiency of trade: Consider two distributions of values F and 
H such that F second order stochastically dominates H. Then the ex ante expected sum 
of payoffs is higher under distribution of values H, but the expected time to trade is lower 
under F.

These results can be derived directly from expressions (15) and (16) by noting that T (v) is 
decreasing and convex, the V (1) depends only on the average v, and B (v) is convex in v.33

These results point to an interesting finding that trade takes longer in markets with weaker 
distributions of valuations. This could help explain some of the cyclical patterns in real estate 
markets and in labor markets.

Impatience: Arrivals versus Discounting.—In Ariel Rubinstein’s (1982) bargaining model the 
relative discounting rates of the buyer and the seller are critical in determining the price at which 
the object is traded. In our model there is an additional source of impatience beyond discount-
ing: the probability of having the arrival of a competing trader on your side of the market. How 
do relative arrivals compare with discounting in determining the properties of the equilibrium?

Let rs and rb be the seller’s and buyer’s discount rates, respectively. The time at which each 
type trades and the prices are given by:

 	  P (v)  = ​ 
λb ___________  λb  +  λs  +  rs

 ​ v  ;  T (v)  =  −   ​  λb _______________  
rb (λs  +  rs )  +  rs λb

 ​ ln v .

Note that the seller’s two sources of impatience (λs and rs ) have almost symmetric effect on 
prices. Hence, a fear of new competition or a higher discount rate have almost identical effect 
on seller’s impatience. Furthermore, if rs and rb are much smaller than λs and λb , then the prices 
paid by different types depend mostly on λs and λb and very little on rs and rb. The ratio rs/rb 
affects the equilibrium only via delay by influencing which of the arrival rates is more important 
for the speed at which prices drop over time:

 	  P (v)  ≈ ​ 
λb __ λ ​ v;

 	  T (v)(rb  +  rs )  ≈  −   ​  λb  ___________________   
λs ​ 

rb ______ rb  +  rs
 ​  +  λb

  ​  rs ______ 
rb  +  rs

 ​
 ​ ln v

(since, time rs and rb depend on the unit of time, it is relevant to look at T (v)(rb + rs) not just 
T (v)).

33 The only new claim is that the expected time to trade is longer when the distribution of values is more dispersed. 
It follows from t (v) being convex.
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Hence, in thick markets what matters in terms of bargaining power is driven a lot by the rela-
tive arrival rates and much less by the relative rates of time discount.34

B. Arrival of a New Buyer with Private Values

Consider now a case where only one additional buyer can arrive, and his value v ∽ F (v) is 
independent of the current buyer’s value (but comes from the same distribution). Also, upon 
arrival we assume that to allocate the good, the seller runs a second price auction with no reserve. 
In this environment we can calculate:

 	  W (v)  =  F (v)v  − ​ ∫ 
0
​ 

v

​ x​ f (x) dx

  	 Π (v)  = ​ ∫ 
0
​ 

v

​ x​ f (x) dx  +  (1  −  F (v)) v .

We can combine these with (9) and (12) to fully characterize the equilibrium in this 
environment:35

 	  P (v)  = ​   λ ______ λ  +  r
 ​ a​∫ 

0
​ 

v

​ x​ f (x) dx  +  (1  −  F (v))vb ,

 	  −​  · 
   

 K​  =  (λ  +  r) ​ r __ λ ​  ​  K (t ) __________  
1  −  F (K(t )) ​ .

The expression for K (t ) is quite involved, but its inverse is tractable:

(17)  	 T (v)  = ​   λ _______ (λ  +  r)r ​ ​∫ 
v
​ 
1

​  ​​ 
1  −  F (x) ________ x ​  dx.

This environment is a good example of a situation where Π (v) and W (v) do depend on F (v), 
so that Proposition 3 does not apply. In such situations, how do average prices and time to trade 
change as the distribution of types changes? Loosely speaking, there is a general tendency for 
weaker markets to have longer time to agreement, but it is not always the case. There are two 
counteracting effects. First, as in Proposition 3(ii), because T (v) is decreasing, E [ T (v)] puts more 
weight on longer times to trade for weaker distributions. However, T (v) is no longer independent 
of the distribution, which creates the second effect: a weaker distribution of values implies typi-
cally a lower Π (v) (the new buyer is expected to provide weaker competition). In turn, that means 
lower asking prices for each cutoff and that the buyer has less incentive to wait for the prices to 
drop. So, even though we have more weak types, all types tend to trade faster, and in general it 
is ambiguous how E [ T (v)] changes when the distribution weakens.

In particular, continuing with the model with private values, if the distribution changes in a 
way that (1 − F (k))/k decreases for all k (which also means the distribution is weaker, albeit in 

34 The importance of arrival rates of buyers and sellers in bargaining has been analyzed before in models without 
asymmetric information; see, for example, Rubinstein and Asher Wolinsky (1985) or Curtis R. Taylor (1995). This sec-
tion complements this literature by looking at a market with information frictions.

35 To simplify the equation for ​ · 
   

 K​ we use that Π (v) + W (v) = v and Π′ (v) = 1 − F (v). 
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a different sense), then every type trades faster. Integrating (17), the expected time to trade con-
ditional on no arrival is:

(18)  	 E [ T (v)] = ​  λ _______ (λ  +  r)r ​ ​∫ 
0
​ 
1

​  ​​ 
(1  −  F (v))F (v)  ____________ v ​  dv

and indeed first-order or second-order stochastic dominance of distributions are not sufficient to 
rank time to trade.

To provide some intuition, consider the example of a class of distributions F (v) = v  a (with a 
higher a representing a stronger distribution). In this case the expected time to trade conditional 
on no arrival simplifies to:

 	  E [ T (v)]  = ​   λ _________  
2a(λ  +  r)r ​ .

That implies that as we move to a weaker distribution the effect of having more weak types domi-
nates the effect that each type trades faster. Hence, at least within this family of distributions, 
time to trade is shorter for stronger distributions.

