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We study the design of monitoring in dynamic settings with moral hazard. An agent (e.g. a firm)
benefits from reputation for quality, and a principal (e.g. a regulator) can learn the agent’s quality via
costly inspections. Monitoring plays two roles: an incentive role, because outcomes of inspections affect
agent’s reputation, and an informational role because the principal directly values the information. We
characterize the optimal monitoring policy inducing full effort. When information is the principal’s main
concern, optimal monitoring is deterministic with periodic reviews. When incentive provision is the main
concern, optimal monitoring is random with a constant hazard rate.
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1. INTRODUCTION

Should we test students using random quizzes or pre-scheduled tests? Should a regulator inspect
firms for compliance at pre-scheduled dates, or should it use random inspections? For example,
how often and how predictably should we test the quality of schools, health care providers,
etc.? How should an industry self-regulate a voluntary licensing program, in particular when its
members are to be tested for compliance? What about the timing of internal audits to measure
divisional performance to allocate capital within organizations?

Monitoring is fundamental for the implementation of any regulation. It is essential for
enforcement and, ultimately, for resource allocation. However, monitoring is costly in practice,
and according to the OECD (2014), “regulators in many countries are increasingly under pressure

The editor in charge of this paper was Christian Hellwig.
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2 REVIEW OF ECONOMIC STUDIES

to do ‘more with less’. A well-formulated enforcement strategy, providing correct incentives for
regulated subjects can help reduce monitoring efforts and thus the cost for both business and the
public sector, while increasing the efficiency and achieving better regulatory goals.”

In many cases, monitoring outcomes are public and can thus have a significant impact
on a firm’s reputation. Regulators can exploit this reputational concern when designing their
monitoring strategies to strengthen firms’ incentives to provide quality. In essence, monitoring
is a form of information acquisition. The information that a regulator collects via monitoring
serves multiple purposes: not only it provides valuable information that can help the regulator
improve the allocation of resources in the economy, but it also is an important incentive device
when agents are concerned about their reputation. As such, monitoring is often a substitute to
monetary rewards.1

The role of information and reputation is particularly important in organizations where explicit
monetary rewards that are contingent on performance are not feasible. As Dewatripont et al.
(1999) point out in their study of incentives in bureaucracies, in many organizations incentives
arise not through explicit formal contracts but rather implicitly through career concerns. This can
be the case because formal performance-based incentive schemes are difficult to implement due
to legal, cultural, or institutional constraints. Similarly, regulators may be limited in their power
to impose financial penalties on firms and may try to use market reputation to discipline the firms,
and fines might be a secondary concern for firms. We believe that our model captures optimal
monitoring practices in these situations in which fines and transfers are of second order compared
to reputation.

Most real-life monitoring policies fall into one of two classes: random inspections or
deterministic inspections—namely inspections that take place at pre-announced dates, for
example, once a year. At first, neither of these policies seem optimal. A policy of deterministic
inspections may induce “window dressing” by the firm: the firm has strong incentives to put
in effort toward the inspection date, merely to pass the test, and weak incentives right after
the inspection, since the firm knows that it will not be inspected in the near future. On the other
hand, random inspections might be wasteful from an information acquisition standpoint. Random
inspections are not targeted and may fail to identify cases in which the information acquired is
more valuable.

A central prediction of our analysis is that periodic reviews and random inspections are optimal
in different environments since they serve distinct purposes.

Random inspections are efficient in providing incentives and hence are optimal in
circumstances where moral hazard considerations are important. The severity of moral hazard
depends on the difficulty of providing quality and its persistence. These factors affect the
prevalence of random inspections in practice. For example, restaurant hygiene monitoring
programs typically rely on random inspections.2

Deterministic reviews, by contrast, are the most efficient when an essential reason for
inspections is learning to improve decisions and incentives to provide quality are relatively less
important. This seems to be a good description in case of safety inspections where learning
about a safety hazard is crucial for the monitor to prevent a disaster. Deterministic reviews are

1. For example, Eccles et al. (2007) assert that “in an economy where 70–80% of market value comes from hard-
to-assess intangible assets such as brand equity, intellectual capital, and goodwill, organizations are especially vulnerable
to anything that damages their reputations,” suggesting that our focus on the provision of incentives via reputation captures
first-order trade-offs in such markets.

2. Or else a restaurant could improve its hygiene conditions merely to pass a pre-announced inspection but pay
less attention to hygiene when inspections are not expected. Jin and Leslie (2003) provide evidence of the positive impact
of random inspection on restaurant hygiene.
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VARAS ET AL. OPTIMAL DYNAMIC MONITORING 3

thus common for safety monitoring systems such as those managed by the Federal Aviation
Administration.3 Our results indicate that deterministic reviews are particularly useful when the
monitored agents have a relatively mild moral hazard problem (e.g. because they care directly
about maintaining quality) and when the direct value of information is high.

A different example of the variety of timing of tests is familiar from the educational institutions,
where professors use both random quizzes and pre-announced tests. Consistent with our model,
tests that could be easy to prepare for on a short notice (but with such preparation being not very
productive) are often performed as “random quizzes” or “cold calls.” On the other hand, tests
that require a deeper understanding of the material and hence more sustained studying effort but
are important for evaluating students and for giving them guidance about what other choices to
make, are often scheduled.

In this article, we study a model with investment in quality and costly inspections. The objective
is to identify the trade-offs involved in the design of optimal dynamic monitoring systems. Our
main result (Theorem 1) is that when both incentive provision and learning are important, the
optimal policy combines the previous two features that we commonly observe in practice. It
relies on deterministic reviews to periodically acquire information and combine it with random
inspections to provide incentives at the lowest possible cost. In principle, we would expect the
optimal policy to be complex, fine-tuning the probability of monitoring over time. However, we
show that the optimal policy is simple, and can be easily implemented by dividing firms into two
sets: the recently inspected ones and the rest. Firms in the second set are inspected randomly, in
an order that is independent of their time on the list (i.e. with a constant hazard rate). Firms in
the first set are not inspected at all. They remain in the first set for a deterministic amount of time
(that may depend on the results of the last inspection). When that “holiday” period expires, the
principal inspects a fraction of the firms and transfers the remaining fraction to the second set.

A policy with a constant hazard rate minimizes the cost of inspections subject to the incentive
compatibility constraints. However, when learning is important, random policies are inefficient
because inspections might be performed when there is little uncertainty about the agent’s type, in
which case learning is not as valuable yet. Then, the benefit of delaying inspections until the value
of learning is large enough is greater than the associated increase in cost caused by the departure
from the constant hazard rate policy. However, over time, in the absence of inspections, the value
of learning stabilizes, and the trade-off is dominated by cost minimization. This explains why the
optimal policy eventually shifts towards a constant hazard rate.

The pure deterministic and pure random policies are special cases of our policy. When all firms
are inspected at the end of the “holiday” period, the policy is deterministic; when the duration of
the “holiday” period shrinks to zero, the policy becomes purely random. We show when these
extreme policies can be optimal. When moral hazard is weak, the optimal policy tends to be
deterministic. On the other hand, when information gathering has no direct value to the principal,
the optimal policy is purely random.

In our model, an agent/firm provides a service and earns profits that are proportional to its
reputation, defined as the public belief about the firm’s underlying quality. Quality is random
but persistent. It fluctuates over time with transitions that depend on the firm’s private effort.
A principal/regulator designs a dynamic monitoring policy, specifying the timing of costly
inspections that fully reveal the firm’s current quality. The regulator’s flow payoff is convex
in the firm’s reputation, capturing the possibility the regulator values information per se. We
characterize the monitoring policy that maximizes the principal’s expected payoff (that includes
costs of inspections) subject to inducing full effort by the firm. We extend our two-type benchmark

3. The Federal Aviation Administration regulates all aspects of civil aviation in that nation. The FAA mandates
periodic aircraft inspections. For example, “A checks” happen every 400–600 flight hours (see FAR 91.409b).
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4 REVIEW OF ECONOMIC STUDIES

model by considering the case in which quality follows a mean-reverting Ornstein–Uhlenbeck
process, and the principal has mean–variance preferences over posterior beliefs. We show that
the optimal policy belongs to the same family as that in the binary case and provide additional
comparative statics.

In some markets, inspections play additional roles that our model does not capture. For
example, regulators may want to test schools to identify the source of the success of the best
performers in order to transfer that knowledge to other schools. Inspections could also be used as
direct punishments or rewards – for example, a regulatory agency may punish a non-compliant
firm by inspecting it more, or a restaurant guide may reward good restaurants by reviewing it more
often. In the last section, we discuss how some of these other considerations could qualitatively
affect our results. However, our general intuition is that these additional considerations (such
as dynamic punishments or direct monetary incentives) that make the moral hazard less severe
or the direct value of information higher, should lead the optimal policy to favour deterministic
monitoring over randomization.

1.1. Related literature

There is a large empirical literature on the importance of quality monitoring and reporting systems.
For example, Epstein (2000) argues that public reporting on the quality of health care in the U.S.
(via quality report cards) has become the most visible national effort to manage the quality of
health care. This literature documents the effect of quality report cards across various industries.
Some examples include restaurant hygiene report cards (Jin and Leslie, 2009), school report cards
(Figlio and Lucas, 2004), and a number of disclosure programs in the health care industry. Zhang
(2011) note that during the past few decades, quality report cards have become increasingly
popular, especially in areas such as health care, education, and finance. The underlying rationale
for these report cards is that disclosing quality information can help consumers make better
choices and encourage sellers to improve product quality.4

Our article is closely related to previous work by Lazear (2006) and Eeckhout et al. (2010),
who study the optimal allocation of monitoring resources in static settings and without reputation
concerns. In particular, Lazear concludes that monitoring should be predictable/deterministic
when monitoring is very costly; otherwise, it should be random. Both papers are concerned with
maximizing the level of compliance given a limited amount of monitoring resources.

Another related literature, initiated by Becker (1968), looks at the deterrence effect of policing
and enforcement and the optimal monitoring policy to deter criminal behaviour in static settings.5

In a dynamic context, Kim (2015) compares the level of compliance with environmental norms
induced by periodic and exponentially distributed inspections when firms that fail to comply with
norms are subject to fines. Our work is also related to the literature looking at inspections games
with exogenous fines, in particular, the work by Solan and Zhao (2019), who look at a repeated
inspection game in which there is a capacity constraint on the number of firms that the regulator
can inspect in a given period, and firms are fined if they are found in violation of the rules.

4. Admittedly, while some existing studies provide evidence in support of the effectiveness of quality report cards,
other studies have raised concerns by showing that report cards may induce sellers to game the system in ways that
hurt consumers. For example, Hoffman et al. (2001) study the results from the Texas Assessment of Academic Skills
testing and found some evidence that this program has a negative impact on students, especially low-achieving and
minority students. While our model does not have the richness to address all such issues, it is aimed at contributing to
our understanding of the properties of good monitoring programs.

5. See for example , Polinsky and Shavell (1984), Reinganum and Wilde (1985), Mookherjee and Png (1989),
Bassetto and Phelan (2008), and Bond and Hagerty (2010).
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VARAS ET AL. OPTIMAL DYNAMIC MONITORING 5

In their setting, it is not possible to provide full compliance, and the objective of the regulator is
to maximize compliance over time.

We build on the investment and reputation model of Board and Meyer-ter-Vehn (2013), where
the firm’s quality type changes stochastically. Unlike that paper, we analyse the optimal design
of monitoring policy while they take the information process as exogenous (in their model, it is a
Poisson process of exogenous news). They study equilibrium outcomes of a game, while we solve
a design problem (design of a monitoring policy). Moreover, we allow for a principal to have
convex preferences in perceived quality, so that information has direct benefits, an assumption
that does not have a direct counterpart in their model. Finally, we allow for a richer evolution of
quality: in Board and Meyer-ter-Vehn (2013), it is assumed that if the firm puts full effort, quality
never drops from high to low, while in our model even with full effort quality remains stochastic.6

At the end of the article, we also discuss that some of our results can be extended beyond the
Board and Meyer-ter-Vehn (2013) model of binary quality levels, and we also consider the design
of optimal monitoring when some information comes exogenously.

Finally, our article is somewhat related to the literature that has explored the design of rating
mechanisms or reputation systems more broadly. For example, Dellarocas (2006) studies how the
frequency of reputation profile updates affects cooperation and efficiency in settings with noisy
ratings. Horner and Lambert (2016) study the incentive provision aspect of information systems
in a career concern setting similar to Holmström (1999). In their setting, acquiring information
is not costly and does not have value per se. See also Ekmekci (2011), Kovbasyuk and Spagnolo
(2018), and Bhaskar and Thomas (2017) for studies of optimal design of rating systems in different
environments.

2. SETTING

We start by describing the general setting. Then, we provide a discussion of potential applications
and some specific examples of how the model can be micro-founded to study them.

Agents, technology, and effort: There are two players: a principal and a firm/agent. Time
t ∈[0,∞) is continuous. The firm sells a product whose quality changes over time. We model
the evolution of quality as in Board and Meyer-ter-Vehn (2013): initial quality is exogenous and
commonly known. At time t, the quality of the product is θt ∈{L,H}, and we normalize L=0
and H =1. Quality changes over time and is affected by the firm’s effort. At each time t, the firm
makes a private effort choice at ∈[0,ā], ā<1. Throughout most of the article, we assume that
when the firm chooses effort at quality switches from low to high with intensity λat and from
high to low quality with intensity λ(1−at). Later, we illustrate how the analysis can be extended
to the case in which quality θt can take on a continuum of values and effort affects the drift of
the evolution of quality. Note that we bound at below one, so unlike Board and Meyer-ter-Vehn
(2013), quality is random even if the firm exerts full effort. The steady-state distribution of quality
when the firm puts in full effort is Pr(θ =H)= ā.

Strategies and information: At time t, the principal can inspect the quality of the product,
in which case θt becomes public information (we can think of the regulator as disclosing the
outcome of inspections to the public. A commitment to truthful disclosures by the regulator is
optimal in our setting, given the linearity of the firm payoffs.)

6. Board and Meyer-ter Vehn (2014) allow quality to be stochastic with full effort.
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6 REVIEW OF ECONOMIC STUDIES

A monitoring policy specifies an increasing sequence of inspections (Tn)n≥1 times.7 Let
Nt ≡sup{n :Tn ≤ t} be the counting process associated with (Tn)n≥0 and denote the natural
filtration σ (θs,Ns :s≤ t) by F= (Ft)t≥0. In addition, let F

P = (FP
t )t≥0 be the smaller filtration

σ (θTn ,Ns :n≤Nt,s≤ t) which represents the information available to the principal.8 The time
elapsed between inspections is denoted by τn ≡Tn −Tn−1, so a monitoring policy can be
represented by a sequence of cumulative density functions, Fn :R+∪{∞}→[0,1] measurable
with respect to FP

Tn−1
specifying the distribution of τn conditional on the information at the

inspection date Tn−1. The principal commits at time 0 to the full monitoring policy.
We assume that current quality is always privately known by the firm, so its information is

given by F, but as discussed below, our results extend to the case where the firm does not observe
quality which in some applications is more realistic. A strategy for the firm is an effort plan
a= (at)t≥0 that is predictable with respect to F.

Reputation and payoffs: We model the firm’s payoffs as driven by the firm’s reputation. In
particular, denote the market’s conjecture about the firm’s effort strategy by ã= (ãt)t≥0. Reputation
at time t is given by xt ≡Eã(θt |FP

t ), where the expectation is taken with respect to the measure
induced by the conjectured effort, ã. In words, reputation is the market’s belief about the firm’s
current quality. It evolves based on the market’s conjecture about the firm’s strategy and inspection
outcomes.

The firm is risk-neutral and discounts future payoffs at rate r >0. For tractability, we assume
that the firm’s payoff flow is linear in reputation.9 The marginal cost of effort is k, hence the
firm’s expected payoff at time t is

�t =Ea
[∫ ∞

t
e−r(s−t)(xs −kas)ds

∣∣∣Ft

]
.

In the absence of asymmetric information, the maximal effort is optimal for the firm if and
only if λ/(r+λ)≥k. We assume throughout the analysis that this condition is satisfied.