As far as dispersion of values and delay are concerned (to compare the results to Observation 4 
in the previous section), if the distribution of values is symmetric around 1/2, a mean-preserving 
spread in the distribution leads to a longer average time on the market, as can be seen from 
a direct inspection of (18) (but in general, the effect of second-order stochastic dominance is 
ambiguous).

Finally, in terms of expected payoffs and dispersion of values (to compare with Proposition 
3(iii)), B (v) is strictly convex in v (which can be shown using the proof of Proposition 3(iii) and 
noting that W (v) is convex in the private values case). So, comparing two distributions F and H 
such that H is a mean-preserving spread of F, on average the buyer is strictly better off under 
H. On the other hand, the ex ante expected payoff of the seller is V (1) = [λ/(λ + r)] E [ Π (v)] 
= [λ/(λ + r) E [ min {v1 , v2 }] where v1 and v2 are independent draws from the distribution of v. 
Since min is a concave operator, the seller’s payoff decreases with the mean-preserving spread.

Auction Format and Time Consistency.—So far we have assumed that the seller runs an 
English auction with no reserve price upon arrival of the second buyer. Modeling the impact of 
different auction formats is somewhat delicate because in general optimal bids depend on the 
belief the second buyer has about the value of the first buyer. In turn, the belief depends on what 
the second buyer observes about prior bargaining (and if what he observes is not common knowl-
edge, the bidding depends also on the higher-order beliefs). The analysis is tractable if we assume 
that upon arrival at least the lowest offer made so far is common knowledge. However, since the 
first and the second buyer are not symmetric at the beginning of the auction, different auction 
formats will yield different expected revenues. In particular, with i.i.d. ex ante distributions of 
the two buyers, the first buyer is going to have a weaker (truncated) distribution.36

In general, to increase the competition faced by the stronger bidders, optimal auctions usually 
treat weaker bidders more favorably. On the other hand, one could be concerned that treating the 
first bidder more favorably in the auction would make him more stubborn during the bargain-
ing phase and, hence, hurt the seller. Can that lead to time-inconsistency of the optimal auction 
choice of the seller (i.e., that he would like to choose one format ex ante and another one ex post)?

36 The asymmetry arises endogenously because in our set-up beliefs about the first buyer value are updated during 
the bargaining phase.
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We argue that in fact no such time inconsistency would arise.37 The reason is that given any 
auction format during the bargaining phase, the seller’s payoff is equal simply to his outside 
option. Therefore, if the seller chooses ex post the auction format that maximizes ex post rev-
enues, he will at the same time maximize ex ante payoffs as well.38

C. Taste Diversity and Time on the Market

In many markets it is natural to think that there are different groups of potential buyers of 
the asset, and that even though valuations within a group can be very similar, they would differ 
across groups quite a bit. For example, families with school age children could be one group 
with similar valuations for a given house. The group of retirees, on the other hand, could value 
the same house differently. The first group would put more weight on the quality of the school 
district, while the latter care more about the quality of the walking paths. Similarly, if a firm is 
being sold, there are different groups of potential buyers such as competing firms and private 
equity funds that have different motives for purchasing the target.

To illustrate the effects of diverse taste groups of potential buyers on the bargaining dynam-
ics, we parameterize the problem as follows. Assume there are n different groups of buyers. 
All members of a given group share the same valuation, but valuations across groups are i.i.d. 
according to F (v). Now, when the second buyer arrives, with probability γ = 1/n he belongs to 
the same group (and has the same valuation) as the current buyer (and this is common knowl-
edge). Otherwise, with probability (1 − γ), he belongs to a different group and his value is inde-
pendent of the first buyer value. Therefore, a larger γ stands for a less diverse marketplace. In 
either case an English auction is used to allocate the good. For simplicity assume λs = 0.

In this case the expected payoffs conditional on arrival are:

 	  W (v1 )  =  (1  −  γ) F (v1 )(v1  −  E [v2 | v2  ≤  v1 ])

  	 Π (v1 )  =  γv1  +  (1  −  γ)(F (v1 )E [v2 | v2  ≤  v1 ]  +  (1  −  F (v1 ))v1 ) .

Applying the general analysis above, we can establish comparative statics. As the number of 
groups increases, n ↑ (↓ γ) :

	 (i) 	The expected time to trade decreases.

	 (ii) 	The payoff of the seller falls.

	 (iii) 	For any t the price offered is lower.

Part (i) follows from noting that [∂Π′ (v1 )/∂γ] = F (v1 ) > 0 and using the result from 
Proposition 2. (ii) and (iii) follow from noting that Π (v1 ) is decreasing in n (since the second 
term of Π (v1 ) is smaller than v1 ) and using equations (8) and (9) which respectively characterize 
the seller’s value and prices.

This result suggests that sellers would benefit more from specializing in a narrow market, 
intensively targeting a given group of potential buyers rather than casting a very wide net. 

37 At least for auction formats such that the resulting Π (v) and W (v) satisfy Assumption 1.
38 Interestingly, the optimal auction format will be changing over time, since it is going to be dependent on current 

belief, k.
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Although we do not model it here, this benefit of specialization must be balanced against the 
potential drop in the contact frequency, λb .

IV.  Multiple Arrivals

In many markets, the seller can wait for more than one additional buyer. That leads us to a 
natural extension of the model to multiple arrivals. Unfortunately, a general model in which 
the seller can bargain with multiple buyers at the same time and have more and more of them 
arrive is not tractable. To gain some intuition (and to demonstrate that some of the economics we 
described above are robust), we instead analyze a simpler, more stylized model.

In particular, we assume that there is a constant arrival rate of new buyers, λ, and the buyers 
have independent private values all drawn from the same distribution F (v) with support [0,1] 
(there are potentially infinitely many buyers that can arrive). Throughout this section we assume 
that F (v) satisfies the downward-sloping marginal revenue condition, that is we assume that 
v − [(1 − F (v))/f (v)] is strictly increasing.39

When a new buyer arrives we assume that the seller makes a last take it or leave it offer to the 
old buyer. If it is accepted, the game is over. If it is rejected, the new buyer replaces the old buyer 
and the bargaining starts from scratch until the next arrival. These assumptions are a combina-
tion of the set-ups in Fudenberg, Levine and Tirole (1987) (who allow for take it or leave it offers 
with replacement of buyers upon rejection but have an infinite supply of buyers standing by avail-
able for immediate replacement) and Inderst (2008), who has Poisson arrivals but does not allow 
for final offers. Nonetheless, the resulting equilibrium dynamics are very different from the ones 
in either of those papers.

We now sketch the characterization of a continuous time limit of stationary equilibria of this 
model. Note that after the old buyer rejects a final offer, the game starts afresh. Stationarity is 
crucial for tractability, since it allows us to keep track of only one state variable, k, the cutoff of 
the currently bargaining buyer.

Denote by V (k) the value of the seller (i.e., his expected equilibrium payoff) when he is bar-
gaining with one buyer with a cutoff belief k. Let V * = V (1). This is the seller’s expected value at 
the beginning of the game and also his expected continuation payoff after the old buyer rejects 
his final take it or leave it offer. For now, we will take V * as given.

Let ​V​ A​(k) be the expected payoff of the seller upon arrival (before the current buyer responds 
to the take it or leave it offer). To find it, note that upon arrival the seller will choose the final 
offer ​p​ A​ (k) to maximize:

(19)  	 ​p​ A​ (k)  = ​ arg max     
p
  ​ a​ F (k)  −  F ( p)  __________ 

F (k) ​ b p  + ​ 
F ( p) ____ 
F (k) ​ V *

and the expected payoff upon arrival will satisfy:

(20)  	 F (k) ​V​ A​(k)  = ​ max    
p
  ​ (F (k)  −  F ( p)) p  +  F ( p)V * .

From the envelope condition we have:

(21)  	​  ∂ ___ ∂k
 ​ (F (k) ​V​ A​(k))  =  f (k) ​p​ A​ (k) .

39 Roger B. Myerson (1981) calls this condition increasing virtual valuation, or the regular case.
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To pin down the equilibrium we will also use a technical lemma:40

Lemma 1: For any V * and k > V * there is a unique and strictly increasing ​p​ A​ (k) ∈ [ V *, k) that 
solves (19). For k ≤ V * an optimal strategy is ​p​ A​ (k) = V * and no trade with probability 1.

Therefore, given a V *, the above equations determine uniquely ​V​ A​(k), and ​p​ A​ (k). Now, take ​V​ A​(k) 
and ​p​ A​ (k) as given. How does the equilibrium in the one-on-one bargaining phase look?

As long as the seller gradually (i.e., without atoms) screens down the demand function (which 
he will do if P (k) is strictly decreasing), then the seller’s problem is as in the base model of 
Section III:

 	  r V (k)  = ​   max    
​ ·    

 K​∈(− ∞, 0]
​ λ(​V​ A​ (k)  −  V (k))  +  (P (k)  −  V (k)) ​ f (k) ____ 

F (k) ​ (− ​ · 
   

 K​)  +  V′ (k) ​ ·    
 K​

as before, in equilibrium we need the coefficients on ​ · 
   

 K​ to add up to zero, which gives:

 	  f (k) P (k)  = ​  ∂ ___ ∂k
 ​ [ V (k) F (k)]

 	  V (k)  = ​   λ ______ λ  +  r
 ​ ​V​ A​ (k) .

Therefore, using (21) we pin down the equilibrium prices (for the range that the seller smoothly 
screens down the demand):41

 	P   (k)  = ​   λ ______ λ  +  r
 ​ ​p​ A​ (k) .

Lemma 1 implies that P (k) is strictly increasing for k > V *. This guarantees no atoms over that 
range.

The buyer’s local IC constraint for types k > V * is as before:

(22)  	 (r  +  λ)(k  −  P (k))  =  λ W (k)  −  P′ (k) ​ ·    
 K​

where the payoff upon arrival of the current cutoff type is:

 	  W (k)  =  k  − ​ p​ A​ (k).

because the current cutoff type trades for sure upon arrival (since ​p​ A​ (k) < k for k > V * ). Note 
as well that k − W (k) = ​p​ A​ (k) is strictly increasing (which implies that the local IC (22) is still 
sufficient).

Substituting the equilibrium P (k) into the buyer’s indifference condition we get:

 	  − ​ · 
   

 K​  = ​  λ  +  r ______ λ ​  ​  r K (t ) _______ 
p′A (K (t ))

 ​ .

40 The proof of this lemma makes use of our regularity assumption on F and can be found in the online Appendix.
41 Note that we get this very simple expression for equilibrium prices even though it is no longer true that ​

V​ 
A
​ (k) = E [ Π(v) | v ≤ k] (we no longer have an exogenous Π (v)). 
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For example, if values are distributed uniformly we get simple expressions:

 	​  p​ A​ (k)  = ​  k  +  V * ______ 
2
 ​

 	  − ​   ​ · 
   

 K​ ____ 
K (t ) ​  = ​  λ  +  r ______ λ ​  2r  ⇒  T (v)  =  −   ​  λ ________ (λ  +  r)2r

 ​ ln(v) .

The next step is to pin down V *. Note that:

 	​  V​ A​(1)  =  (1  −  F (  ​p​ A​ (1))) ​p​ A​ (1)  +  F ( ​p​ A​ (1))V *

and, as we argued, in equilibrium:

 	  V (1)  =  V *  = ​   λ ______ λ  +  r
 ​ ​V​ A​ (1) .

Combining, we get an expression for ​V​ A​ (1):

 	​  V​ A​ (1)  = ​ max    
p
  ​ (1  −  F ( p))p  +  F ( p) ​  λ ______ λ  +  r

 ​ ​V​ A​ (1)

which can be shown to have a unique solution, which implies a unique V *.
The only part left is to figure out whether the seller is going to smoothly screen down the demand 

function through all the types, or if he is going to stop at some type. Note that the seller would never 
trade with types below (λ/(λ + r)) V *, since this is the expected payoff he gets by rejecting the cur-
rent buyer (even before the new buyer arrives) and restarting the game empty handed.