The principal discounts future payoffs at the same rate r as the firm. The principal’s flow
payoff is given by a strictly increasing twice continuously differentiable convex function of the
firm’s reputation, u(·). As mentioned previously, the convexity of u captures the possibility that
the principal values the information about the firm’s quality.

Also, monitoring is costly to the principal: the lump-sum cost of an inspection is c. Hence,
the principal’s payoff is

Ut =Eã

⎡
⎣∫ ∞

t
e−r(s−t)u(xs)ds−

∑
Tn≥t

e−r(Tn−t)c
∣∣∣FP

t

⎤
⎦.

Note that the cost of effort is not part of the principal’s payoff. In some applications, it may
be more natural to assume the principal internalizes that cost, and then we would subtract −kãs
from the welfare flows. However, since we focus on policies that induce full effort (at = ā for

7. We implicitly assume the principal discloses the quality after the inspection. This is optimal: the principal would
never benefit from withholding the quality information because that would weaken the incentive power of monitoring.

8. Notice that the principal filtration includes the complete history of inspection outcomes and dates.
9. One interpretation is that the firm sells a unit flow of supply to a competitive market where consumers’

willingness to pay is equal to the expected quality so that in every instance price is equal to the firm’s current reputation.
We discuss alternative interpretations in the next section.
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VARAS ET AL. OPTIMAL DYNAMIC MONITORING 7

all t), our analysis does not depend on how the principal accounts for the firm’s cost of effort
(of course, the cost still matters indirectly since it affects agent’s effort incentives). Finally, we
assume that, for any belief xt , the principal values effort at least as much as the firm, which means
that u′(0)≥1, which guarantees that full effort is optimal in the first best.

Incentive compatibility and optimal policies. We seek to characterize monitoring policies
that maximize the principal’s payoff among those inducing full effort.10 Since the firm’s best
response depends both on the monitoring policy and the principal’s conjecture, ã, incentive
compatibility deserves some discussion.

First, we define what it means for an effort policy to be consistent with an equilibrium for a
given monitoring policy:

Definition 1 Fix a monitoring policy (Fn)n≥1. An equilibrium is a pair of effort and conjectured
effort (ã,a) such that for every history on the equilibrium path:11

1. xt is consistent with Bayes’ rule, given (Fn)n≥1 and ã.
2. a maximizes �.
3. ã=a.

Second, we define incentive compatibility of the monitoring policy by requiring existence of
an equilibrium with full effort for that policy and define the optimal policy accordingly.

Definition 2 A monitoring policy (Fn)n≥1 is incentive compatible if under that policy there exists
an equilibrium with at = ā. A monitoring policy is optimal if it maximizes U over all incentive
compatible monitoring polices.

In other words, we assume the firm chooses full effort whenever there exists an equilibrium
given (Fn)n≥1 that implements full effort (even if there are multiple equilibria).

An optimal policy faces the following trade-off: first, the policy seeks to minimize the cost
of inspections subject to maintaining incentives for effort provision (one can always provide
incentives for full effort by implementing very frequent inspections, but that would be too
costly). Second, since the principal values information per se, the policy solves the real-option-
information-acquisition problem of deciding when to incur the cost c to learn the firm’s current
quality and thus benefit from superior information.

Some comments are in order. First, in some applications, the agent and principal might also
care about true quality θt , in addition to reputation. For example, a school manager may care
about how many students the school attracts thanks to its reputation and about the welfare of
those students, which in turn depends on the school’s actual quality. The current specification of
the principal’s payoff already incorporates this possibility.12 When the agent’s preferences are a
quasilinear combination of θt and xt the analysis extends directly to this more general case (see
Remark 1).

10. One interpretation is that we implicitly assume the parameters of the problem are such that despite agency
problems, it is optimal for the principal to induce full effort after all histories. Another motivation for focusing on full
effort is that in some applications, for example, in the case of schools, punishing the firms by implementing low effort
might not be practical. We discuss this assumption further at the end of the article.

11. We could define a third player in the model, the market, and then define the equilibrium as a Perfect Bayesian
equilibrium of the game induced by the policy (Fn)n≥1. We hope our simpler definition does not create confusion.

12. If the principal payoff is ũ(θt,xt) then the expected payoff is u(xt)=xt ũ(H,xt)+(1−xt)ũ(L,xt).
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8 REVIEW OF ECONOMIC STUDIES

Second, we shall study both the case when the principal payoff u(·) is linear and that when it is
strictly convex. Again, such convexity of the principal’s flow payoff captures situations in which
information about quality affects not only prices but also allocations—for example, information
may improve the matching of firms and consumers by allowing relocation of consumers from low-
quality to high-quality firms—and the principal may internalize consumer surplus. Throughout
the article, we ignore the use of monetary transfers—beyond transfers that are proportional to
the current reputation.13 In some settings, other forms of performance-based compensation can
be used to provide incentives, but in many cases, divisional contracts are simple, and earnings
proportional to the size of the division may be the main driver of the manager’s incentives.
Graham et al. (2015) find evidence that a manager’s reputation has an important role in internal
capital allocation. In addition, the use of career concerns as the main incentive device also captures
the allocation of resources in bureaucracies as in Dewatripont et al. (1999). The role of financial
incentives in government agencies is much more limited than in private firms where autonomy,
control, and capital allocation driven by career concerns seem more preponderant for worker’s
motivation.

Third, we assume the principal can commit to a monitoring policy. There are many possible
sources of such a commitment. In some instances, commitment is achieved by regulation (e.g. in
case of aircraft safety, the FAA requires that an aircraft must undergo an annual inspection every
12 calendar months to be legal to operate). In other instances, commitment can be supported by
relational contracts. That is, punishing the principal via inferior continuation equilibrium if he
deviates. For example, it would call for no more inspections and hence induce no effort. Such
commitment via relational concerns would be straightforward in case of deterministic inspections.
In case of random inspections, if the principal interacts with many agents, it would be able to
commit to inspecting a certain fraction of them in every period to approximate the optimal random
policy we describe. The non-commitment case is beyond the scope of this article.14

2.1. Examples

To further motivate the model, we turn to three applications. They illustrate how the firm and
principal payoffs can be micro-founded.

Example 1: School monitoring. Here, we study monitoring of school quality in the presence
of horizontal differentiation. Specifically, consider a Hotelling model of school choice with two
schools located at opposite extremes of the unit line: School A, with a known constant quality and
School B with unknown and evolving quality. The evolution of the quality of School B depends
on the school’s hidden investment and is unobservable to the public unless a regulator monitors
it. Students are distributed uniformly over the unit line. Both schools charge the same tuition and
students choose them based on location and perceived quality differences. Assume the quality of
School A is known to be low. If a student is located at location �∈ [0,1], she derives a utility of
attending school A equal to

vA(�)=−�2.

On the other hand, the utility of attending school B depends on its reputation and is given by

vB(xt,�)=xt −(1−�)2.

13. See Motta (2003) for a capital budgeting model driven by career concerns along these lines.
14. For analysis of costly disclosure that is triggered by the firm (without commitment), see Marinovic et al. (2018).
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VARAS ET AL. OPTIMAL DYNAMIC MONITORING 9

Given reputation xt , students above �∗(xt)= 1−xt
2 choose School B. Hence, the demand for School

B is:

1−�∗(xt)= 1+xt

2
.

Now, assume that for each attending student, the schools receive a transfer of $1 from the
government and normalize marginal costs to zero. Hence, the profit flows of schools A and B
are

πA(xt)=�∗(xt)= 1−xt

2

πB(xt)= (1−�∗(xt))−kat = 1+xt

2
−kat .

Conditional on School B′s reputation xt , total students’ welfare is

w(xt)=
∫ �∗(xt)

0
vA(�)d�+

∫ 1

�∗(xt)
vB(xt,�)d�

= 1

4
x2

t + 1

2
xt − 1

12
.

Finally, suppose that the principal’s (i.e. the school regulator) payoff in each period t is a weighted
average of the students’ and schools’ welfare:

u(xt)=αw(xt)+(1−α)(πA(xt)+πB(xt)),

where α is the relative weight attached to students’ utility by the principal. Note that the principal’s
flow utility u(xt) is an increasing and convex function of reputation, even though the sum of the
schools’ profits does not depend on it (since the two schools just split the subsidy per student,
reputation only affects the distribution of profits). The convexity of u reflects here that better
information about the quality of B leads to a more efficient allocation of students and the principal
internalizes their welfare.

Example 2: Quality certification. Consider a version of the classic problem of moral hazard
in quality provision, as studied by the reputation literature (see e.g. Mailath and Samuelson, 2001).
There are two firms. The product of firm 2 (good 2) has a known quality x2 ∈(0,1), while the
product of firm 1 (good 1) – which is the firm we analyse—has random quality that is either high
or low, θ1 ∈{0,1} with reputation denoted by x1. Each firm produces a unit (flow) of the good per
period. There are N ≥3 buyers with types qj that represent a buyer’s preference for quality: each
buyer j has type qj with q1 >q2 =q3 = ...=q, and if agent j gets the good with expected quality
x and pays p, his consumer surplus is

qjx−p.

Prices and allocations are set competitively as follows. When x1 <x2 the efficient allocation is
that buyer 1 gets good 2 and any of the other buyers gets good 1. Competition between the less-
efficient buyers drives the price of good 1 to p1 =qx1 (these buyers get no surplus), while the
price of good 2 is the smallest price such that agents j≥2 do not want to outbid agent 1 for it:

qx1 −p1 =qx2 −p2 ⇒p2 =qx2.

When x1 >x2, then the efficient allocation is that agent 1 gets good 1, and, by analogous reasoning,
competition implies that prices are p2 =qx2 and p1 =qx1: therefore, for all levels of x1 the price
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10 REVIEW OF ECONOMIC STUDIES

of the output of firm 1 is p1 =qx1. Suppose the planner wants to maximize total social surplus.
Because the less-efficient buyers compete away all the surplus, the social surplus is

TS =p1 +p2 +CS1,

where CS1 is the surplus of agent 1, and so we have that

CS1 =
{

q1x2 −p2 if x1 <x2
q1x1 −p1 if x1 ≥x2,

which means that the surplus flow per period is

u(x1)=
{

qx1 +q1x2 if x1 <x2
q1x1 +qx2 if x1 ≥x2.

The surplus is a convex function because q1 >q: intuitively, while prices are linear in expected
quality (reputation), consumer surplus is convex because reputation affects the allocation of
goods—information about the true quality of product 1 allows to allocate it more efficiently
among the agents.15 The principal’s preferences are linear if q1 =q because information
has no allocative role. This corresponds to the setting in Mailath and Samuelson (2001) and
Board and Meyer-ter-Vehn (2013) who consider a monopolist selling a product to a competitive
mass of buyers.

Example 3: Capital budgeting and internal capital markets. In the next example, we show
how the model can be applied to investment problems such as capital budgeting and capital
allocation. An extensive literature in finance studies capital budgeting with division managers who
have empire building preferences.16 As in Stein (1997) and Harris and Raviv (1996), we assume
managers enjoy a private benefit from larger investments. In particular, assume the manager enjoys
a private benefit at time t of b∗ιt from investment ιt .17 Projects arrive according to a Poisson
process Ñt with arrival intensity μ. The manager’s expected payoff is

�t =Ea
[∫ ∞

t
e−r(s−t)(bιsdÑs −kasds)

∣∣∣Ft

]
.

Similarly, the division’s cash-flows follow a compound Poisson process (Yt)t≥0 given by

Yt =
Ñt∑

i=1

f (θti ,ιti ),

where f (θt,ιt)=θt −γ (ιt −θt)2 is a quadratic production function similar to the one used in
Jovanovic and Rousseau (2001). At each time t that a project arrives, the headquarter decides how

15. In this example, u(x) is piece-wise linear. It is an artefact of having two types of agents and two products since
there are only two possible allocations. It is possible to construct a model with a continuum of agent types and continuum
of goods where the allocation changes continuously in x and the resulting consumer surplus is strictly convex.

16. Some examples are found in Hart and Moore (1995), Harris and Raviv (1996), and Harris and Raviv (1998).
Motta (2003) studies a model of capital budgeting with empire building preferences and career concerns.

17. Coefficient b can be also interpreted as incentive pay that is proportional to the size of the allocation to prevent
other agency problems, such as cash diversion, not captured explicitly by our model.
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VARAS ET AL. OPTIMAL DYNAMIC MONITORING 11

much resources allocate to the division, and the optimal investment choice of the headquarter is to
allocate ιt =argmaxιE[f (θt,ι)|FP

t−] resources to the division, so ιt =xt .18 Hence, the manager’s
expected flow payoff is

πt =μbxt −kat,

and the principal’s expected flow payoff is

u(xt)=μ
(

xt −γ Var
[
θt |FP

t

])
=μ

(
(1−γ )xt +γ x2

t

)
.

In the baseline model, we assume that monitoring is the only source of information about θ

available to the headquarter. In this application, it is natural to assume that the headquarter also
learns about the current productivity once the cash-flows arrive. We study the possibility of
exogenous news arrivals in the Appendix.

3. INCENTIVE COMPATIBLE POLICIES

In the next section, we derive optimal monitoring policies. To that end, in this section,
we characterize necessary and sufficient conditions for a monitoring policy to be incentive
compatible.

Consider the firm’s continuation payoff under full effort at time Tn+1:

�Tn+1 =Eā
[∫ ∞

Tn+1

e−r(t−Tn+1)(xt −kā)dt
∣∣∣FTn+1

]

=
∫ ∞

Tn+1

e−r(t−Tn+1)(Eā[xt |FTn+1]−kā
)
dt.

This expression represents the expected present value of the firm’s future revenues net of effort
costs. A key observation is that the law of iterated expectations and the Markov nature of the
quality process imply that Eā[xt |FTn+1]=Eā[θt |θTn+1], and moreover:

Eā[θt |θTn+1]=θTn+1e−λ(t−Tn+1)+ ā
(

1−e−λ(t−Tn+1)
)
.

Therefore, under any incentive-compatible monitoring policy, if the firm is inspected at Tn+1 and
has quality θTn+1 =θ , then its continuation payoff is:

�(θ )≡ ā

r
+ θ − ā

r+λ
− āk

r
. (3.1)

The first term is the net present value (NPV) of revenue flows given steady-state reputation;
the second is the deviation from the steady-state flows given that at time Tn+1 the firm re-starts
with an extreme reputation, and the last term is the NPV of effort costs. Importantly, since
the firm’s payoffs are linear in reputation and the firm incurs no direct cost of inspections, these

18. Note that the allocation in period t is made before the realization of the cash-flow (the Poisson process), as
captured by FP

t− . Technically, we could write that profits depend on ιt− , but write simply ιt since the timing of the game
should be well understood.
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12 REVIEW OF ECONOMIC STUDIES

continuation payoffs are independent of the future monitoring policy. That dramatically simplifies
the characterization of incentive compatible policies. Moreover, because the continuation value at
time Tn+1 is independent of the previous history of effort (it depends on effort only indirectly via
θTn+1 ), we can invoke the one-shot deviation principle to derive the agent’s incentive compatibility
constraint.

Consider the firm’s effort incentives. Effort may affect the firm’s payoff by changing the
outcome of future inspections. The expected marginal benefit of exerting effort over an interval
of size dt is

E[λe−(r+λ)(Tn+1−t)|Ft](�(H)−�(L))dt,

where the expectation is over the next inspection time, Tn+1. This is intuitive: having high quality
rather than low quality at the inspection time yields the firm a benefit �(H)−�(L). Also, a
marginal increase in effort leads to higher quality today with probability (flow) λdt. However,
to reap the benefits of high quality, the firm must wait till the next review date, Tn+1, facing the
risk of an interim (i.e. before the inspection takes place) drop in quality. Hence, the benefit of
having high quality at a given time must be discounted according to the interest rate r, and the
quality depreciation rate λ. On the other hand, the marginal cost of effort is kdt. Combining these
observations and our derivation of �(H)−�(L), we can express the necessary and sufficient
condition for full effort to be incentive compatible as follows.

Proposition 1 Full effort is incentive compatible if and only if for all n≥0,

E
[
e−(r+λ)(Tn+1−t)∣∣Ft

]
≥q ∀t ∈[Tn,Tn+1),

where q≡ k(r+λ)
λ .

This condition states that for a monitoring policy to be incentive compatible next expected
discounted inspection date E

[
e−(r+λ)(Tn+1−t)] has to be sufficiently high. Future monitoring

affects incentives today because effort has a persistent effect on quality, so shirking today can
lead to a persistent drop in quality that can be detected by the principal in the near future. Therefore,
what matters for incentives at a given point in time is not just the monitoring intensity at that point
but the cumulative discounted likelihood of monitoring in the near future. Future inspections are
discounted both by r and the switching intensity λ because effort today matters insofar as quality
is persistent.

Finally, notice that the incentive compatibility constraint is independent of the true quality
of the firm at time t, so the incentive compatibility condition is the same if the firm does not
observe the quality process. Therefore, the optimal monitoring policy is the same whether the
firm observes quality or not. The incentive compatibility constraint is independent of θt because
effort enters linearly in the law of motion of θt , and the cost of effort is independent of θt , which
means that the marginal benefit and marginal cost of effort are independent of θt .

Remark 1 Proposition 1 can be extended to the case in which the agent also cares about quality
and has a quasilinear flow payoff v(θt)+xt . In this case, the incentive compatibility constraint
becomes

E
[
e−(r+λ)(Tn+1−t)∣∣Ft

]
≥q−(v(1)−v(0)) ∀t ∈[Tn,Tn+1).

All the results extend to this case by setting the cost of effort equal to k−λ(v(1)−v(0))/(r+λ).
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VARAS ET AL. OPTIMAL DYNAMIC MONITORING 13

4. OPTIMAL MONITORING POLICY

We now describe an optimal monitoring policy that induces full effort. To do so, we first optimize
over the distribution of the first inspection time, taking as given some continuation payoffs for the
principal. We then discuss how one can obtain via a recursive computation the actual continuation
payoffs under the optimal policy. As we show, the qualitative features of the optimal policy do
not depend on the continuation payoffs. The optimal policy belongs to a two-dimensional class
(with one parameter for each possible outcome of the last inspection), and that greatly simplifies
the computation of continuation payoffs under the optimal policy. The next theorem provides a
general characterization of the optimal monitoring policy, and it is the main result of this article.

Theorem 1 (Optimal monitoring policy) Let τ bind be the largest time such that deterministic

monitoring at that time is incentive compatible, which is given by e−(r+λ)τ bind =q, and let F∗
θ :

R+×{L,H}→[0,1] be an optimal policy following and inspection in which θTn =θ . An optimal
policy F∗

θ is either:

1. Deterministic with an inspection date at time

τ̂∗
θ ≤τ bind ≡ 1

r+λ
log

1

q
,

where τbind is the deterministic review time that makes the incentive constraint bind at time zero.
So the monitoring distribution is F∗

θ (τ )=1{τ≥τ̂ ∗
θ }.

2. Random with a monitoring distribution

F∗
θ (τ )=

{
0 if τ ∈[0,τ̂∗

θ )

1−p∗
θ e−m∗(τ−τ̂ ∗

θ ) if τ ∈[τ̂∗
θ ,∞]

where τ̂∗
θ ≤τ bind and

m∗ = (r+λ)
q

1−q

p∗
θ = 1−e(r+λ)τ̂ ∗

θ q

1−q
.

Theorem 1 states that the optimal policy belongs to the following simple family of monitoring
policies. For a given outcome in the last inspection, there is a time τ̂∗

θ such that the optimal policy
calls for no monitoring until that time, a strictly positive probability (an atom) at that time, and
then monitoring with a constant hazard rate. One extreme policy in that family is to inspect for
sure at τ̂∗

θ : the timing of the next inspection is deterministic, and the incentive constraints bind at
most right after an inspection (so that τ∗

θ ≤τ bind). There is a special case in which τ̂∗
θ =0 so the

policy is fully random and requires monitoring at a constant hazard rate. In general, the optimal
random policy has an atom at τ̂∗

θ such that the incentive constraints hold exactly at τ =0 (and
then are slack till τ̂∗

θ and bind forever after).
Such a simple policy can be implemented by a principal who monitors many firms by dividing

them into two sets: the recently inspected firms and the rest. Firms in the second set are inspected
randomly, in an order that is independent of their time on the list. Firms in the first set are not
inspected at all. They remain in the first set for a deterministic amount of time that may depend
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14 REVIEW OF ECONOMIC STUDIES

on the results of the last inspection. When the time in the first set ends, the principal inspects a
fraction of the firms (and resets their clock in the first set). The remaining fraction of firms is
moved to the second set. This policy is described by two parameters: times in the first set after
the good and bad results. Given those times, the fractions of firms inspected from each of the sets
are uniquely pinned down by incentive constraints.

Real-world inspection schemes share several qualitative aspects of the optimal policy. In many
applications, monitoring systems feature random inspections. For example, restaurant hygiene
inspections in the U.S. are random and have a reputational impact because the outcome of the
inspections is disclosed to the public (see Jin and Leslie, 2003). In the U.S., firms are inspected for
health and safety by the Occupational Safety and Health Administration. Safety inspections also
happen randomly every year. As Levine et al. (2012) demonstrate empirically, random inspections
seem to play an important incentive role.19 Also, random quality inspections are widely used in
Europe to evaluate schools.

However, not all monitoring systems feature purely random inspections. Many monitoring
applications exhibit regular periodic inspections; for example, the Public Company Accounting
Oversight Board (PCAOB) monitors audit firms annually or triennially, depending on their
size. The PCAOB inspections are noisy, as it evaluates a random sample of the auditor’s past
audit engagements. In the U.K., schools are supposed to be inspected by Office for Standards
in Education, Children Services, and Skills (Ofsted) at least once over a four-year cycle, so
monitoring also exhibits a deterministic component.

We show that a policy with a constant hazard rate minimizes the cost of inspections subject
to the incentive compatibility constraints. However, random policies are inefficient because
inspections might not be performed when information is most valued. If u(x) is sufficiently
convex, the benefit of delaying inspections to increase the value of learning is greater than the
associated increase in cost, caused by the departure from the constant hazard rate policy. However,
over time, the value of learning grows slower and slower. For example, as beliefs get closer to
the steady-state, they change very slowly, and the trade-off is dominated by cost minimization.
This explains why the optimal policy eventually implements a constant hazard rate. Convexity
of u(x) implies that there is a unique time when the benefits of delaying inspections balance the
increased cost of inspections.

In the case of our previous applications, our model predicts that when learning is particularly
valuable to the regulator (e.g. when health and safety is a concern, as in the OSHA application),
then optimal monitoring systems feature frequent deterministic inspections. That is, even if
incentive issues are not particularly relevant (e.g. effort is costless), learning about hazards to
prevent accidents is relevant to the regulator. Similarly, in the case of school quality inspections,
learning is important as it allows the regulator to steer children to the best schools. The importance
of learning may explain perhaps why in the U.K. all schools incorporate a periodic, deterministic
component, to its random inspection scheme.

Some of our applications feature inspection frequencies that depend on the outcome of the last
inspection (i.e. past performance). For instance, in the U.K. since 2009, the frequency of school
inspections varies according to each school’s past performance, whereby inadequate schools are
inspected every two years, and outstanding schools are inspected every five years. Our model can
generate such asymmetric frequency if u is relatively convex at the bottom and linear at the top of
the distribution. In other words, if the information is particularly valuable when schools perform
badly, then the optimal monitoring system will feature a higher frequency when the outcome of
the inspection is bad.

19. In a natural field experiment, they found that companies subject to random OSHA inspections showed a 9.4%
decrease in injury rates compared with uninspected firms.
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VARAS ET AL. OPTIMAL DYNAMIC MONITORING 15

4.1. Analysis principal problem

Having discussed the shape of the optimal policy and its implementations, we proceed to analyse
the principal problem and to provide a sketch of the derivation of the policy in Theorem 1. The
full verification arguments are provided in the Appendix. The first step in the analysis is to express
the principal’s problem as a linear program. According to Proposition 1, incentive compatibility
constraint at time t depends only on the distribution of the time to the next inspection, τn+1 ≡
Tn+1 −t and is independent of the distribution of monitoring times during future monitoring
cycles, {Tn+k}k≥2. Let

M(U,x)≡xUH +(1−x)UL −c

be the principal’s expected payoff at the inspection date given beliefs x and continuation payoffs
U≡ (UL,UH ). We can write the principal problem recursively using θTn as a state variable at
time Tn.20 Let Vθ (τ |U) be the principal payoff under the full effort by the firm, conditional on
monitoring at time τ . It depends on the last inspection result θ and the continuation payoffs. It is
given by

Vθ (τ |U)=
∫ τ

0
e−rsu(xθ

s )ds+e−rτM(U,xθ
τ ), (4.1)

where xθ
τ ≡θe−λτ + ā

(
1−e−λτ

)
is the expected quality at τ given starting quality θ . From here,

we can write the principal problem as choosing the distribution of the next inspection time, F,
subject to the incentive compatibility constraints:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
G θ (U)=maxF

∫∞
0 Vθ (τ |U)dF(τ )

subject to∫∞
τ e−(r+λ)(s−τ ) dF(s)

1−F(τ−) ≥q ∀τ ≥0.

(4.2)

The principal payoff under the optimal policy is then given by the fixed point G θ (U)=U, θ ∈
{L,H}.

From now on, we omit the dependence of Vθ (τ |U) on θ and U to simplify the notation and
we just write V (τ ), understanding that it represents the principal payoff for a given state θ and
continuation payoff U. In order to simplify the principal problem in (4.2), we can replace the
incentive compatibility constraint in (4.2) by∫ ∞

τ

e−(r+λ)(s−τ )dF(s)≥q(1−F(τ−)), ∀τ ≥0.

Notice that we have added extra constraints for some values of τ for which F(τ )=1; however, we
can include them without loss of generality as they are trivially satisfied by any feasible policy.
We can now write the principal problem in (4.2) as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

maxF
∫∞

0 V (τ )dF(τ )

subject to∫∞
τ

(
e−(r+λ)(s−τ ) −q

)
dF(s)≥0, ∀τ ≥0∫∞

0 dF(τ )=1.

(4.3)

20. Notice that because θt is a Markov process and the principal problem is Markovian, we can reset the time to
zero after every inspection and denote the value of θt at time Tn by θ0.
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16 REVIEW OF ECONOMIC STUDIES

The advantage of the formulation in (4.3) over the one in (4.2) is that the former is a linear
programming problem.

To develop some intuition of the shape of the optimal policy, consider the problem of the
principal when only the incentive compatibility constraint at time 0 is relevant. Ignoring the
second constraint in (4.3), we get the Lagrangian

L=
∫ ∞

0
V (τ )dF(τ )+μ

(∫ ∞

0
e−(r+λ)τ dF(τ )−q

)
,

where μ≥0 is the Lagrange multiplier of the time zero incentive compatibility constraint. For
some arbitrary time τ , consider a policy that satisfies both constraints, and a perturbation to
this policy that increases dF(τ +dτ ) and reduces dF(τ ) by the same amount, so that the total
probability stays constant (so the second constraint is satisfied). The marginal effect of this
perturbation on the Lagrangian is

V (τ +dτ )−V (τ )+μ
(

e−(r+λ)(τ+dτ)−e−(r+λ)τ
)
.

Dividing by dt, taking the limit, and multiplying by e(r+λ)τ we get

e(r+λ)τ V ′(τ )︸ ︷︷ ︸
≡h(τ )

−μ(r+λ). (4.4)

At the time, τ̂ of an atom this derivative is zero since we do not want to postpone the atom anymore,
which we could do by reducing the atom at τ̂ and increasing the probability of monitoring dτ

later. We show in the formal proof in the Appendix that the function h(τ ) is quasi-convex and
decreasing to the left of τ̂ (which means that (4.4) is positive for all τ <τ̂ , so it is optimal to not
have any probability of monitoring before τ̂ . Just after time τ̂ , (4.4) is negative so we want to
front-load monitoring, which means that monitoring occurs at a constant hazard rate of monitoring
that makes the incentive compatibility constraint binding (unless the atom at τ̂ entails monitoring
with probability one).21

Building upon the previous analysis of the benefits of front-loading monitoring when the
shadow cost of the incentive compatibility constraint is high, we can proceed with the Proof
of Theorem 1. The proof relies on the theory of weak duality for infinite-dimensional linear
programming problems (Anderson and Nash, 1987, Theorem 2.1). In particular, the proof consists
of constructing multipliers for the dual problem such that the value of the dual is the same as
the expected payoff of the policy in Theorem 1. By weak duality, any feasible solution for the
dual problem provides an upper bound for the value of the primal problem. Thus, if we can find
feasible multipliers such that the value of the dual is equal to the expected payoff of the policy in
Theorem 1, then this policy maximizes the principal’s expected payoff.

21. A complication arises because h(τ ) is quasi-convex rather than just decreasing. As a result, the reasoning so
far could imply a second time τ̃ at which h(τ ) crosses μ(r+λ) from below (and remains above thereafter). This would
suggest the possibility that having a second atom is optimal. The full analysis of the problem, once we incorporate all the
remaining incentive compatibility constraints, verifies that adding an extra atom is suboptimal.
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VARAS ET AL. OPTIMAL DYNAMIC MONITORING 17

The first step is to derive the dual optimization problem. The Lagrangian for the principal
problem is

L(F,�,η)=
∫ ∞

0
V (τ )dF(τ )+

∫ ∞

0

∫ ∞

τ

(
e−(r+λ)(s−τ ) −q

)
dF(s)d�(τ )

+η

(
1−

∫ ∞

0
dF(τ )

)
,

where �(τ ) is the cumulative Lagrange multiplier (an integral of the individual Lagrange
multipliers on the continuum of incentive compatibility constraints). The dual problem can be
derived starting from the Lagrangian above. By changing the order of integration, the Lagrangian
can be written as

L(F,�,η)=η+
∫ ∞

0

(
V (τ )−η+

∫ τ

0

(
e−(r+λ)(τ−s) −q

)
d�(s)

)
dF(τ ).

The optimization of the Lagrangian is finite only if the following inequality is satisfied for all
τ ≥0:

V (τ )−η+
∫ τ

0

(
e−(r+λ)(τ−s) −q

)
d�(s)≤0.

It follows that the dual of the maximization problem (4.3) is given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

minη,� η

subject to

V (τ )−η+∫ τ
0

(
e−(r+λ)(τ−s) −q

)
d�(s)≤0, ∀τ ≥0

�(0)≥0

�(τ ) is non-decreasing

. (4.5)

Remark 2 Our strategy for the proof has been to conjecture the shape of the optimal policy and
then verify its optimality by looking at the dual problem. This approach works in hindsight, once
we know the general shape of the solution. However, it is difficult to guess the solution directly
from the principal problem (4.3). An alternative approach consists of rewriting the principal
problem (4.2) as a dynamic optimization problem, which can then be analysed using tools from
optimal control. This was the original approach we followed for the analysis. For the interested
reader, we present such formulation in the Appendix.

The first step in the analysis of the dual problem, is to consider the best monitoring policy
within the class of random policies described in Theorem 1. This comes down to solving the
following maximization problem

max
τ̂∈[0,τ bind]

(
e(r+λ)τ̂ −1

1−q

)
qV (τ̂ )+

(
1−e(r+λ)τ̂ q

1−q

)∫ ∞

τ̂

m∗e−m∗(τ−τ̂ )V (τ )dτ. (4.6)

The first-order condition of the optimization problem (4.6) can be written in terms of the function
h(τ )=e(r+λ)τ as follows:

h(τ̂∗)=
∫ ∞

τ̂ ∗
ρe−ρ(s−τ̂ ∗)h(s)ds, (4.7)
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18 REVIEW OF ECONOMIC STUDIES

where ρ ≡ (r+λ+m∗).22 The objective function in problem (4.6) is quasi-concave, so it can be
shown that τ̂∗ <τ bind only if

h(τ bind)<
∫ ∞

τ bind
ρe−ρ(s−τ bind)h(s)ds, (4.9)

and that τ̂∗ >0 only if 23

h(0)>
∫ ∞

0
ρe−ρsh(s)ds. (4.10)

Notice that the optimality conditions can be fully specified in terms of the h function identified
in our perturbation analysis in equation (4.4). Equations (4.8) through (4.10) are instrumental in
the construction in the multipliers for the dual problem, which provide a verification argument
for the optimality of our conjectured policy. If both inequalities, (4.9) and (4.10), hold, then there
is a unique τ̂∗ <τ bind that satisfies the first-order condition in equation (4.7). It follows from
here that, for an arbitrary continuation value of U= (UL,UH ), the optimal policy can be fully
characterized in terms of the function h(τ ). The next proposition provides this characterization.