That leads to the following equilibrium dynamics: The seller runs smoothly down the 
demand function up to type k* = V * (and the equilibrium P (k), K (t ), and V * are defined 
above, with the boundary condition K (0) = 1). But once he reaches k*, since ​p​ A​ (k) = V * for all 
k ∈ [(λ/(λ + r)) V *, k* ], the seller reaches the price P (k* ) = (λ/(λ + r)) V * and never decreases 
the price again. As a result, that price is immediately accepted by all types v ∈ [ P (k* ), k* ]. 
In other words, the equilibrium reservation price of all types in this range is the same, 
P (v) = (λ/(λ + r)) V * (and all types below (λ/(λ + r)) V * have reservation prices equal to their 
types, P (v) = v, but the seller never trades with them).

Note that Assumption 1 is violated in this model42 and it introduces a flat part in the reserva-
tion price function, P (v), and a corresponding atom at the end of bargaining with the current 
buyer (the atom is consistent with the equilibrium since after it the seller does not drop the prices 
any more). In Figure 3 we plot the path of offered prices and types trading in equilibrium con-
ditional on no arrival for the case λ = r = 1. This parameterization implies V * = 0.172. Prices 
fall until they reach P (k* ) = (λ/(λ + r)) V * = 0.172/2 = 0.086, and then they remain flat at this 
level. This induces an atom of trade at time t = 0.705 when types between 0.172 and 0.086 accept 
the price P (k* ) = 0.086. Prices will not be reduced further since the seller would rather wait to 
start over than sell at lower prices. 

42 Most parts of Assumption 1 are violated: it is not efficient for all types to trade immediately, Π (v) is flat for low 
types, and Π (0) > 0. The only types that trade are v ∈ [(λ/(λ + r)) V *, 1], and we can think of (λ/(λ + r)) V * as the 
endogenous lowest buyer type that has value higher than the seller’s opportunity cost.
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Finally, we comment on how the time to trade changes with the frequency of arrivals, λ. When 
λ > 0 the expected time to trade is strictly positive. But what happens as λ → 0 or λ → ∞? We 
argue that in these cases the time to trade converges to zero.

First, in case λ → 0, P (k) → 0 for all k and hence the buyer finds it optimal not to delay trade. 
This is the classic Coase conjecture result. In the second case, λ → ∞, we have that V (1) → 1. 
That high expected payoff is achievable only if the expected time to trade converges to 0, since 
the transaction prices are bounded uniformly by 1. In the example with values distributed 
uniformly (over [0, 1]), normalizing r = 1, the expected time to trade as a function of λ is shown 
in Figure 4; for λ > 3r, the expected time to trade is decreasing in λ.

V.  Durable Good Monopolist and Generalized Coase Conjecture43

We finish with an informal discussion of the durable good monopolist problem that is math-
ematically analogous to our bargaining problem. Suppose that a durable good monopolist is 
choosing in continuous time a flow of output, qt , and has a cost function qt c (Qt ) where Qt is the 
cumulative output up to time t. In the standard Coase-conjecture literature c (Qt ) is constant, but 
one can imagine it to be increasing (for example, in case the monopolist is using up some scarce 
resource) or decreasing (for example, if there are experience-curve effects).

When c (Qt ) is constant or increasing the standard Coase conjecture holds: the monopo-
list without commitment would reduce the price immediately to the price at which demand 
= “supply” = MC (qt ) = c (Qt ), as shown in panels A and B of Figure 5.44 But if c (Qt ) is 

43 We thank Jeremy Bulow for suggesting the material in this section.
44 Admittedly, this discussion is informal, since it may not be clear what are the costs if prices “drop immediately” to 

some level, resulting in a mass of consumers being served immediately. To make things precise, one can take a discrete 
time version of the model, let Qt include current production, and then take the continuous-time limit.

Figure 3. Example with Uniform Distribution, λ = r = 1
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decreasing, as in panel C, then it is not possible, since then the monopolist would earn negative 
profits. This case is mathematically analogous to our bargaining set-up: in equilibrium each type 
of the buyer pays a price equal to the marginal cost of supplying that type, assuming that types 
are served from the highest type to the lowest. Prices drop slowly over time, to guarantee that 
no buyers want to delay their consumption, and the durable good monopolist earns zero profit 
(the speed of price decreases is derived from an equation analogous to (11) but without arrivals).

What is the relationship between the monopoly outcome and equilibrium under perfect com-
petition? If we interpret Qt to be an industry cumulative output, then the marginal cost of output 
flow, c (Qt ), can be increasing or decreasing for each firm because of costs of suppliers in the 
upstream of the industry. For example, the good in question may have an input that is purchased 
from third party suppliers, and the production of that input exhibits experience-curve effects, 
making c (Qt ) decreasing. Interestingly, the competitive equilibrium coincides with the monop-
oly outcome in all three panels of Figure 5! In panels A and B the competitive equilibrium is 
efficient: the price reaches immediately the point where marginal cost crosses demand. However, 
in case c (Qt ) is decreasing, the competitive market is not efficient! There is an externality: a 
firm producing today reduces the costs for future sellers and is not able to capture that extra 
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QQ

P, MC

Q

demand

P, MC P, MC

Panel A Panel B Panel C

c(Q
t
) c(Q

t
) c(Q

t
)

demand demand

p
0
 = p

T

p
0
 = p

T

p
0

p
T

Figure 5. DGM and Generalized Coase Conjecture



VOL. 100 NO. 3 829Fuchs and Skrzypacz: Bargaining with Arrival of New Traders

surplus. The competitive equilibrium has zero profit and involves prices dropping slowly to the 
point where demand equals marginal cost.45 This is the generalized Coase conjecture: in any 
stationary equilibrium, for all c (Qt ), as the commitment power of the durable good monopolist 
disappears (Δ → 0), the monopolist pricing strategies converge to the price path of a perfectly 
competitive equilibrium.46 This is consistent with the original statement in Coase (1972) that we 
cited in the introduction.