Proposition 2 Let τ∗
θ ≡argmaxτ∈[0,τ bind]Vθ (τ |U), and hθ (τ )≡e(r+λ)τ V ′

θ (τ |U). The optimal
policy is the following:

1. If τ∗
θ <τ bind, then the optimal policy is deterministic monitoring at time τ∗.

2. If τ∗
θ =τ bind and

hθ (τ bind)≥
∫ ∞

τ bind
ρe−ρ(s−τ )hθ (s)ds,

then the optimal policy is deterministic monitoring at time τ bind.
3. If τ∗

θ =τ bind and

hθ (τ bind)<
∫ ∞

τ bind
ρe−ρ(s−τ )hθ (s)ds,

then the optimal policy is random with a distribution given by Theorem 1, where τ̂∗
θ is given by

τ̂∗
θ = inf

{
τ ∈[0,τbind] :hθ (τ )≤

∫ ∞

τ

ρe−ρ(s−τ )hθ (s)ds

}
.

Proposition 2 establishes Theorem 1. However, this characterization of the optimal policy is for
an arbitrary value of the principal’s continuation value U. To fully solve the principal problem,
then we also have to solve for the continuation value consistent with the optimal continuation
policy. We turn to that problem next.

22. After some straightforward manipulations of the first order condition, we can write it as

V ′(τ̂ ∗)

r+λ+m∗ =E[V (τ )|τ >τ̂ ∗]−V (τ̂ ∗). (4.8)

We arrive to equation (4.7) using integration by parts.
23. The inequalities in (4.9) and (4.10) follow from a single crossing argument provided in the Appendix in Lemma

B.4.
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4.2. Solving the Bellman equation and finding the optimal policy

In this section, we provide a simple characterization of a Bellman equation that allows us to
find the optimal policy and corresponding continuation payoffs. Theorem 1 allows to write the
principal’s problem as a one-dimensional problem in which we choose the date of the atom in the
monitoring distribution. If we ignore the incentive compatibility constraint, the optimal policy
is deterministic and is given by the maximizer of V (τ ). However, such a policy might entail
infrequent monitoring and violate the incentive compatibility constraint. In such a case, we need
to consider policies that might entail some randomization. By Theorem 1, the optimal random
policy is fully described by the monitoring rate m∗ and the length of the quiet period, captured
by τ̂∗

θ , which pins down the size of the atom that initializes the random monitoring phase. Given
the simple form of an optimal policy, we can reduce the optimization problem for the fixed point
to the analysis of a simple one-dimensional maximization problem. Let Gθ

det be the best incentive
compatible deterministic policy given continuation payoffs U:

Gθ
det(U)≡ max

τ̂∈[0,τ bind]

∫ τ̂

0
e−rτ u(xθ

τ )dτ +e−rτ̂M(U,xθ
τ̂

),

and let Gθ
rand be the payoff of best random policy, as given by:

Gθ
rand(U)≡ max

τ̂∈[0,τ bind]

∫ τ̂

0
e−rτ u(xθ

τ )dτ +e−rτ̂

[(
e(r+λ)τ̂ −1

1−q

)
qM(U,xθ

τ̂
)+

(
1−e(r+λ)τ̂ q

1−q

)∫ ∞

τ̂

e−(r+m)(τ−τ̂ )
(

u(xθ
τ )+mM(U,xθ

τ )
)

dτ

]

The solution to the principal’s problem is thus given by the fixed point:

UL =max{GL
det(UL,UH ),GL

rand(UL,UH )} (4.11a)

UH =max{GH
det(UL,UH ),GH

rand(UL,UH )}. (4.11b)

The operator in (4.11) is a contraction so a unique fixed point exists (see Proof of Lemma D.1 in
the appendix).

To build additional economic intuition, it is useful to analyse two polar cases. In the next
subsection, we analyse a relaxed problem in which we ignore the incentive compatibility
constraint. In this case, the principal monitors to maximize the benefit of learning net of the
monitoring cost. We show that the optimal monitoring policy is deterministic with periodic
reviews. Next, we look at the optimal policy when learning is not valuable (i.e. u(x) is linear).
In this case, the principal looks for the incentive compatible policy that minimizes the cost of
inspections. We show that the cost-minimizing policy entails random monitoring with a constant
hazard rate. In the general case, the trade-off echoes these two benchmarks. As in the linear case,
to minimize costs subject to satisfying incentive constraints, it is optimal to front-load incentives
and hence to monitor with a constant hazard rate. However, when u(x) is convex, as reputation
moves from one of the extremes towards the steady-state, inspections generate additional value
from learning. The value of learning is zero at the extreme reputations and grows originally fast
because beliefs move fast after inspections.
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4.3. Optimal policy without moral hazard

Without moral hazard, it is optimal to concentrate all the monitoring probability on the time
V (τ ) reaches its maximum. The optimal policy is deterministic with an inspection date τ∗ =
argmaxτ≥0V (τ ). If the solution is interior, then τ∗ satisfies the first-order condition V ′(τ∗)=0.24

The following proposition characterizes the optimal policy in this case.

Proposition 3 In absence of moral hazard, the optimal policy is deterministic with an inspection
date

τ∗
θ =argmax

τ≥0

∫ τ

0
e−rsu(xθ

s )ds+e−rτM(U,xθ
τ ),

where U= (UL,UH ) is the unique solution to the fixed point problem

UL =max
τ≥0

∫ τ

0
e−rsu(xL

s )ds+e−rτM(U,xL
τ )

UH =max
τ≥0

∫ τ

0
e−rsu(xH

s )ds+e−rτM(U,xH
τ ).

To develop some intuition, we consider the first-order condition V ′(τ∗)=0, which amounts to

u(xθ
τ ∗ )+ ẋτ ∗ (UH −UL)=rM(U,xθ

τ ∗ ). (4.12)

The left-hand side is the flow payoff that the principal gets in absence of monitoring while the
right-hand side is the (normalized) payoff of monitoring immediately. At the optimal inspection
date τ∗, the principal is indifferent between inspecting now or later. Additional intuition can be
obtained by thinking about the continuation value at time t as a function of the belief at time
xt , which we denote by U(xt). If the principal does not monitor at time t, the continuation value
satisfies the standard Hamilton-Jacobi-Bellman (HJB) equation

rU(xt)=u(xt)+λ(ā−xt)U
′(xt). (4.13)

If the principal inspects at time τ∗, the value function satisfies the value matching condition
U(xτ ∗ )=M(U,xθ

τ ∗ ). Moreover, at the optimal inspection time, the value function satisfies the
smooth pasting condition U ′(xτ ∗ )=UH −UL . Substituting both conditions in the HJB equation
(4.13) we get the first-order condition (4.12). Figure 1, illustrates the optimal policy. The time of
inspection τ∗

θ is such xθ
τ ∗
θ

equals the threshold belief x∗(θ ). The thresholds x∗(θ ) depends on the

convexity of the principal’s objective function and the cost of monitoring c since these parameters
capture the value and cost of information, respectively. In the extreme case when u(·) is linear
(or c is too large), the optimal policy is to never monitor the firm but let beliefs converge to ā. In
the Supplementary Appendix, we provide a full analysis of the principal problem using dynamic
programming.

4.4. Linear payoffs: information without direct social value

Next, we analyse the case in which the principal’s flow payoff u(·) is linear. As discussed above,
this case captures applications where the principal is an industry self-regulatory organization that

24. It follows from the quasi-convexity of h(τ ) that the first-order condition together with the second-order condition
are sufficient.
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Figure 1

Value function. The optimal policy requires to monitor whenever xL
t =x∗(L) and xH

t =x∗(H).

is not directly concerned about consumer surplus but wishes to maximize the industry’s expected
profits.

Under linear payoffs, information has no direct value to the principal. Hence, the principal’s
problem boils down to minimizing the expected monitoring costs, subject to the incentive
compatibility constraints. Accordingly, using Proposition 1, we can reduce the principal’s problem
to the following cost minimization problem:

⎧⎪⎪⎨
⎪⎪⎩

C0 = inf(Tn)n≥1 E
[∑

n≥1e−rTn c
∣∣∣FP

0

]
subject to:
k
λ ≤ 1

r+λE
[
e−(r+λ)(Tn+1−t)|Ft

]∀t ∈[Tn,Tn+1).

(4.14)

The principal aims to minimize expected monitoring costs subject to the agent always having
an incentive to exert effort. The optimal monitoring policy in this case is simple, consisting of
random inspections with a constant hazard rate:

Proposition 4 If u(xt)=xt , then the optimal monitoring policy is a Poisson process with arrival
rate

m∗ = (r+λ)
q

1−q
,

where

q≡(r+λ)
k

λ
.
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22 REVIEW OF ECONOMIC STUDIES

The intuition for Proposition 4 follows from the fact that in (4.14) future monitoring is
discounted by r in the objective function and by r+λ in the constraints (as previously discussed,
inspections have a discounted effect on incentives because quality depreciates over time.) As
a result, the optimal monitoring policy front-loads inspections in a way that the incentive
compatibility constraints bind in all periods. This implies that the optimal intensity of monitoring
is constant at a rate m∗ = (r+λ)q/(1−q), and that there are no deterministic reviews nor atom,
or else the incentive constraint would be slack some time prior to the review, in which case the
principal could save some monitoring expenses without violating the firm’s incentive to exert full
effort.

As mentioned above, random monitoring is prevalent in the real world: restaurant hygiene
is inspected randomly in the U.S.; school quality is inspected randomly in the U.K.; firms are
inspected randomly for safety and health hazards in the U.S. However, most monitoring systems
feature hazard rates that evolve over time, suggesting that the linear model is not a good description
of these real-world applications. In Section 6, we discuss other potential explanations of why
hazard rates are not constant in the real world.

In the Supplementary Appendix, we provide an alternative proof based on a perturbation
argument. However, we can immediately verify that the policy in Proposition 4 is optimal applying
Proposition 2 to the particular case in which u(x) is linear. If u(x)=x and the principal uses a
policy which is random with constant arrival rate m∗, then a simple calculation yields

r(UL −c)= λ

r+λ
ā−(r+m∗)c

UH −UL = 1

r+λ
.

Thus, we get that
h(τ )=eλτ (r+m∗)c,

which means that

h(0)= (r+m∗)c<

∫ ∞

0
ρe−ρsh(s)ds= (r+m∗)c

(
1+ λ

r+m∗
)

.

Thus, by Proposition 4, the policy with constant hazard rate m∗ is optimal.

Remark 3 It follows from the alternative Proof of Proposition 4 found in the Appendix that the
result extends to the case in which the principal and the firm have different discount rates as long
as the principal is patient enough. If the principal has a discount rate rP, then Proposition 4 still
holds as long as rP <r+λ. If the principal is sufficiently impatient, that is if rP >r+λ, then the
optimal policy in the linear case involves purely deterministic monitoring.

4.5. Comparative statics

Having characterized the structure of the optimal policy, we can discuss the conditions under
which random monitoring dominates deterministic monitoring. The next proposition considers
how parameters affect the form of the optimal policy.

Proposition 5 (Comparative statics) Suppose that u(x) is strictly convex, then:

1. There is c† >0 such that, if c<c† then the optimal policy is deterministic monitoring, and if
c>c† then the optimal policy is random.
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2. There is k† <λ/(r+λ) such that for any k >k† the optimal policy is random.
3. There is ā† <1 such that, for any ā∈ (ā†,1), the optimal policy given θTn−1 =H has random
monitoring. Similarly, there is ā† >0 such that, for any ā∈ (0,ā†), the optimal policy given θTn−1 =
L is random.
4. Consider the limit when λ→∞, c→0, and λc∈ (0,∞). In this limit, the optimal policy is
random with constant monitoring rate m∗.

Figure 2a shows the monitoring distribution for low and high monitoring cost: when the
cost of monitoring is low, the policy implements deterministic monitoring; in fact, if the cost of
monitoring is sufficiently low then the benchmark policy (the relaxed problem without incentive
constraint) prescribes frequent monitoring, and accordingly the incentive compatibility constraint
is slack. When the cost is at an intermediate level, the optimal policy is a mixture of deterministic
and random monitoring with a constant hazard rate. In contrast, when the cost of monitoring is
high, the optimal policy specifies constant random monitoring starting at time zero. Similarly,
Figure 2b shows the comparative statics for the cost of effort, k. The monitoring policy is random
if k is high enough, deterministic if k is low, and a mixture of both when k is intermediate. We
provide a more detailed analysis of the comparative statics in the next section in the context of a
model with linear-quadratic preferences and quality driven by Brownian motion.

Cost is a key dimension that determines the optimal design of a monitoring system. Coming
back to our school monitoring example, a well-documented report estimates that a school quality
review system in the U.S. analogous to the British system—which targets the entire universe of
schools within a three years cycle—would cost between $635 million and $1.1 billion annually,
depending on the methodology.25 Another report estimates that a system that reviews every school
every three years would cost approximately $2.5 billion a year (see “On Her Majesty’s School
Inspection Service” by Craig D. Jerald). Currently, school quality systems around the world target
the entire universe of schools. In this case, our results are suggestive that, given relatively high
monitoring costs, a random inspection scheme could be an efficient way to lower costs while still
ensuring incentives are in place.26

5. QUALITY DRIVEN BY BROWNIAN MOTION

Our baseline model assumes that quality can take on two values. Such binary specification makes
the analysis tractable but is not strictly needed: the economics of the problem is not driven by the
details of the quality process. The policy in the linear case remains optimal for a general class
of quality processes. In this section, we analyse the optimal policy when information is valuable,
and quality follows the Ornstein–Uhlenbeck process

dθt =λ(at −θt)dt+σdBt, (5.1)

where Bt is a Brownian motion.

25. For example, Rhode Island, after 12 years decided to eliminate its school quality inspection system due to
budget cuts.

26. Of course, the previous recommendation should be taken with a grain of salt as we cannot look at the nominal
cost of monitoring in isolation, but we need to look at the cost of monitoring relative to the value of information captured
by u(x).
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(a)

(b)

Comparative statics for c. The cost of effort is k=0.2.

Comparative statics for k. The cost of monitoring is c=0.05.

Figure 2

Comparative statics for the optimal monitoring distribution. The figure shows the cumulative density function (CDF) of

the monitoring time Tn when u(xτ )=xτ −0.5×xτ (1−xτ ) and r =0.1, λ=1, ā=0.5. When c or k are low, the incentive

compatibility constraint is slack under the optimal monitoring policy in the relaxed problem that ignores incentive

compatibility constraints. As the monitoring or effort cost increase, deterministic monitoring is replaced by random

monitoring: when the cost of monitoring is very high the monitoring policy consist on random monitoring at all times

and at a constant rate; on the other hand, if the cost of monitoring is an intermediate range, the optimal monitoring

policy entails a first period without monitoring followed by an atom and constant random monitoring thereafter. In this

example the payoff function and the technology are symmetric, so the optimal monitoring policy is independent of θ0.
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The incentive compatibility in Proposition 1 holds for any process for quality satisfying the
stochastic differential equation

dθt =λ(at −θt)dt+dZt,

where Zt is a martingale. In particular, it holds when Zt is a Brownian motion Bt , so quality
follows the Ornstein–Uhlenbeck process in equation (5.1).

Whenever the principal’s payoff is not linear in quality, one needs to specify the principal’s
preferences as a function of the firm reputation. With non-linear preferences, the optimal policy
generally depends on the last inspection’s outcome (which in this case has a continuum of
outcomes). While this fact does not seem to change the core economic forces, it makes the
analysis and computations more involved, so we do not have a general characterization of the
optimal policy for the convex case. However, we can get a clean characterization of the optimal
policy when the principal’s preferences are linear quadratic. The linear-quadratic case is common
in applications of costly information acquisition for its tractability (Jovanovic and Rousseau,
2001; Sims, 2003; Hellwig and Veldkamp, 2009; Alvarez et al., 2011; Amador and Weill, 2012).

Suppose that the principal has linear-quadratic preferences u(θt,xt)=θt −γ (θt −xt)2. Taking
conditional expectations, we can write the principal’s expected flow payoffs as u(xt,�t)=xt −
γ�t , where �t ≡Var(θt |FM

t ). For example, this preference specification corresponds to the case
in which the evolution of quality is driven by Brownian motion in Example 3 in Section 2.1.

For the Ornstein–Uhlenbeck process in (5.1), the distribution of θt is Gaussian with moments

xt =θ0e−λt + ā
(

1−e−λt
)

(5.2)

�t = σ 2

2λ

(
1−e−2λt

)
. (5.3)

Using the law of iterated expectations, we see that the principal’s continuation payoff at the time
of an inspection is linear in quality, and given by

U(θ )= θ − ā

r+λ
+ ā

r
−C,

where the optimal cost of inspection C is given by the solution to the fixed point problem

C =min

{∫ ∞

0
C(τ )dF(τ ) :

∫ ∞

τ

(
e−(r+λ)(s−τ ) −q

)
dF(s)≥0, ∀τ ≥0

}
,

C(τ )≡
∫ τ

0
γ�sds+e−rτ (c+C).

The optimal policy is now formulated recursively as a cost minimization problem where the cost
borne by the principal has two sources, monitoring and uncertainty, as captured by the residual
variance of quality �τ . As before, the principal chooses the distribution over the monitoring date
F(τ ). Given the symmetry in the linear-quadratic case, the optimal policy is independent of the
outcome in the previous inspection, and using the previous results from the binary case, we can
show that the optimal monitoring policy takes the same form as in the binary case. This means
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that the optimal monitoring policy and the cost of monitoring is given by27

C =min

{
min

τ̄∈[0,τ bind]

∫ τ̄
0 e−rτ γ�τ dτ +e−rτ̄ c

1−e−rτ̄
,

min
τ̂∈[0,τ bind]

∫ τ̂
0 e−rτ γ�τ dτ +e−rτ̂

(
1−e(r+λ)τ̂ q

1−q

)∫∞
τ̂ e−(r+m∗)(τ−τ̂ )γ�τ dτ +δ(τ̂ )c

1−δ(τ̂ )

⎫⎪⎪⎬
⎪⎪⎭, (5.4)

where

δ(τ̂ )≡
(

eλτ̂ −e−rτ̂

1−q

)
q+

(
e−rτ̂ −eλτ̂ q

1−q

)
m∗

r+m∗ ,

and the optimal monitoring policy is given by:

Proposition 6 Suppose that θt follows the Ornstein–Uhlenbeck process in (5.1), and that the
principal’s expected payoff flow is u(xt,�t)=xt −γ�t . Then the optimal monitoring policy is
given by the distribution

F∗(τ )=
{

0 if τ ∈[0,τ̂∗)

1−p∗e−m∗(τ−τ̂ ∗) if τ ∈[τ̂∗,∞]

where

m∗ = (r+λ)
q

1−q
,

and τ̂∗ ≤τ bind. If p∗ >0, then it is given by

p∗ = 1−e(r+λ)τ̂ ∗
q

1−q
.

As before, the distribution of monitoring is characterized by two numbers, the size of the atom
p∗ and the monitoring rate m∗. As special cases, the policy prescribes deterministic monitoring
when p∗

θ =0, and purely random monitoring with constant rate m∗ when p∗
θ =1.

The comparative statics in the case of Brownian shocks are similar to those in Proposition
5: the optimal policy is deterministic if the cost of monitoring is low and random if the cost
of monitoring is high. There are two new parameters in the model, γ and σ : However, after
inspecting equations (5.3) and (5.4) we see that the monitoring policy only depends on the cost
of monitoring per unit or risk, c/γ σ 2, so increasing γ /σ 2 is equivalent to reducing the cost
of monitoring. We have the following proposition characterizing the comparative statics in the
linear-quadratic case.

27. In the whole article, we focus on policies that induce full effort from the agent. In this quadratic specification,
it is possible to verify that if the cost of monitoring is not to high, the optimal policy we described is better than any other
stationary policy, that is deterministic or monitors at a rate m∗, even when we consider policies that do not induce effort
at all times. For example, such is the case if γ =1, r =0.1, k =0.5, c=0.25, ā=0.5, λ=1, and σ 2 =1. In this numerical
example, the optimal policy is random with an atom, and it is given by τ̂ =0.16<τ bind =0.54.
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Proposition 7 (Comparative statics) Suppose that θt follows the Ornstein–Uhlenbeck process
in (5.1), and that the principal’s expected payoff flow is u(xt,�t)=xt −γ�t . If we let c̃≡c/γ σ 2

then

1. There is c̃† >0 such that the optimal policy is deterministic if c̃≤ c̃† and random if c̃> c̃†.
2. τ̂∗ is increasing in c̃ for c̃≤ c̃† and decreasing for c̃> c̃†. This means that the atom p∗ is
increasing in c̃ so the probability of monitoring at τ̂∗ is decreasing in c̃ .
3. If c̃≤ 1

2λ(r+2λ) , then there is k† >0 such that the optimal policy is deterministic if k ≤k† and

random if k >k†. For k >k†, τ̂∗ is decreasing in k.
4. Consider the i.i.d limit when λn →∞, σn =σ

√
λn, c̃n =c/γ σ 2

n . In this limit, the optimal policy
is random with constant monitoring rate m∗.

Consistent with the notion that the principal faces two types of costs—the cost of inspections,
captured by c, and the cost of uncertainty, captured by γ σ 2—the structure of the optimal policy
(i.e. deterministic versus random) depends on the cost of inspection per unit of uncertainty, or
c/γ σ 2. Intuitively, a low c̃ captures the case when the principal has little tolerance to uncertainty,
characterized by frequent inspections and the absence of moral hazard issues (the incentive
constraint is slack). By contrast, the high c̃ captures the case when inspections are too costly
relative to the cost of uncertainty, leading to rather infrequent inspections and random monitoring.
Finally, the result that the optimal policy is random in the i.i.d. limit, where quality shocks are
highly transitory, shows how the possibility of window dressing moves the optimal policy towards
random monitoring.

6. FINAL REMARKS

The dissemination of information about quality incentivizes firms to invest in quality. Monitoring
systems are key sources of information in a wide spectrum of applications, ranging from school
reviews and product safety to bank solvency and audit quality. Since monitoring systems are
usually costly to implement, it is important for governments and regulatory agencies to design
them efficiently. However, little is known about optimal monitoring schemes, particularly in
situations in which monetary transfers—such as fines—are too small to be relevant, and public
information is scarce.

Since Becker (1968), the literature has largely focused on monitoring as a punishment device to
deter misbehaviour. In this article, we develop a reputational theory of monitoring that emphasizes
its informational role. Our theory is built on the premise that the reputational impact of inspections
is often significantly more relevant than the limited pecuniary punishments that our legal system
permits. It also emphasizes the notion that monitoring is, in essence, a form of costly information
acquisition. As such, our theory is most relevant in settings where the external flow of information
is insufficient.

Specifically, we study the optimal monitoring policy in a principal-agent setting, in which the
agent is driven by reputation concerns, and fines are infeasible. The agent exerts hidden effort to
affect product quality, and his payoff depends on the product’s perceived quality. The principal’s
monitoring policy plays a dual role that is present in most monitoring systems: (i) a learning role,
as monitoring provides valuable information to the principal even in the absence of incentive
issues and (ii) an incentive role, as monitoring outcomes publicly reveal the agent’s quality and
affect his demand. These two aspects are not only natural but critical in shaping the structure
of the optimal monitoring policy. While learning favours the use of deterministic inspections,
incentive provision favours the use of random inspections.
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One might expect that the combination of both ingredients in a dynamic game would lead to
complex, time-varying, monitoring policies; however, the optimal policy is surprisingly simple
and easy to implement in practice. Depending on the outcome of the last inspection, the optimal
policy is a mixture of a deterministic periodic review and random inspections with a constant
hazard rate and fixed delay. The optimal policy is consistent with some features observed in the
real world. For example, many monitoring systems—such as school reviews in the European
Union or safety inspections in the U.S.—incorporate a combination of periodic, deterministic
components, and random inspection schemes.

Our model is stylized and ignores several aspects that may be important in practice. We
conclude with a discussion on the impact that these aspects on the optimal monitoring policy, and
how our model can be extended to incorporate them.

First, to isolate the effect of reputation concerns, we have considered settings without fines, or
any sort of monetary transfer, where the agent’s incentives are driven purely by reputation/career
concerns. We believe that this assumption is natural in many applications in which fines play
a secondary role or are outright forbidden. For example, in the case of public schools, there is
limited scope to fine schools that exhibit poor performance or to provide high power incentives
to school principals. More generally, as thoroughly discussed in Dewatripont et al. (1999), there
is a limited role for financial incentives in bureaucracies and many governance agencies, where
most incentives are provided by career concerns. In the case of auditing firms, we see that auditors
rarely pay fines to the PCAOB, and, if any, these fines are often perceived as immaterial by the
leading audit companies.

That being said, in many other situations, fines do play an important role, which may affect the
design of monitoring systems. At the extreme, with arbitrary fines, monitoring design becomes
trivial since a very small intensity of monitoring combined with a large fine would implement
first-best (Lazear, 2006). Our analysis suggests that under limited fines the optimal policy shifts
away from random monitoring towards deterministic reviews, because the solution to the relaxed
problem (that ignores incentive constraints) would be more likely to satisfy incentive constraints
when low-quality firms pay fines.28 Relatedly, we have considered cases in which monitoring is
costly to the monitor but (relatively) costless to the agent. This assumption is broadly consistent
with some of our applications, such as restaurant hygiene inspections, health and safety reviews,
or auditor inspections. However, in many other situations, regular inspections place a burden
on the inspected firms. When inspections are costly to the agent, frequent inspections serve a
similar role as money burning technologies considered in the literature on optimal delegation (see
Amador and Bagwell, 2013), and the optimal design is likely to change. In this case, the regulator
may use the frequency of inspection as an incentive tool, by rewarding good performance with a
lower frequency of inspections and punishing bad schools with a higher frequency of inspections.
This might be one of the reasons why in the U.K., good performing schools are inspected every
5 years, while bad performing schools are inspected every 2 years (see Jerald, 2012), or why in
some countries (e.g. the Netherlands), complying firms are provided inspection holidays (OECD,
2014). In our model, more frequent inspections after bad outcomes arise if the value of information
is higher for low performing schools (formally, if the payoff is more convex for low reputation).

Our baseline model ignores external news such as customer reviews and complaints,
newspaper articles, and accidents. For example, restaurant hygiene inspections are often triggered
by a customer complaint (see e.g. Jones et al., 2004). OSHA safety inspections respond to the

28. It is not immediately obvious to us what is a satisfactory model of limited fines. For example, if we only bound
the fee charged per inspection, then upon finding the firm to be low quality, the regulator could perform many additional
inspections in a short-time interval and fine the firm multiple times. A similar issue arises if the firm incurs part of the
physical cost of inspection: running additional inspections could expose the firm effectively to a large fine.
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arrival of news about a firm’s safety hazards (Levine et al., 2012). The optimal monitoring system
is sensitive to the presence of such news. The impact of news crucially depends on the specific
details of the news process. For example, in the Supplementary Appendix, we show that the
qualitative aspects of the model remain unchanged if the news process reveals the firm’s current
type at a Poisson arrival rate that is independent of the type. In other instances, the principal
might be more likely to learn if the quality of the product is either bad or low (i.e. the arrival rate
of news depends on the quality of the product or service). In the Supplementary Appendix, we
study the case in which the arrival rate depends on quality when the principal’s preferences are
linear. We show that the arrival of bad news often leads to more frequent inspections and stronger
enforcement, which is consistent with how health and safety inspections are performed. We also
find that in the bad news case, the rate of monitoring decreases in reputation. The economic
mechanism behind these results follows the insight in Board and Meyer-ter-Vehn (2013) that, in
the bad news case, the agent’s incentives increase in reputation.

We have not considered the possibility that the firm can communicate with the principal. This
assumption is natural when the agent does not observe his type, as it might be the case in our
application to school quality (the incentive compatibility constraint does not change if we assume
that the firm does not observe its type, so the optimal policy remains the same). However, in
some applications, firms observe their types and are supposed to self-report any problems.29 In
New York, restaurants that fail a hygiene inspection can secure a quick re-inspection. Such
self-reporting could improve the performance of the optimal monitoring policy by avoiding
unnecessary inspections. For example, if we allow firms that failed the last inspection to self-report
improvements, then the firm’s reputation remains at zero until the firm requested re-certification.
This improves the principal’s payoff due to the role of learning, and the possible lower certification
costs (the second effect is ambiguous because allowing re-certification might reduce incentives).
While we do not provide a characterization of the optimal policy with self-reporting, we expect
that the trade-offs between random and deterministic inspections that we stress in this article will
remain relevant in such a model, while new insights are likely to emerge (e.g. a characterization
of the timing at which firms are allowed to re-certify upon request).

Another issue is whether the productivity of effort is the same in the good and the bad state.
In our model, we assume that the productivity of effort is the same across states. This assumption
simplifies the incentive constraints because the marginal return to effort is the same across states;
if the productivity of effort differs across states, then our analysis holds as long as we want to
maintain full effort in both states. In this case, the relevant incentive compatibility constraint is
the one for the state with the lowest productivity of effort.30

Finally, two assumptions have a crucial role in our analysis. First, we have only considered
policies that induce full effort after all histories; however, for some parameters, the optimal policy
will likely prescribe no effort at all, after some bad histories, as a punishment. Even if the full
effort is optimal in the first-best, this prescription can be optimal if conditional on the full effort,

29. For example, the National Association for the Education of Young Children requires accredited child care
centres to notify National Association for the Education of Young Children within 72 h of any critical incident that may
impact program quality http://www.naeyc.org/academy/update accessed 28 February 2017.

30. If the agent does not observe the current state, then the analysis is potentially more complicated because the
agent’s beliefs will diverge from the principal’s if the agent deviates from the recommended effort. A policy that assures
that the agent has incentives to put full effort in both states at all times would still be incentive compatible but not
necessarily optimal. Our intuition about the optimal policy, in that case, is that, because after a deviation to lower effort
the agent assigns a lower probability to the high state than the principal, so the incentive compatibility constraint in the
high state becomes slack if productivity is higher in the low state, we can still characterize the optimal policy using our
current methods. However, if the productivity in the low state is lower, then the analysis gets more complicated because
we may need to keep the incentive compatibility constraint to prevent “double deviations.”
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the probability of maintaining high quality is very high. The intuition for this conjecture comes
from the case with ā=1, in which the firm can maintain quality forever as long as it works.
Because an inspection revealing low quality only arises off-the-equilibrium path, we can relax
the incentive compatibility constraints (at no cost) using the worst possible punishment for the
firm after that outcome, which amounts to stop monitoring the firm altogether. This punishment
leads to no effort off path, and it is akin to revoking a firm’s license, which leads to the lowest
possible payoff for the firm. By continuity, we expect that using such strong punishments with
some probability remains optimal if ā is very close to 1 (see Marinovic et al. (2018) for analysis
along these lines in the context of voluntary certification). However, if the cost of inspections
is not too high and ā is sufficiently smaller than one, then we expect that the optimal policy
would indeed induce full effort. Another reason to focus on full effort is that in many applications
there are institutional constraints that prevent the principal from implementing zero effort as a
punishment. For example, in the case of public schools, neighbours would probably not allow a
policy that implements perpetual low quality if their local school has failed in the past. In this
case, a policy that looks for high effort after any history might be the only thing that is politically
feasible to implement. The optimal policy might also fail to implement the same effort at all times
if the cost of effort is strictly convex, and the optimal policy implements interior effort. In this
case, any policy that entails a deterministic review necessarily implements a time-varying effort.
When the cost of effort is convex, our analysis holds if the marginal cost of effort evaluated at ā
is low enough so the optimal policy implements the maximum level of effort.31

Second, the simplicity of the incentive compatibility constraint rests on the assumption that
the payoff of the firm is linear in reputation, which means that the firm only cares about its
average reputation. However, in some markets, the firm’s payoffs are likely non-linear in the
firm’s reputation, as is likely the case for restaurants, where consumers only go to restaurants that
have a sufficiently high hygiene reputation, making the restaurant’s payoffs convex in reputation.
In these cases, monitoring could have an additional effect of providing direct value to the firm.
If the firm’s payoff is convex, then the firm can be rewarded with frequent inspections, as this
increases the volatility of reputation. This leads to the seemingly counterfactual implication that
firms with high performance are inspected more often. We believe that this possibility is likely to
push the optimal monitoring policy towards deterministic reviews. Analysing the optimal policy
in this case is more difficult than in our model because information has direct value to the firm,
so inspections provide additional incentives, and the frequency of inspections can be used by the
regulator to reward or punish the firm. The full analysis of these kinds of punishments, as well
as the analysis of time-varying effort, requires the use of a different set of techniques, similar to
the ones in Fernandes and Phelan (2000), and we believe this is an important direction for future
research.
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Supplementary data are available at Review of Economic Studies online.