VI.  Conclusions

When bargaining takes place in the context of a thin market, in which other traders might 
show up, trade will no longer take place immediately with the informed party capturing all the 
rents. Although many other explanations have been proposed for the observed delay in bargain-
ing, we believe this to be a very natural one. It shows that delay is to be expected outside the 
extreme cases of perfect competition or bilateral monopolies.

Nonetheless, the Coasian dynamics are still useful in thinking about such markets, because 
the lack of commitment drives the seller’s value down to his outside option of waiting for an 
arrival. This is what connects the characteristics of the market to the bargaining dynamics. For 
example, a higher ratio of buyers in the market leads to higher prices and longer times to trade. 
This, in turn, could affect the decision of traders to enter the market in the first place. The present 
model does not allow us to capture this general equilibrium effect since the arrival rates are 
exogenous in the model. Modeling endogenous entry of agents into the market is necessary to 
further our understanding of such markets.

Appendix

The main goal of this Appendix is to prove Theorem 1. That is, we prove that for any sequence 
of games indexed by the period lengths and any selection of stationary equilibria with an atom-
less limit of these games, {κ ( p; Δ), P (k; Δ )} (and the corresponding sequences {V (k; Δ), K (t; Δ)}), 
as Δ → 0, these equilibria converge to the unique limit described in Theorem 1.

We start with a series of lemmas that lead up to the proof. Recall that to keep track of the depen-
dence of the game and equilibrium on Δ we use notation V (k; Δ) etc. We use k+ = κ(P (k; Δ );Δ) 
to denote next-period cutoff given current state k and the current equilibrium price P (k; Δ ). 
Along the equilibrium path, from period 2 onwards, we let k− denote the previous period 
cutoff (if the current time is t, on the equilibrium path k− = K (t − Δ; Δ)). Similarly, we let 
k++ = K (t + 2Δ; Δ) denote the cutoff two periods from now (again, given that we are on the 
equilibrium path). Recall also that we use the notation ΩΔ to denote the set of cutoffs reached 
on the equilibrium path (which becomes dense as Δ → 0 if the equilibrium limit is atomless).

Lemma 2 (No quiet period): For all Δ > 0, all stationary equilibria must have trade with posi-
tive probability in every period.

45 Comparing panels A and C of Figure 5, one may wonder whether experience-curve effects that reduce future 
costs of production could reduce total surplus. If we compare two industries with the same c (Q0 ) but one with constant 
marginal costs and the other one with decreasing marginal costs, there seems to be a trade-off: with the experience 
curve effects the costs of providing goods are lower, but in equilibrium trade is inefficiently delayed. Nevertheless, we 
can use our analysis to say that the realized total surplus is unambiguously higher in the second case. To see this, recall 
that in both cases the sellers make zero profit, and the first price offered in equilibrium is the same. With no experience 
curve effects all types trade immediately at that price. With experience curve effects all but the highest type choose to 
delay their trade and hence by revealed preference are better off.

46 An additional assumption is that of no-gap: the downward-sloping demand crosses c (Qt ). 
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Proof:
Suppose that there exists an equilibrium in which after a cutoff type k* is reached, there is a 

period in which the probability of trade is zero. That implies that next period cutoff type is also 
k* and hence (by definition of stationary equilibrium) the price the seller sets in this and all future 
periods is simply P (k*; Δ) and there is no trade till the end of the game.

The seller’s expected continuation payoff is then simply the expected present value of the 
payoff upon arrival:

 	  V (k*; Δ)  = ​   1  −  e−Δλ
  ___________  

1  −  e−Δ(r  +  λ) ​ ​V​ A​ (k* ) .

Suppose that the seller deviates to a price p′ = ((1 − e−Δλ)/(1 − e−Δ(r+λ))) Π (k* ) + ε for some 
ε > 0. If this price is accepted by some types (i.e., κ ( p′; Δ) < k* ), then (for any ε) we have a con-
tradiction, since the seller payoff would then be greater than V (k*; Δ) (no matter what the cutoff 
type k′ = κ( p′; Δ) is, the seller can guarantee himself at least ((1 − e−Δλ)/(1 − e−Δ(r+λ))) ​V​ A​ (k′ ) 
from the remaining types, exactly as in the original equilibrium, but obtains a strictly higher 
payoff from types (k′, k* )).

Suppose that this price is rejected for sure for every ε > 0. It implies that in the con-
tinuation game k = k* and hence the seller returns to P (k*; Δ) forever. As a result, the buyer 
expected discounted continuation payoff is (e−Δr (1 − e−Δλ )/(1 − e−Δ(r+λ))) W (k* ). But since 
(e−Δr (1 − e−Δλ )/(1 − e−Δ(r+λ))) (W (k* ) + Π (k* )) < k* , there exists an ε > 0 such that types close 
to k* would be strictly better off accepting p′, a contradiction.

Lemma 3 (Prices don’t jump): For all stationary equilibria (of any sequence of games 
with Δ → 0), there exist bounds A, B such that uniformly for all Δ and k ∈ ΩΔ, A ≤
(P (k; Δ ) − P (k+ ; Δ))/Δ ≤ B. As a result, for every ε > 0, there exists a Δ′ > 0 such that for all 
Δ < Δ′ and all k ∈ ΩΔ, P (k, Δ) − P (k+, Δ) < ε .

Proof:
Since there is trade in every period with positive probability (by the previous lemma), 

(P (k; Δ ) − P (k+; Δ))/Δ are bounded for every Δ and k. The only issue is if this expression can 
be bounded uniformly for every Δ and k.

Recall the buyer’s optimality condition:

 	  k+ − P (k; Δ )  =  e−Δr A1 − e−Δλ B W (k+ )  +  e−Δ(r+λ) (k+  −  P (k+; Δ )) .

We now regroup the terms, divide by Δ and take the limit:

 	  −   ​ P (k; Δ ) − P (k+; Δ )  ______________ Δ  ​  →  λW (k+ )  +  (λ  +   r) a​ lim   
Δ→0

​ P (k+; Δ )  −  k+b .

Now, if limΔ→0 P (k+; Δ ) exists for all k+ ∈ ΩΔ, then the bounds are simply

 	  A  = ​ inf   
k
  ​ λW (k)  +  (λ  +  r) a​ lim   

Δ→0
​ P (k; Δ )  −  kb

 	  B  = ​ sup   
k
  ​ λW (k)  +  (λ  +  r) a​ lim   

Δ→0
​ P (k; Δ )  −  kb .
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If limΔ→0 P (k+; Δ ) does not exist, then since P (k+; Δ ) is bounded (because there is trade 
with positive probability in every period, as we have proven in Lemma 2), we can replace 
limΔ→0 P (k; Δ ) in the expressions for A and B, by lim infΔ→0 P (k; Δ ) and lim supΔ→0 P (k; Δ ).

The last claim follows immediately by taking Δ′ = ε /B.

Lemma 4 (Payoffs converge): For all stationary equilibria with an atomless limit (of any 
sequence of games with Δ → 0), limΔ→0 V(k;Δ ) = V (k) = (λ/(r + λ))​V​ A​ (k) for all k ∈ ΩΔ/{1} 
(i.e., for all equilibrium cutoffs starting after the first period).

Proof:
First, we can bound the seller’s payoff from below by considering a deviation to (completely) 

slow down the trade. Since the seller can always choose to wait for the arrival of an event, his 
value must at least be equal to the expected discounted payoff upon arrival. That is, in all station-
ary equilibria and for all Δ > 0, the seller’s value V (k; Δ ) must satisfy:

 	  V (k; Δ)  ≥  ​  1  −  e−Δλ
  ___________  

1  −  e−Δ(r + λ) ​ ​V​ A​ (k) .

As Δ → 0 the RHS converges to (λ/(r + λ)) ​V​ A​(k).
Second, we can bound the seller’s payoff from above by considering a deviation to speed up 

trade. In particular, suppose that the highest remaining type is k and suppose that the seller deviates 
and instead of asking for P (k; Δ ) he asks for P (k+; Δ ) (note that this is a deviation to prices which 
occur on the equilibrium path, so it is easy to calculate the continuation payoffs). For this not to be 
a profitable deviation, in all stationary equilibria and for all Δ > 0 the seller’s payoff must satisfy:

(24) 	P   (k; Δ )[ F (k)  −  F (k+ )]  +  e−Δr U (k+; Δ)  ≥  P (k+; Δ )[ F (k)  −  F (k++ )]

	 +  e−Δr U (k++ ; Δ )

where to simplify notation we used U (k; Δ ) ≡ F (k) V (k; Δ ).

By definition of V (k; Δ) we can write,

 	  U (k+; Δ)  =  (1  −  e−Δλ )​V​ A​ (k+ ) F (k+ )  +  e−Δλ[ P(k+ ; Δ)(F (k+ )  −  F (k++ ))

	 +e−Δr U (k++; Δ )] .

Substituting it to (24), rearranging terms and dividing by Δ we get:

(25)   ​ 
P (k; Δ )  −  P (k+; Δ )  _______________  Δ  ​ [ F (k)  −  F (k+ )]  −  P (k+; Δ )[ F (k+ )  −  F (k++ )] ​ 1  −  e−Δ(r+λ)

  __________ Δ  ​

       ≥  − e− Δr ​ 1  −  e−Δλ
 ________ Δ  ​ ​V​ A​ (k+ ) F (k+ )  +  e−Δr ​ 1  −  e−Δ(r+λ)

  __________ Δ  ​ (k++ ;Δ ) .
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Now, recall from Lemma 3 that [P (k; Δ )  −  P (k+; Δ )]/Δ → O(const) and that 
F (k) − F (k+ ) → 0 since we are looking at sequences of equilibria with an atomless limit. Taking 
the limit Δ → 0 of both sides of (25) we get:47

  	 λ​V​ A​ (k+ ) F (k+ )  ≥  (r  +  λ) ​ lim   
Δ→0

​ U (k+ ; Δ )

This implies the upper bound for all t > 0 : limΔ→0 V (k; Δ) ≤ (λ/(r + λ)) ​V​ A​ (k). Combining it 
with the opposite bound (that we obtained in the first step) yields the result:

 	​   lim   
Δ→0

​ V (k; Δ)  =  V (k)  = ​   λ ______ 
r  +  λ ​ ​V​ A​ (k) .

Although the above lemma shows that V (k; Δ) converges to V (k) for k ∈ ΩΔ/{1}, since we consider 
equilibria with an atomless limit ΩΔ are dense in the limit (for all k ≤  ​k​

​0​ +​​ = limΔ→0 K (Δ; Δ )), 
we get that V (k; Δ) converges to V (k) for all k ≥ ​k​

​0​ +​​.

Lemma 5 (Prices converge): For all stationary equilibria with an atomless limit (of any 
sequence of games with Δ → 0), limΔ→0 P (k; Δ ) = P (k) = (λ/(r + λ)) Π (k) for all k ∈ [ 0, ​k​

​0​ +​​ ].

Proof:
Take the function P (k; Δ ) restricted to k ∈ ΩΔ/{1} and extend it to the continuum domain 

k ∈ [ 0, ​k​
​0​ +​​ ] by a piece-wise linear function in between the equilibrium cutoffs k ∈ ΩΔ. Since as 

Δ → 0, ΩΔ/{1} becomes dense in the range k ∈ [ 0, ​k​
​0​ +​​ ], it must be that P (k; Δ ) converges to this 

continuous function everywhere in this domain.
Hence, if there is a subsequence of equilibrium pricing rules P (k; Δ ) converging to some-

thing different than P (k), they must differ from P (k) in an open interval. So suppose that there 
exists a converging subsequence of equilibrium pricing rules P (k; Δ ) such that, as Δ → 0, 
P (k; Δ ) → ​   

  
 P​ (k) ≠ P (k) for k ∈ ( ​_ k​, ​

_
 k ​ ).