31. Also, if the payoff function is linear, so there is no value of information acquisition, a constant hazard rate with
constant effort might still be optimal as this allows to smooth the cost of effort over time. Of course, the same caveat
about the role of low effort punishment still applies in this case.

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article-abstract/doi/10.1093/restud/rdaa012/5809563 by Stanford U

niversity Libraries user on 01 July 2020



VARAS ET AL. OPTIMAL DYNAMIC MONITORING 31

APPENDIX

A. INCENTIVE COMPATIBILITY: PROOF PROPOSITION 1

Proof. The first step is to define the martingale Zt in equation (A.1). Let NLH
t =∑s≤t 1{θs− =L,θs=H} and NHL

t =∑
s≤t 1{θs− =H,θs=L} be counting processes indicating the number of switches from L to H and from H to L, respectively.

The processes

ZLH
t =NLH

t −
∫ t

0
(1−θs)λasds

ZHL
t =NHL

t −
∫ t

0
θsλ(1−as)ds,

are martingales. Letting Zt ≡ZLH
t −ZHL

t and noting that dθt =dNLH
t −dNHL

t , we get that θt satisfies the stochastic
differential equation

dθt =λ(at −θt)dt+dZt, (A.1)

which leads to equation (A.1). Full effort is incentive compatible if and only if for any deviation ât (with an associated
process for quality θ̂t)

Eā
[∫ Tn+1

t
e−r(s−t)(xs −kā)ds+e−r(Tn+1−t)(θTn+1 �(H)+(1−θTn+1 )�(L)

)∣∣Ft

]
≥

Eâ
[∫ Tn+1

t
e−r(s−t)(xs −kâs)ds+e−r(Tn+1−t)(θ̂Tn+1 �(H)+(1− θ̂Tn+1 )�(L)

)∣∣Ft

]
Letting �≡�(H)−�(L) and replacing the solution for θt in (A.1), we can write the incentive compatibility condition as

Eâ
[∫ Tn+1

t
e−r(s−t)(λe−(r+λ)(Tn+1−s)�−k

)
(ā− âs)ds

∣∣Ft

]
≥0.

For any deviation, we have that

Eâ
[∫ Tn+1

t
e−r(s−t)(λe−(r+λ)(Tn+1−s)�−k

)
(ā− âs)ds

∣∣Ft

]
=

Eâ
[∫ ∞

t
1{Tn+1>s}e−r(s−t)(λEs[e−(r+λ)(Tn+1−s)]�−k

)
(ā− âs)ds

∣∣Ft

]
.

So, we can write the incentive compatibility condition as

Eâ
[∫ Tn+1

t
e−r(s−t)(λEs[e−(r+λ)(Tn+1−s)

∣∣Ft]�−k
)
(ā− âs)ds

]
≥0.

The result in the lemma then follows directly after replacing �=�(H)−�(L)=1/(r+λ). ‖

B. ANALYSIS PRINCIPAL PROBLEM: PROOF OF THEOREM 1

In order to analyse the dual problem (4.5), we first derive an ordinary differential equation, which will be essential for
the construction of the multipliers, that must be satisfied whenever the inequality constraint in the dual problem (4.5)
binds. Denoting the first date at which there is monitoring with positive probability by τ̂ , we look to construct multipliers
when the incentive compatibility constraint is binding after τ̂ . Instead of directly working with the multiplier �(τ ), it is
convenient to work with the discounted version of the multiplier, �̃(τ ), that is defined as

�̃(τ )=�(0)+
∫ τ

0
e(r+λ)sd�(s).

Clearly, the multiplier �(τ ) is non-decreasing if and only if �̃(τ ) is non-decreasing. In Lemma B.1, we show that in any
interval over which the constraint in the dual problem binds, the Lagrange multipliers solve the following differential
equation

�̃ ′(τ )= 1

1−q

(
(r+λ)�̃(τ )−h(τ )

)
.

In the analysis of the principal’s problem, we need to distinguish between several cases. First, we consider the most
interesting case in which the incentive compatibility constraint is binding and the optimal policy is random. Second, we
consider the case in which V (τ ) attains an interior maximum at τ̂ ∗ <τ bind. so the incentive compatibility constraint is
slack. Finally, we consider the corner case in which the incentive compatibility constraint is binding and the optimal
policy is deterministic with τ̂ ∗ =τ bind.
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Binding IC constraint with random inspections. Suppose that under the optimal policy, incentive
compatibility constraint binds at time 0 and at all times τ >τ̂ ∗; and it is slack in between. Since F(τ ) is constant on
[0,τ̂ ∗), the inequality constraint in the dual problem (4.5) does not need to bind, and we only need to verify that the first
constraint in the dual problem is not violated on [0,τ̂ ∗). On the other hand, because F(τ ) is strictly increasing on [τ̂ ∗,∞),
the first inequality constraint in (4.5) must bind on [τ̂ ∗,∞). In particular, if we set �̃(τ ) to be constant on [0,τ̂ ∗), then
we find that at the date of the atom

e(r+λ)τ̂∗
V (τ̂ ∗)−e(r+λ)τ̂∗

η+�̃(τ̂ ∗)−�̃(0)−q
∫ τ̂∗

0
e(r+λ)(τ̂−s)d�̃(s)=

e(r+λ)τ̂∗
V (τ̂ )−e(r+λ)τ̂∗

η+(1−q)(�̃(τ̂ ∗)−�̃(0))=0,

and from this equation we can conclude that

η=e−(r+λ)τ̂∗
(1−q)

(
�̃(τ̂ )−�̃(0)

)+V (τ̂ ∗). (B.1)

The verification argument requires that the value of the dual, which is given by the multiplier η, is equal to the value of
the primal given the policy F(τ ) in Theorem 1. Thus, the multipliers η must be equal to

η=
(

e(r+λ)τ̂∗ −1

1−q

)
qV (τ̂ ∗)+

(
1−e(r+λ)τ̂∗

q

1−q

)∫ ∞

τ̂∗
m∗e−m∗(τ−τ̂∗)V (τ )dτ. (B.2)

If we substitute the expression for η in equation (B.1), which comes from feasibility conditions for the dual, into the value
of the dual problem in equation (B.2), we get an expression for the change of the multiplier �̃(τ ) at time τ̂ ∗ given by
�̃(τ̂ ∗)−�̃(0):

�̃(τ̂ ∗)−�̃(0)= e(r+λ)τ̂∗

1−q

(
1−e(r+λ)τ̂∗

q
)

e−(r+λ)τ̂∗ h(τ̂ ∗)

r+λ
, (B.3)

where we have substituted the first order condition for τ̂ ∗ in equation (4.7). Notice that the cumulative multiplier
�̃(τ ) jumps at the time τ̂ ∗ when the incentive compatibility starts to bind. For τ ≥ τ̂ ∗, we construct the multipliers
using the solution to the ordinary differential equation (ODE) in equation (B.13) with the transversality condition
limτ→∞e−ρτ �̃(τ )=0. From here we get that the Lagrange multiplier �̃(τ ) is characterized by the solution to the
ordinary differential equation on (τ̂ ∗,∞) together with the jump in the multiplier at time τ̂ ∗ in equation (B.3), so the
Lagrange multiplier is given by

�̃(τ )=
⎧⎨
⎩
(

e(r+λ)τ̂∗ −1
)

q
1−q

h(τ̂∗)
r+λ

if τ ∈[0,τ̂ ∗)
1

1−q

∫∞
τ

e−ρ(s−τ )h(s)ds if τ ∈[τ̂ ∗,∞).
(B.4)

The only remaining step in the construction of the multipliers is to verify that �̃(τ ) in equation (B.4) is nondecreasing.
It can be easily verified that �̃ ′(τ̂ ∗)=0, which means that � ′(τ ) satisfies the following ODE

�̃ ′′(τ )= 1

1−q

(
(r+λ)�̃ ′(τ )−h′(τ )

)
, �̃ ′(τ̂ ∗)=0, (B.5)

where h′(τ̂ ∗)<0.32 We show in the Appendix (Lemma B.3) that if the first order condition in equation (4.7) is satisfied,
then the solution to the ordinary differential equation (B.5) is non-negative. Moreover, the jump in �̃(τ ) at time τ̂ ∗ given
in equation (B.3) is positive. Thus, we conclude the multiplier �̃(τ ) in equation (B.4) is non-decreasing.

In sum, the multipliers (η,�̃) described by equations (B.2) and (B.4), are dual feasible with a value of the dual
problem that equals the expected payoff of the policy in Theorem 1. Thus, F∗

θ (τ ) is optimal by weak duality.
The verification argument in the case in which τ̂ ∗ =0 is very similar. If

h(0)≤
∫ ∞

0
ρe−ρsh(s)ds, (B.6)

then, by Lemma B.4, we have that that for all τ ≥0

h(τ )<
∫ ∞

τ

ρe−ρ(s−τ )h(s)ds, (B.7)

32. By �̃ ′(τ̂ ∗) we mean the right derivative of �̃(τ ) at τ̂ ∗ as �̃(τ̂ ∗) is discontinuous at this point.
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and we can construct the multipliers in the same way as we did before on the interval [τ̂ ∗,∞). In particular, the multiplier
�̃(τ ) is given by33

�̃(τ )= 1

1−q

∫ ∞

τ

e−ρ(s−τ )h(s)ds (B.8)

η=
∫ ∞

0
m∗e−m∗τ V (τ )dτ,

so the value of the dual corresponds to the expected payoff of the monitoring policy F∗
θ (τ )=1−e−m∗τ .

Slack IC constraint. We consider the case in which V (τ ) has a maximum on τ̂ ∈[0,τ bind). In this case,
monitoring is deterministic and τ̂ <τ bind. The IC constraint is slack so we can set �(0)=0 and η=V (τ̂ ) we get that the
value of the objective function in the dual problem equals V (τ̂ ). Because V (τ̂ )>V (τ ) for all τ <τ̂ , all the constraint in
the dual problem are satisfied for τ <τ̂ . For τ >τ̂ we need to consider two cases: (1) τ̂ it is strictly positive and (2) τ̂ =0.

Case 1. If τ̂ is strictly positive, then V ′(τ̂ )=0 and V ′′(τ̂ )<0, which means that h(τ̂ )=0 and h′(τ̂ )<0. Because
h(τ ) is quasi-convex, there is at most one local maximum. If τ ′′ >0 is another local maximum, then there must be a local
minimum τ̂ <τ ′′ <τ ′. Hence, at τ ′ we have h(τ ′′)=0 and h′(τ ′′)>0. However, Lemma B.2 implies that h′(τ ′)>0, which
means that τ ′ cannot be another local maximum.

By the previous argument, there cannot be an interior minimum before τ̂ . This means that V (τ ) must be increasing
for all τ <τ̂ . Given that there is at most one interior local maximum, the global maximum of V (τ ) must belong to {τ̂ ,∞}.
1. If limτ→∞V (τ )≤V (τ̂ ), we can set �̃(τ )=0 and all the constrains are satisfied as V (τ )−V (τ̂ )≤0 for all τ ≥0.

2. If limτ→∞V (τ )>V (τ̂ ). Then the global maximum is infinity. In this case, we set �̃(τ )=0 on [0,τ̂ ] and use equation
(B.13) to construct the multipliers for τ ≥ τ̂ , in particular

�̃(τ )=eρ(τ−τ̂ )�̃(τ̂ )− 1

1−q

∫ τ

τ̂

eρ(τ−s)h(s)ds

=− 1

1−q

∫ τ

τ̂

eρ(τ−s)h(s)ds.

Because τ̂ >0 we have that h(τ̂ )=0 so �̃ ′(τ̂ )=0 and �̃ ′′(τ̂ )=−h′(τ̂ )/(1−q)>0, so �̃ ′(τ )>0 on (τ̂ ,τ̂ +ε). If τ̂ =0,

then �̃ ′(τ̂ )=�̃ ′(0)=−h(0)/(1−q)>0.

We need to verify that �̃(τ ) is non-decreasing. Looking for a contradiction, suppose that �̃(τ ) is decreasing at some
point and let τ † = inf{τ >τ̂ :�̃ ′(τ )<0}. Because �̃(τ̂ )=0 and �̃ ′(τ ) is non-decreasing on (τ̂ ,τ †) and strictly increasing
in some subset, we have that �̃(τ †)>0. The derivative of �̃(τ ) is

�̃ ′(τ )=− 1

1−q

(∫ τ

τ̂

ρeρ(τ−s)h(s)ds+h(τ )

)
,

which means that at time τ † ∫ τ†

τ̂

ρeρ(τ†−s)h(s)ds+h(τ †)=0

If τ̂ >0, then h(τ̂ )=0, so, because h(τ ) is quasi-convex, we have

0=
∫ τ†

τ̂

ρeρ(τ†−s)h(s)ds+h(τ †)≥h(τ †)+max{h(τ̂ ),h(τ †)}
∫ τ†

τ̂

ρeρ(τ†−s)ds

=h(τ †)+max{h(τ̂ ),h(τ †)}=h(τ †)+max{0,h(τ †)}.
However, �̃ ′(τ †)=0⇒h(τ †)= (r+λ)�(τ †)>0, which yields a contradiction.

33. Because in this case we are assuming that V (τ ) has no maximum on [0,τ bind), it must be that V ′(0)=h(0)≥0.
Hence, inequality (B.6) implies

1

1−q

∫ ∞

0
e−ρsh(s)ds≥0.

Differentiating equation (B.8) and using inequality (B.7) we get

�̃ ′(τ )=ρ�̃(τ )− h(τ )

1−q
= 1

1−q

∫ ∞

τ

ρe−ρ(s−τ )h(s)ds− h(τ )

1−q
>0,

which means that �̃(τ ) is non-decreasing, and because �̃(0)≥0 we get that �̃(τ ) is non-negative.
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Case 2. If τ̂ =0, and h(τ )≤0 for all τ ≥0 then τ̂ =0 is a global maximum and there is nothing to prove. So,
suppose that h(τ )>0 for some τ . Let

�(0)=max

{
0,

1

1−q

∫ ∞

0
e−ρsh(s)ds

}
,

and construct the multipliers using (B.13) with initial the condition �(0) defined above. By the comparison principle for
ODEs the solution to (B.13) is

�̃(τ )=max

{
− 1

1−q

∫ τ

τ ′
eρ(τ−s)h(s)ds,

1

1−q

∫ ∞

τ

e−ρ(s−τ )h(s)ds

}
.

Because �̃ ′(τ ) is increasing in �̃(τ ), we also have by the comparison principle applied to (B.5) that

�̃ ′(τ )=max

{
− ρ

1−q
eρτ h(0)− 1

1−q

(∫ τ

0
ρeρ(τ−s)h′(s)ds+h(τ )

)
,

1

1−q

∫ ∞

τ

e−ρ(s−τ )h′(s)ds

}
.