Consider first the case ​ ˜ 
  
 P​ (k) > P (k) = (λ/(λ + r)) Π(v) for k ∈ (​_ k​, ​

_
 k ​ ). Such prices could not be 

part of an equilibrium because then the expected seller’s payoff would exceed (λ/(r + λ)) ​V​ A​ (k), 
contradicting Lemma 4. To see this, note that the payoff to the seller at the first cutoff lower than ​_
 k ​, k0, from following P (k; Δ ) would be:

 	​  ˆ 
  
 V​ (k0 ; Δ) = ​∑ 

n=0

​ 
N−1

​ ​e−nΔr    a(1  −  e−Δλ ) e−nΔλ ​ F (kn ) ____ 
F (k0 )

 ​ ​V​ A​ (kn )  +  e−(n+1)Δλ P (kn ; Δ ) ​ F (kn )  −  F (kn+1 )  __________ 
F (k0 )

  ​ b

	 + ​ 
F (kN ) _____ 
F (k0 )

 ​ e−NΔ(r+λ) ​   
  
 V​ (kN ;Δ )

where N is the number of periods for which k ∈ ( ​_ k​ , ​
_
 k ​ ) and {kn } is the sequence of equilibrium 

cutoff types (with k0 the first cutoff type in this range and kN the last one).
To bound ​ ˆ 

  
 V​ (k0 ; Δ ) suppose that the seller instead gets prices (λ/(λ + r)) Π(kn ) (from the types 

that pay P (kn ;Δ )) and obtains continuation payoff (λ/(λ + r)) ​V​ A​(kN ) instead of ​ ˆ 
  
 V​ (kN ; Δ ). Both 

47 We have used here that U (k+; Δ ) → U (k; Δ), as Δ → 0. This is true since V (k; Δ ) is continuous and k → k+ . 
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are lower bounds, since P (kn ;Δ ) > (λ/(λ + r)) Π(kn ) uniformly for all small Δ, and V (kN ;Δ ) 
converges to (λ/(λ + r )) ​V​ A​(kN ) from above.

Call payoffs calculated by that substitution VL (k0 ;Δ ). We get:

 	​   lim   
Δ→0

​ ​   
  
 V​ (k0 ;Δ )  > ​  lim   

Δ→0
​ VL (k0 ; Δ )  = ​   λ ______ λ  +  r

 ​ ​V​ A​ (k0 ) .

The equality follows since conditional on any type k, if the buyer deviated to always reject the 
offer, then the seller’s expected payoff in the limit as Δ → 0 would be (λ/(λ + r)) Π (k). Thanks 
to the stationarity of the Poisson process, this would be in fact the expected payoff at any moment 
of time. Moreover, given that the transaction prices are (λ/(λ + r)) Π (k) and trade happens only 
conditional on the event’s not arriving yet, when the buyer accepts this price, the seller gets the 
same payoff from that type as he would if the buyer rejected forever.

That establishes that ​ ˜ 
  
 P​ (k) > P (k) would allow the seller to earn even in the limit strictly more 

than V (k), a contradiction.
Next, suppose there exists a sequence of equilibrium pricing rules P (k; Δ ) such that, as 

Δ → 0, P (k; Δ ) → ​   
  
 P​ (k) < P (k) for k ∈ ( ​_ k​, ​

_
 k ​ ). These pricing rules cannot be part of an equilib-

rium sequence either, since after an analogous substitution (prices (λ/(λ + r)) Π (kn ) and con-
tinuation payoff (λ/(λ + r)) ​V​ A​(kN ), we would get a strictly higher payoff in the limit, implying 
that limΔ→0 ​ ˆ 

  
 V​ (k0 ; Δ ) < (λ/(λ + r)) ​V​ A​(k0 ), contradicting Lemma 4 again. Therefore, to satisfy 

Lemma 4 all equilibrium pricing rules P (k; Δ ) have to converge to P (k) (for all equilibria with 
an atomless limit).

Lemma 6 (No atom at t = 0): For all stationary equilibria with an atomless limit (of any 
sequence of games with Δ → 0), as Δ → 0 there cannot be an atom of trade at t = 0, that is 
K (Δ; Δ) → 1. Moreover, V (1; Δ ) → V (1) and P (1; Δ) → P (K (Δ; Δ ); Δ ) → P (1).

Proof:
Suppose that in equilibrium there exists some ​

_
 k ​ < 1 such that all types v ≥ ​

_
 k ​  trade at t = 0. 

Then we claim that the seller payoffs, (1 − F (​
_
 k ​ )) P (​

_
 k ​ ) + F (​

_
 k ​ ) V(​

_
 k ​ ), would be strictly less than 

(λ/(λ + r)) ​V​ A​(1), contradicting that he can achieve that payoff by simply asking very high prices. 
To see this note that Π (​

_
 k ​ ) < Π (k) for all k > ​

_
 k ​ implies:

  	 (1  −  F (​
_
 k ​ )) Π (​

_
 k ​ )  +  F (​

_
 k ​ ) ​∫ 

0
​ 
​
_
 k ​ 

​  ​​ 
Π (v) f (v) _______ 

F (​
_
 k ​ )
 ​   dv

  	 <  (1  −  F (​
_
 k ​ ))​∫ 

​
_
 k ​ 
​ 

1

​  ​​ Π (v) f (v) ________ 
1  −  F (​

_
 k ​ )
 ​ dv  +  F (​

_
 k ​ )​∫ 

0
​ 
​
_
 k ​ 

​  ​​ 
Π (v) f (v) _______ 

F (​
_
 k ​ )
 ​   dv  = ​ V​ A​ (1) .

Combining it with V (​
_
 k ​ ) = (λ/(λ + r)) ​V​ A​ (​

_
 k ​ ) and P (​

_
 k ​ ) = (λ/(λ + r)) Π (​

_
 k ​ ) we get:

  	 (1  −  F (​
_
 k ​ )) P (​

_
 k ​ )  +  F (​

_
 k ​ ) V( ​

_
 k ​ )  < ​   λ _____ λ + r

 ​ ​V​ A​ (1)

Since along the sequence of equilibria, there is trade in equilibrium in the first period (by 
Lemma 2), it must be that P (1; Δ ) → P (K (Δ; Δ ); Δ ) → P (1) (otherwise the types that trade at 1 
would be strictly better off to wait till time Δ). Since the probability of trade at time 0 converges 
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to zero and the price is uniformly bounded, it must be that the total expected payoff V (1; Δ) → 
V (K (Δ; Δ ); Δ) → (λ/(λ + r)) ​V​ A​(1) = V (1).