Let τ ′ = inf{τ ≥0 :h(τ )>0}. At time τ ′, h(τ ) is crossing zero from below, which means that h′(τ ′)>0, so Lemma B.2
implies that h′(τ )>0 and h(τ )>0 for all τ >τ ′, which means that

�̃ ′(τ )≥ 1

1−q

∫ ∞

τ

e−ρ(s−τ )h′(s)ds≥0.

On the other hand, for all τ <τ ′ we have that h(τ )<0 and

�̃(τ )≥− 1

1−q

∫ τ

τ ′
eρ(τ−s)h(s)ds≥0,

so

�̃ ′(τ )= 1

1−q

(
(r+λ)�̃(τ )−h(τ )

)
>0.

We conclude that �̃(τ ) is non-negative and non-decreasing.

Binding IC constraint with deterministic inspection. From now on, we can focus on the more
interesting case in which V (τ ) does not have a maximum on [0,τ bind) so the IC constraint is binding. We need to
consider two cases depending if h(τ bind)−∫∞

τbind ρe−ρ(s−τ )h(s)ds is negative or not. We already presented in the main text
the case in which

h(τ bind)<
∫ ∞

τbind
ρe−ρ(s−τbind)h(s)ds, (B.9)

so it is only left to consider the case in which the previous condition is not satisfied so there is an atom at τ bind. Thus,
consider the case in which

h(τ bind)≥
∫ ∞

τbind
ρe−ρ(s−τbind)h(s)ds (B.10)

Suppose that the constraint �(τ )≤0 in the dual problem is binding at τ bind, then we have that

e(r+λ)τbind
V (τ bind)−e(r+λ)τbind

η=0,

so we immediately get that
η=V (τ bind). (B.11)

The constraint �(τ )≤0 has to be satisfy for all τ <τ bind. Setting �(τ ) to be constant on [0,τ bind], the previous condition
reduces to �(τ )=e(r+λ)τ

(
V (τ )−V (τ bind)

)≤0, which holds because we are considering the case in which V (τ ) does not

have an interior maximum on [0,τ bind). The next step is to construct the multipliers for τ >τ bind. We set �̃(τ )= h(τbind)
r+λ

for all τ ∈[0,τ bind] and construct the multipliers for τ >τ bind using the ODE in equation (B.13) with the appropriate
initial condition:

�̃ ′(τ )= 1

1−q

(
(r+λ)�̃(τ )−h(τ )

)
, �̃(τ bind)= h(τ bind)

r+λ
. (B.12)

Hence, we have that

�̃(τ )= 1

r+λ
eρ(τ−τbind)h(τ bind)− 1

1−q

∫ τ

τbind
eρ(τ−s)h(s)ds

= 1

r+λ
eρ(τ−τbind)

[
h(τ bind)− r+λ

1−q
e−ρ(τ−τbind)

∫ τ

τbind
eρ(τ−s)h(s)ds

]

= 1

r+λ
eρ(τ−τbind)

[
h(τ bind)−

∫ τ

τbind
ρe−ρ(s−τbind)h(s)ds

]
,
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where ρ ≡ (r+λ)/(1−q). The second derivative is given by

�̃ ′′(τ )= 1

1−q

(
(r+λ)�̃ ′(τ )−h′(τ )

)

= 1

1−q

(
(r+λ)�̃ ′(τ )−h′(τ )

)
.

If inequality (B.10) is satisfied, then limτ→∞ �̃(τ )≥0. Substituting �̃(τ bind) in (B.12) we get that �̃ ′(τ bind)=0 so the
second derivative satisfies

�̃ ′′(τ )= 1

1−q

(
(r+λ)�̃ ′(τ )−h′(τ )

)
, �̃ ′(τ bind)=0,

where h′(τ bind)<0, so it follows from Lemma B.3 that �̃ ′(τ )≥0.

B.1. Proof of Theorem 1: technical lemmas

In this section, we prove a series of lemmas required for the construction of the Lagrange multipliers in the analysis of
the dual problem.

Lemma B.1 Let h(τ )≡e(r+λ)τ V ′(τ ). Suppose that there is τ̂ ≥0 such that

h(τ )−e(r+λ)τ η+
∫ τ

0

(
1−qe(r+λ)(τ−s)

)
d�̃(s)=0, ∀τ ≥ τ̂ ,

then on (τ̂ ,∞) the Lagrange multiplier �̃(τ ) must satisfy the following differential equation

�̃ ′(τ )= 1

1−q

(
(r+λ)�̃(τ )−h(τ )

)
. (B.13)

Proof. Let us define

�(τ )≡e(r+λ)τ V (τ )−e(r+λ)τ η+
∫ τ

0

(
e(r+λ)s −qe(r+λ)τ

)
d�(s),

which corresponds to the left-hand side of the constraint in the dual problem multiplied by e(r+λ)τ . By definition, the
multipliers (η,�) are dual feasible if and only if �(τ )≤0. If we write �(τ ) in terms of the multiplier �̃(τ ), we get

�(τ )=e(r+λ)τ V (τ )−e(r+λ)τ η+
∫ τ

0

(
1−qe(r+λ)(τ−s)

)
d�̃(s).

At any point in which �̃(τ ) is differentiable, we have

�′(τ )=e(r+λ)τ V ′(τ )+
(

1−q
)
�̃ ′(τ )+(r+λ)

(
e(r+λ)τ (V (τ )−η)−q

∫ τ

0
e(r+λ)(τ−s)d�̃(s)

)
,

which can be written as
�′(τ )=e(r+λ)τ V ′(τ )+

(
1−q

)
�̃ ′(τ )+(r+λ)

(
�(τ )−�̃(τ )

)
. (B.14)

From here, we get that if there is τ̂ such that �(τ )=0 for all τ >τ̂ , then it must be the case that �̃(τ ) satisfies the following
differential equation

�̃ ′(τ )= 1

1−q

(
(r+λ)�̃(τ )−h(τ )

)
, (B.15)

where h(τ ) is defined as
h(τ )≡e(r+λ)τ V ′(τ ), (B.16)

‖

Lemma B.2 h(τ ) is quasi-convex, and strictly convex when increasing.

Proof. Recall
h(τ )≡e(r+λ)τ V ′(τ )=eλτ

(
u(xθ

τ )−rM(U,xθ
τ )+ ẋθ

τ (UH −UL)
)
.
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We have:

h′ (τ )=λh(τ )+eλτ
(
ẋθ
τ

[
u′(xθ

τ )−(r+λ)(UH −UL)
])

h′′ (τ )=λh′ (τ )+λeλτ
(
ẋθ
τ

[
u′(xθ

τ )−(r+λ)(UH −UL)
])

+eλτ
(−λẋθ

τ

[
u′(xθ

τ )−(r+λ)(UH −UL)
])+eλτ

(
ẋθ
τ

)2
u′′(xθ

τ )

=λh′ (τ )+eλτ
(
ẋθ
τ

)2
u′′(xθ

τ ).

So when h′ (τ )=0 then h′′ (τ )>0. So whenever the derivative of h becomes zero, h is strictly convex locally. So h is
quasi-convex: h′ (τ ) changes sign only at most once from negative to positive. ‖

Lemma B.3 Suppose that h′(τ̂ )≤0, then the solution to the ODE

f ′(τ )= 1

1−q

(
(r+λ)f (τ )−h′(τ )

)
with initial condition f (τ̂ )=0 is non-negative on (τ̂ ,∞) if and only if

h
(
τ̂
)≥∫ ∞

τ̂

ρe−ρ(s−τ̂ )h(s)ds.

Proof. The solution to the ODE is

f (τ )=− 1

1−q

∫ τ

τ̂

e
r+λ
1−q (τ−s)

h′(s)ds.

We want to show that for τ >τ̂ ∫ τ

τ̂

e−ρsh′(s)ds≤0.

for which, given the quasi-convexity of h, it is necessary and sufficient to show that

Z ≡
∫ ∞

τ̂

e−ρsh′(s)ds≤0.

Integrating by parts we get∫ ∞

τ̂

e−ρsh′(s)ds= lim
τ→∞h(τ )e−ρτ −e−ρτ̂ h

(
τ̂
)+∫ ∞

τ̂

ρe−ρsh(s)ds.

Since
h(τ )e−ρτ =e(r+λ−ρ)τ V ′(τ )=e(λ−ρ)τ

(
u(xθ

τ )−rM(U,xθ
τ )+ ẋθ

τ (UH −UL)
)

we have that
lim

τ→∞h(τ )e−ρτ =0

Therefore,

Z =−e−ρτ̂ h
(
τ̂
)+∫ ∞

τ̂

ρe−ρsh(s)ds

=e−ρτ̂

(∫ ∞

τ̂

ρe−ρ(s−τ̂ )h(s)ds−h
(
τ̂
))

Therefore ,f (t) is weakly positive for all t ≥ τ̂ if and only if∫ ∞

τ̂

ρe−ρ(s−τ̂ )h(s)
∫

ds≤h
(
τ̂
)
.

‖

Lemma B.4 The first-order condition

V ′(τ̂ )= (r+λ)

1−q

(∫ ∞

τ̂

me−m(τ−τ̂ )V (τ )dτ −V (τ̂ )

)
is equivalent to the condition

h(τ̂ )=
∫ ∞

τ̂

ρe−ρ(τ−τ̂ )h(τ )dτ.

Moreover,
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1. If h′(τ )<0 on (0,∞) then

h(τ )>
∫ ∞

τ

ρe−ρ(s−τ )h(s)ds

for all τ ≥0.

2. If

h(τ̃ )≤
∫ ∞

τ̃

ρe−ρ(s−τ )h(s)ds

then

h(τ )<
∫ ∞

τ

ρe−ρ(s−τ )h(s)ds

for all τ >τ̃ .

3. Suppose that h′(0)<0 and

h(0)>
∫ ∞

0
ρe−ρsh(s)ds,

and let let τ̃ = inf{τ :h′(τ̃ )≥0}. Then, there is a unique τ̂ < τ̃ satisfying the first-order condition such that

h(τ )≥
∫ ∞

τ

ρe−ρ(s−τ )h(s)ds, ∀τ ∈[0,τ̂ )

h(τ )≤
∫ ∞

τ

ρe−ρ(s−τ )h(s)ds, ∀τ ∈ (τ̂ ,τ̃ ].

Proof. Letting

ρ = r+λ

1−q
=r+λ+m

we can write the first-order condition as

e−ρτ̂ h(τ̂ )= (r+λ)

1−q

(∫ ∞

τ̂

me−mτ V (τ )dτ −e−mτ̂ V (τ̂ )

)
.

Using integration by parts ∫ ∞

τ̂

me−mτ V (τ )dτ =e−mτ̂ V (τ )+
∫ ∞

τ̂

e−mτ V ′(τ )dτ

which yield

e−ρτ̂ h(τ̂ )= (r+λ)

1−q

∫ ∞

τ̂

e−mτ V ′(τ )dτ.

Part 1:. If h′(τ )≤0 is negative for all τ , then it is immediate that

h(τ )>
∫ ∞

τ

ρe−ρ(s−τ )h(s).

Part 2:. We consider two cases, h′(τ̃ )≥0 and h′(τ̃ )<0. In the first case, because h(τ ) is quasi-convex we have
that h(τ ) is increasing on (τ̃ ,∞), which immediately implies that

h(τ )<
∫ ∞

τ

ρe−ρ(s−τ )h(s).

In the second case, let us define

H(τ )≡h(τ )−
∫ ∞

τ

ρe−ρ(s−τ )h(s)ds,

which satisfies the following ODE.
H ′(τ )=ρH(τ )+h′(τ ). (B.17)

Suppose by contradiction, that there is some τ ′ >τ̃ such that H(τ ′)>0, and let τ † = inf{τ ∈ (τ̃ ,τ ′) :H(τ )>0}. H(τ †)=0
because H(τ ) is continuous, and h′(τ †)<0 as h′(τ )≥0 implies H(τ )>0. But then, equation (B.17) implies that H ′(τ †)<0,
which contradicts H(τ † +ε)>0 for a sufficiently small ε. Hence, it must be the case that H(τ )<0 for all τ >τ̃ .

Part 3:. Suppose that H(0)>0 and let τ̃ = inf{τ :h′(τ )≥0}, which means that H(τ̃ )>0. By continuity there is
τ̂ ∈ (0,τ̃ ) such that H(τ̂ )=0. Moreover, because h′(τ )<0 for all τ <τ̃ , equation (B.17) implies that H(τ )>0 on [0,τ̂ )
and H(τ )<0 on (τ̂ ,τ̃ ]. ‖
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C. PROOF BROWNIAN LINEAR-QUADRATIC MODEL

Proof of Proposition 6

Proof. We show that the objective function in the model with linear-quadratic preferences and Brownian shocks can be
reduced to the objective function in the model with binary quality and linear quadratic u(x). The objective function in the
case linear-quadratic case is u(xt,�t)=xt −γ�t where

�t = σ 2

2λ

(
1−e−2λt

)
.

On the other hand, if we set ā=1/2 in the binary case we get that

x2
t =xt − 1

4
(1−e−2λt).

It follows that we can normalize the cost of monitoring and reduce the optimization problem in the linear-quadratic
case with Brownian quality shocks to the same optimization problem as the one in the binary case with ā=1/2 and
linear-quadratic utility function. ‖

D. ANALYSIS USING OPTIMAL CONTROL

In this section of the Appendix, we sketch an alternative proof of Theorem 1 that uses optimal control techniques instead
of the weak duality approach. The main advantage of this approach is that it does not require a guess of the shape of
the optimal monitoring policy in advance. To simplify the number of cases to consider, we assume here that u(x) is
strictly convex and that the solution of the relaxed problem (ignoring incentive compatibility constraints) is not incentive
compatible. Proofs of all lemmas are relegated to the Supplementary Appendix.

This proof is based on the analysis of necessary conditions that any optimal policy must satisfy. Therefore, the first
step in the analysis is to show that an optimal policy actually exists. The following lemma establishes that a fixed point
in (4.2) exists, is unique, and that the supremum is attained.

Lemma D.1 (Existence) Suppose the max in (4.2) is replaced by a sup. Then there exists a unique fixed point G θ (U)=U,
θ ∈{L,H}. Furthermore, for any continuation payoff U, there exists a monitoring policy F∗ solving the maximization
problem in (4.2) (so the sup is attained).

The next step is to reformulate the problem as an optimal control problem with state constraints. For this, we define
the state variable

qτ ≡E
[
e−(r+λ)(τn+1−τ )

∣∣τn+1 ≥τ,θ0

]
,

where the expectation is taken over the next monitoring time, τn+1, conditional on reaching time τ . That is, qτ , represents
the expected discounted time until the next review, where the effective discount rate incorporates the depreciation rate λ.
The incentive compatibility constraint in Proposition 1 becomes qτ ≥q.

We can derive the law of motion of (qτ )τ≥0 to use it as a state variable in the principal’s optimization problem. It
is convenient to express the optimization problem in terms of the hazard measure M :R+ ∪{∞}→R+ ∪{∞} defined by
1−F(τ )=e−Mτ . Mτ is a non-decreasing function and by the Lebesgue decomposition theorem, it can be decomposed
into its continuous and its discrete part34

Mτ =Mc
τ +Md

τ .

Thus, we can write

qτ =
∫ ∞

τ

e−(r+λ)(s−τ ) dF(s)

1−F(τ−)

=
∫ ∞

τ

e−(r+λ)(s−τ )−(Ms−−Mτ )dMc(s)+
∑
s>τ

e−(r+λ)(s−τ )−(Ms−−Mτ )(1−e−�Md
s ).

34. With some abuse of notation, we are allowing Mτ =∞ to incorporate the event that there is monitoring with
probability 1 at time τ . Technically, this means that M is not a σ -finite measure so the Lebesgue decomposition does not
follow directly. The definition 1−F(τ )=e−Mτ is convenient in terms of notation, and the decomposition of Mτ is valid
for τ <τ̄ = inf{τ >0 :F(τ )=1}. Thus, the definition 1−F(τ )=e−Mτ should be interpreted as a shorthand for

1−F(τ )=
{

e−Mc
τ
∏

0<s<τ e−�Md
s if τ <τ̄

0 if τ ≥ τ̄
.
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With this notation, at any point of continuity of the monitoring policy we have that

dqτ = (r+λ)qτ dτ −(1−qτ )dMc
τ , (D.1)

while at any point of discontinuity we have that

qτ− =e−�Md
τ qτ +(1−e−�Md

τ ). (D.2)

The next lemma summarizes the recursive formulation for the incentive compatibility constraints.

Lemma D.2 (Incentive compatibility) For any monitoring policy Mτ , let τ̄ = inf{τ ∈R+ ∪{∞}:F(τ )=1}. For any τ ∈
[0,τ̄ ], let qτ be the solution to equations (D.1) and (D.2) with terminal condition qτ̄ =1. Full effort is incentive compatible
if and only if qτ ≥q, for all τ ∈[0,τ̄ ].

To formulate the principal problem as an optimal control with state constraints, we also use the principal’s continuation
value, Uτ (θ,U), as an additional state variable. To simplify notation, we simply write Uτ and omit the dependence on
(θ,U). The continuation value for the principal given a monitoring policy Mτ and post-monitoring continuation payoffs
U is

Uτ =
∫ ∞

τ

e−r(s−τ )−(Ms−−Mτ )u(xθ
s )ds+

∫ ∞

τ

e−r(s−τ )−(Ms−−Mτ )M(U,xθ
s )dMc

s

+
∑
s>τ

e−r(s−τ )−(Ms−−Mτ )(1−e−�Md
s )M(U,xθ

s ).

At any point of continuity (of Mτ ), the continuation value satisfies the differential equation

dUτ =(rUτ −u(xθ
τ )
)
dτ +(Uτ −M(U,xθ

τ )
)
dMc

τ , (D.3)

while at any point of discontinuity, the jump in the continuation value is given by

Uτ− = (1−e−�Md
τ )M(U,xθ

τ )+e−�Md
τ Uτ . (D.4)

Combining these definitions with Lemma D.2 allows us to represent the optimal monitoring policy recursively, with
qτ and Uτ as state variables. In particular, the optimal control problem associated with (4.2) is:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G θ (U)=maxMτ U0

subject to

dUτ =(rUτ −u(xθ
τ )
)
dτ +(Uτ −M(U,xθ

τ )
)
dMc

τ , Uτ̄ =M(U,xθ
τ̄ )

Uτ− = (1−e−�Md
τ )M(U,xθ

τ )+e−�Md
τ Uτ

dqτ = (r+λ)qτ dt−(1−qτ )dMc
τ , qτ̄ =1

qτ− =e−�Md
τ qτ +(1−e−�Md

τ )

qτ ∈[q,1]

. (D.5)

Solving this problem is challenging due to the presence of state constraints. The formal proof relies on necessary
conditions from Pontryagin’s maximum principle for a problem with state constraints (see Hartl et al. (1995) for a survey
and Seierstad and Sydsaeter (1986) for a textbook treatment). Using these necessary conditions, we show that the optimal
policy belongs to the family of distributions characterized in Theorem 1. As we explained in the text, the fixed-point
problem is then greatly simplified because the maximization problem is reduced to a one-dimensional problem.

The analysis of the principal problem follows five steps. In the first two steps, we derive necessary conditions that
the optimal monitoring policy must satisfy. In Step 3, we show that the principal never monitors using a positive hazard
rate if the incentive compatibility constraint is slack. In Step 4, we show that the monitoring distribution has at most one
atom. In Step 5, we show that Steps 3 and 4 imply that the optimal policy belongs to the family characterized in Theorem
1. Using dynamic programming to solve the principal problem is difficult because it requires solving a non-linear partial
differential equation. It is easier to analyse the problem using Pontryagin’s maximum principle as in this case we only
need to analyse incentives along the optimal path.

We start deriving some necessary conditions for optimality using Pontryagin’s maximum principle for problems
with state constraints. In order to guarantee existence, we rely on the general formulation in Arutyunov et al. (2005)
for free-time impulse control problem with state constraints that allows for general measures. That being said, this
general formulation leads to the same optimality conditions as the ones in the standard maximum principle presented in
Seierstad and Sydsaeter (1986). While the results in Arutyunov et al. (2005) covers the case with a finite time horizon,
Pereira and Silva (2011) extends the results to consider the infinite horizon case. In addition, because we are considering
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distributions over the extended real numbers, which are homeomorphic to the unit interval, it is possible to reparametrize
the independent variable and work using distributions on discounted times rather than calendar time. In general, the main
problem with an infinite horizon is to find the right transversality conditions to pin down a unique candidate for the
solution. This is not a problem in our analysis because we do not use the maximum principle to pin down the unique
solution. Instead, we use the maximum principle to identify some properties that any candidate policy must satisfy. This
allows restricting the candidate policies to a simple family of distributions. The final solution is found maximizing over
this family, which is done in equation (4.11). At this point, we only need to solve a one-dimensional optimization problem
to find the optimal policy.

As it is usual in optimal control problem, we have to write the Hamiltonian for the problem. The statement of the
maximum principle in Theorem 4.1 in Arutyunov et al. (2005) is quite involved, so next, we present the subset of necessary
conditions in Theorem 4.1 that we will use for our analysis. Let us define the Hamiltonian H̃(τ ) and the switching function
S̃(τ )

H̃(τ )= ζ̃τ

(
rUτ −u(xθ

τ )
)+ ν̃τ (r+λ)qτ (D.6a)

S̃(τ )= ζ̃τ

(
Uτ −M(U,xθ

τ )
)− ν̃τ (1−qτ ), (D.6b)

where (ζ̃τ ,ν̃τ ) are the adjoint variables.35 The Lagrange multiplier for the incentive compatibility constraint, �τ , is a
positive non-decreasing function satisfying

�̃τ =
∫ τ

0
1{qu=q}d�̃u.

It follows from the system of equations (4.1) in Arutyunov et al. (2005) that at an optimal solution the adjoint variables
(ζ̃τ , ν̃τ ) and Hamiltonian satisfy

ζ̃τ = ζ̃0 −
∫ τ

0
rζ̃sds−

∫ τ

0
ζ̃sdMc

s −
∑

k

(1−e−�Md
τk )ζ̃τk− (D.7a)

ν̃τ = ν̃0 −
∫ τ

0
(r+λ)ν̃sds−

∫ τ

0
ν̃sdMc

s −�̃τ −
∑

k

(1−e−�Md
τk )ν̃τk− (D.7b)

H̃(τ )= H̃(0)−
∫ τ

0
ζ̃su′(xθ

s )ẋθ
s ds−

∫ τ

0
ζ̃sẋθ

s (UH −UL)dMc
s (D.7c)

−
∑

k

(1−e−�Md
τk )ζ̃τk−ẋθ

τk
(UH −UL).

Equations (D.7a)–(D.7c) look quite complicated; however, they correspond to the generalized integral representation
of the ordinary differential equations for the co-state variables in traditional optimal control theory. Because the multipliers
and maximized Hamiltonian are not necessarily absolutely continuous, we need to write the system as integral equations
rather than ordinary differential equations.

The adjoint variables ζ̃t and ν̃t also have to satisfy the transversality conditions

ζ̃0 =−1

ν̃0 ≤0

ν̃0(q0 −q)=0.

Finally, the optimization of the Hamiltonian requires that the following optimality and complementary slackness
conditions are satisfied:

S̃(τ )≤0 (D.8a)

Mτ =
∫ τ

0
1{S(u)=0}dMu. (D.8b)

Condition (D.8a) is required for the Hamiltonian to be finite, while Condition (D.8b) states that there is positive probability
of monitoring only if S(τ )=0. It can be noticed that condition (D.8b) also coincide with the optimality conditions from
the Hamiltonian maximization in (Seierstad and Sydsaeter, 1986, Theorem 2, p. 332).

35. S(τ ) corresponds to the function Q(τ ) defined in (Arutyunov et al., 2005, p. 1816), which corresponds to the
so-called switching function in linear optimal control problems.
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The adjoint variables are expressed in terms of their time 0 discounted value. As it is common in the analysis of
discounted optimal control problems, it is convenient to express the variables in terms of their current value counterparts.
Thus, we define ζτ ≡erτ+Mτ ζ̃τ , ντ ≡erτ+Mτ ν̃τ , H(τ )≡erτ+Mτ H̃(τ ), and S(τ )≡erτ+Mτ S̃(τ ). It follows that we can write
the current value versions of H̃ and S̃ as

H(τ )=ζτ

(
rUτ −u(xθ

τ )
)+ντ (r+λ)qτ (D.9a)

S(τ )=ζτ

(
Uτ −M(U,xθ

τ )
)−ντ (1−qτ ). (D.9b)

Similarly, we can write the current value counterpart for the Lagrange multiplier, which is defined as

�τ =�̃0 +
∫ τ

0
ers+Ms d�̃s.

The previous equation can be inverted to get

�̃τ =�0 +
∫ τ

0
e−rs−Ms d�s.

Rewriting equations (D.7a)–(D.7b) we get

e−rτ−Mτ ζτ =ζ0 −
∫ τ

0
re−rs−Ms ζsds−

∫ τ

0
e−rs−Ms ζsdMc

s −
∑

k

(1−e−�Md
τk )e−rτk−Mτk −ζτk− (D.10a)

e−rτ−Mτ ντ =ν0 −
∫ τ

0
(r+λ)e−rs−Ms νsds−

∫ τ

0
e−rs−Ms νsdMc

s −�0 −
∫ τ

0
e−rs−Ms d�s (D.10b)

−
∑

k

(1−e−�Md
τk )e−rτk−Mτk −ντk−.

Equation (D.10a) implies that ζτ must be constant, and together with the transversality condition we get that ζτ =ζ0 =−1.
It can be verified form equation (D.10b) that the adjoint variable ντ must satisfy

ντ =ν0 −
∫ τ

0
λνsds−�τ . (D.11)

Equation (D.11) corresponds to the traditional differential equation for the adjoint variable (Seierstad and Sydsaeter,
1986, Equation (91) in Theorem 2, p. 332). Next, equation (D.7c) implies that at any jump time τk we must have

H̃(τk)−H̃(τk−)=−(1−e−�Md
τk )ζ̃τk−ẋθ

τk
(UH −UL),

which correspond to the optimality condition in (Seierstad and Sydsaeter, 1986, Note 7, p. 197). By definition of the
Hamiltonian H(τ ), we have

H̃(τk)−H̃(τk−)= ζ̃τk

(
rUτk −u(xθ

τk
)
)
+ ν̃τk (r+λ)qτk − ζ̃τk−

(
rUτk− −u(xθ

τk−)
)
− ν̃τk−(r+λ)qτk−.

Combining the previous two equation and using the definition of the current value variables we get that

(1−e−�Md
τk )e−rτk−Mτk − ẋθ

τk
(UH −UL)=−e−rτk−Mτk

(
rUτk −u(xθ

τk
)
)
+e−rτk−Mτk

(
ντk− −��τk

)
(r+λ)qτk

+e−rτk−Mτk −
(

rUτk− −u(xθ
τk−)

)
−e−rτk−Mτk −ντk−(r+λ)qτk−

�⇒

(1−e−�Md
τk )e�Md

τk ẋθ
τk

(UH −UL)=−rUτk +u(xθ
τk

)+(ντk− −�τk )(r+λ)qτk

+e�Md
τk rUτk− −e�Md

τk u(xθ
τk−)−e�Md

τk ντk−(r+λ)qτk−

�⇒

(e�Md
τk −1)ẋθ

τk
(UH −UL)=r(e�Md

τk Uτk− −Uτk )−u(xθ
τk

)
(

e�Md
τk −1

)
−ντk−(r+λ)

(
e�Md

τk qτk− −qτk

)
−��τk (r+λ)qτk . (D.12)

Substituting the expressions for the jump in Uτ and qτ , which are given by

e�Md
τ Uτ− −Uτ = (e�Md

τ −1)M(U,xθ
τ )

e�Md
τ qτ− −qτ =e�Md

τ −1,
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we find that

(e�Md
τk −1)ẋθ

τk
(UH −UL)=r(e�Md

τk −1)M(U,xθ
τk

)−u(xθ
τk

)
(

e�Md
τk −1

)
−ντk−(r+λ)

(
e�Md

τk −1
)
−��τk (r+λ)qτk .

Simplifying terms we get the following necessary condition that must be satisfied at any time τk in which there is an
atom:

rM(U,xθ
τk

)=u(xθ
τk

)+ ẋθ
τk

(UH −UL)+(r+λ)ντk +(r+λ)
qτk

e�Md
τk −1

��τk . (D.13)

We show in the Proof of Lemma D.4 that ��τk =0, which means that ντ is continuous. This means that (D.13) can
be simplified to

rM(U,xθ
τk

)=u(xθ
τk

)+ ẋθ
τk

(UH −UL)+(r+λ)ντk .

This expression coincides with the optimality condition at free time τ̄ in equation (4.4) in Arutyunov et al. (2005), and
this condition also coincides with the condition for free final time problems in (Seierstad and Sydsaeter, 1986, Equation
(152) in Theorem 16, p. 398).

We can summarize the necessary condition that we use in the proof:

S(τ )=−(Uτ −M(U,xθ
τ )
)−ντ (1−qτ )≤0 (D.14)

Mτ =
∫ τ

0
1{S(u)=0}dMu (D.15)

ντ =ν0 −
∫ τ

0
λνsds−�τ (D.16)

�τ =
∫ τ

0
1{qu=q}d�u, d�τ ≥0 (D.17)

rM(U,xθ
τk

)=u(xθ
τk

)+ ẋθ
τk

(UH −UL)+(r+λ)ντk +(r+λ)
qτk

e�Md
τk −1

��τk . (D.18)

The next step is to show that, in any optimal policy, the principal never monitors using a positive hazard rate if
the incentive compatibility constraint is slack. If the incentive compatibility constraint is binding over a period of time,
then qτ is constant and the constant monitoring rate is determined by the condition that qτ =q. On the other hand, if the
incentive compatibility constraint were slack and mτ >0, then the necessary condition (D.8b) would require that S(τ )=0.
In the following lemma, we show that this leads to a contradiction due to the convexity of u(x), which means that the
monitoring rate must be zero in this case.

Lemma D.3 Let M∗
τ be an optimal policy, Mc∗

τ its continuous part, and B={τ ∈[0,τ̄ ∗] :qτ >q} the set of dates at which
the IC constraint is slack. Then,

∫
B dMc∗

τ =0.

Lemma D.3 provides a partial characterization of the continuous part of the monitoring distribution. However, we also
need to take care of the atoms. Relying on the convexity of u(x) once again, we show that equation (D.13) satisfies a
single crossing condition implying that (D.13) can hold at most at one point in the optimal path of qτ , which means that
any optimal policy can have at most one atom. Formally, we prove the following result:

Lemma D.4 Let M∗
τ be an optimal policy, Md∗

τ its discrete part. Then, there is at most one time τ̂ such that �Md∗
τ̂

>0.

The final step is to verify that these results imply that any optimal policy must take the form in Theorem 1. Any
policy consistent with Lemmas D.3 and D.4 must look as the one in Figure D.1a, and the trajectory of qτ must look like
the one in Figure D.1b: that is, either the incentive compatibility is binding and qτ is constant, or qτ increases until it
either (1) reaches one or (2) there is an atom and qτ jumps down to q, and the incentive compatibility constraint is binding
after that. As it is shown in Figure D.1a, the monitoring policy associated with the trajectory of qτ is such the incentive
compatibility constraint is binding before time τ̃ , which requires a monitoring rate equal to m∗ (where m∗ is the same
as in Proposition 4). After τ̃ , there is no monitoring and the incentive compatibility constraint is slack. At time τ̂ , either
there is monitoring with probability 1, so qτ̂ =1 and τ̂ = τ̄ , or there is an interior atom so conditional on not monitoring,
the monitoring distribution is exponential thereafter. By means of optimizing over τ̃ , for an arbitrary fixed τ̂ , we can show
that τ̃ is either zero or infinity, which allow us to conclude that the optimal policy must take the form in Theorem 1 and
completes the proof.
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(a)

(b)

Example of CDF.

Path of qτ conditional on not monitoring.

Figure D.1

Cumulative density function and path of qτ implied by Lemmas D.3 and D.4.
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