Lemma 7 (Path of types converges): Consider a sequence of stationary equilibria with 
an atomless limit (of any sequence of games with Δ → 0). Let the equilibrium path of cut-
off types be defined by K (0; Δ ) = 1, K (t; Δ ) = κ (P (K (t − Δ; Δ ); Δ );Δ ) for t ∈ {0, Δ, 2Δ … }. 
Moreover, extend the K (t; Δ) function to any t ∈ (nΔ, (n + 1)Δ ) (where n ∈ 핅) by setting 
K (t; Δ) = K (nΔ; Δ). That is, the K (t; Δ ) function is a decreasing step function changing value 
at times that the seller makes offers. Then, as Δ → 0, (K (t + Δ; Δ) − K (t; Δ ))/Δ → ​ ·    

 K​(t) and 
K (t; Δ ) → K (t).

Proof:
Recall that k and k+ are defined as K (t; Δ ) and K (t + Δ; Δ ), respectively. Recall the buyer 

optimality condition:

 	  k+  −  P (k; Δ )  =  e−Δr (1  −  e−Δλ ) W (k+ )  +  e−Δ (r+λ) (k+  −  P (k+ ; Δ)) .

Subtracting e−Δ(r+λ) (k+  −  P (k; Δ )) from both sides, dividing by Δ and taking Δ → 0 we get 
(using that P (k; Δ ) converges to P (k) and that there are no atoms in the limit):

  	 (λ  +  r ) ​ lim   
Δ→0

​ (k+  −  P (k; Δ )) = λ W (k+ )  + ​  lim   
Δ→0

​  ​ 
(P (k; Δ )  −  P (k+ ; Δ ))   _________________  

k  −  k+
  ​ ​ 

k  −  k+ ______ Δ  ​
	 8
	 →  P′ (k )

so that in the limit we get the optimality condition for the equilibrium limit:

	 (λ  +  r)(K (t )  −  P (K (t )))  =  λW (K (t ))  −  P′ (k) ​ ·    
 K​ (t )

so indeed [K (t + Δ; Δ) − K (t; Δ )]/Δ → ​ ·    
 K​ (t ). Finally, from Lemma 6 we have that K (0) = 1 

= K (0; Δ) = limΔ→0 K (Δ; Δ ). Because K (t; Δ ) is bounded and the derivative ​ · 
   

 K​(t ) is bounded, 
we can use the fundamental theorem of calculus to claim that since derivative of the limit of 
K (t; Δ ) converges to ​ · 

   
 K​(t ), and K (0; Δ) = K (0), K (t; Δ) converges to K (t ) for all t ≥ 0.

Proof of Theorem 1:
Lemmas 4, 5, and 6 show that in the limit as Δ → 0, all discrete time stationary equilibria 

with an atomless limit deliver the same value to the seller and the same transaction prices given a 
current cutoff type. Lemma 7 then shows that how the cutoff types change through time also con-
verges to K (t ). The fact that equations (9) and (12) together with the boundary condition K (0) = 1 
characterize an equilibrium is discussed in detail in Section III. Uniqueness follows from noting 
that only necessary conditions were used to characterize this equilibrium.

Proof of Proposition 2:

	 (i) 	Conditions Π1 (0) = Π2 (0) and Π′1 (v) ≥ Π′2 (v) imply that Π1 (v) ≥ Π2 (v). So in both cases 
(Π1 (v) + W1 (v) = Π2 (v) + W2 (v) or W1 (v) = W2 (v)) in the numerator of equation (12) 
Π1 (v) + W1 (v) ≥ Π2 (v) + W2 (v). Since the denominators are ranked Π′1 (v) > Π′2 (v), for 
any t such that K1 (t ) = K2 (t ), we can rank − ​ · 

   
 K​2 > − ​ · 

   
 K​1. Since K1 (0) = K2 (0) = 1, we get 
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that for almost all t, K1 (t ) > K2 (t ) i.e., buyers with the same valuation trade faster in the 
environment with Π2 (v).

	 (ii) 	As Π′ (v) → 0, Π (v) → 0 as well, which implies the seller’s value: V (k ) = (λ/(λ + r)) ​
× V​ A​ (k ) → 0 and prices are also converging to zero P (k) = (λ/(λ + r)) Π(k ) → 0. Trade 
on the other hand is taking place faster since −​  · 

   
 K​ → ∞ therefore there will be no delay 

in trade and the buyer will capture the entire surplus.

Proof of Proposition 3:

	 (i) 	 Inspecting equations (9) and (12) we can see that if Π (v) and W (v) are independent of F (v), 
then P (k) and ​ · 

   
 K​ are independent of F (v) and therefore the equilibrium is independent of F (v).

	 (ii) 	As argued above, P (k) and ​ · 
   

 K​ are the same under both distributions. The result follows 
simply from the fact that since F (v) first order stochastically dominates H (v) it is more 
likely that the realized v is higher. Since higher types trade earlier and at higher prices, 
we get that the average time to trade is longer and the average prices are lower with H.

	 (iii) 	The total expected ex ante surplus is ​  λ ______ (λ + r) ​ E [ Π (v)] + E [ B (v)]. If  Π (v) is weakly 
	 	 	 5
	 	 V (1)

		  convex, the first term is weakly higher under H. We now argue that W (v) being weakly 
convex implies B (v) is strictly convex, so that the second term is strictly higher under H, 
establishing the claim. Differentiating equation (14) we get:

 	  B″ (v) = − T′ (v) Y (r  +  λ(1  −  W′ (v)))  + ​   λ ______ λ  +  r
 ​ (1  −  Y ) W″ (v)

	 8	 8
	 > 0	 ≥0

where Y = e− (r+λ) T (v) ∈ (0, 1). So indeed B″ (v) > 0.
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