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1 Introduction

In many papers considering the sale of many objects in a sequence of auctions
the seller is treated as a passive player. We want to extend the analysis of
repeated auctions to allow the seller to choose the auctions mechanism.

We present a bunch of examples that consider:

e cquilibria in case the bidders are not colluding: i.e. they consider only
unilateral deviations

e equilibria with collusive bidders that can coordinate their actions and
deviations, but cannot write binding contracts among themselves.

2 The model

There are N +1 players: NV bidders and a seller. The stage game is the following;:
in the beginning of each period the seller announces an auction mechanism (set
of rules) for that period, i.e. the set of bids B and functions of submitted bids
P;(b) and T;(b) that determine the probability of player ¢ obtaining the object
and the payment of player ¢. Then the bidders learn their private signals v;
that are distributed independently across players and across time according to
a common distribution function F'(v) over an interval [V, Vy]|. An important
feature of our setup is that in the given period the players know their current
(and past) realizations of v; but do not know their future realizations. The
strategies of the buyers are the set of bids and the "not bid”: B U {nb}. The
payoffs of the bidders are:

U(v;, b) =P;(b)v; — T;(b) (1)

if player 4 submits a proper bid and they are 0 if the player chooses not to bid

{nb}.

The payoff of the seller is:



which is independent of P;(b) as the seller does not value the object per se.

This stage game is played repeatedly over time, infinitely many times. The
players choose their strategies to maximize normalized expected discounted sum
of the payoffs:

(1-9) i o'U (3)
t=0

All players use a common discount factor §. We normalize all payoffs by (1 — 6)
to express them in average per-period terms (what simplifies the comparison of
equilibrium payoffs for different discount factors).

We define the static optimum auction to be a set of rules that maximizes
the expected payoffs of the seller in a one-shot game. As Mayerson (7777)
shown, in that setup the optimal auction can be implemented by a second price
auction with an optimal reservation price. We denote by T%(b) and P#*(b) the
corresponding rules of this auction.

We introduce some notation:

W - is the expected first order statistic of v. This is the expected value
of total surplus that can be generated in an auctions and hence it is an upper
bound on equilibrium payoff of any of the players.

W - is the expected payoft of the seller in a static optimum auction

W;- is the expected payoff of a buyer in a static optimum auction

WY - is the expected payoff of the seller in a SPA with no reserve price.

WY- is the expected payoff of a buyer in a SPA with no reserve price.

We have that W > W$ + NW; where the equality holds only when the
optimal reserve price is zero. Similarly, W! = W9 + N Wl? as the second price
auction is efficient and with no reserve price the good is always transferred.

Below we use the notation W(N) to denote the payoffs with N bidders.

3 Non-collusive bidders

We start by creating examples of equilibria in which a patient seller is able to
extract the whole surplus in case the bidders do not coordinate their strategies.

3.1 Commitment case

First we illustrate that if the seller can commit at time ¢ = 0 to a set of rules,
there exists a PBE such that the seller obtains W; in the first auction and
(almost) W from the remaining periods:

Proposition 1 Suppose that at t = 0 the seller can commit to a set of auction
rules. Then for any € exists a PBE equilibrium such that the seller’s expected
payoff is

(1 =W+ (W —¢) (4)



Proof. Call T =6 (W,? — %) . Consider the following set of auction rules:
In the first auction the object is allocated according to the static optimum
(second price) auction with the payments augmented by T' (players are allowed
to submit bids b > r and b = 0). All future auctions are SPA with no reserve
price and again with payments augmented by T If a player does not participate
in some auction, he is not allowed to submit any future bids. Given these rules
the buyers follow the following strategies: in the first auction bid b=vifv > r
and bid b = 0 otherwise. In all future auctions bid b = v.

These strategies are indeed an a best response: The payments 7' do not
depend on b so they only affect the decision whether to bid in the auction or
to choose action {nb}. Conditional on bidding b = v is clearly optimal: the
standard reasoning for SPA applies. Also, note that in any stage the payoffs
conditional on bidding are at least 6% and conditional on not bidding they are
0, so the players are always strictly better off participating in the auctions. m

The way this selling mechanism works is basically by making the bidders
pay an entry fee T for the right to participate in the next auction. This is not
a surprising result - we know that if the buyers can be charged a participation
fee before they know their values (i.e. the interim participation constraint can
be violated) then the seller can extract the whole surplus.

Given that in the first auction the buyers know their values, the most that
the seller can extract is:

Lemma 2 The payoffs of the seller are bounded by
(1 -6 Ws+ 6wt (5)

Proof. Given the interim participation in the first auction the most that
the seller can extract in that auction is W7. The most he can extract in the all
future auctions is W% m

So the mechanism described in the Proposition above is optimal.

3.2 No commitment

One weakness of the result above is that we have assumed that the seller can
credibly exclude forever any player that fails to submit a bid and pay the entry
fee. In particular, consider a subgame after all players failed to submit any
bids. The seller is then supposed not to hold any auctions. But that strategy is
strictly dominated by switching to the static optimal auction forever. So what
payoff the seller can extract in an equilibrium if he can only use auction rules
that are time-consistent?

The following two examples shed some light on how much revenue the seller
may extract:

Proposition 3 If the optimal auction has no reserve price, then for any e > 0
for 6 large enough so that

(1—=8)WS(N — 1)+ 6(WF(N —1)) > WE(N)



exists a PBE equilibrium such that the seller’s expected payoff is at least:
(1= 8§)W(N) +6(WF(N) —e) (6)

Proof. We construct an equilibrium that obtains this bound. The strategy
of the seller is: along the equilibrium path run a SPA with no reserve price
with the payments augmented by T(N) = 6 (W (N) — &). If at least one of
the players does not submit any bid (in this or any other auction), then one
of the non-participants is chosen randomly to be ’excluded’ in the next period.
An excluded player is not allowed to participate in the current auction. In any
period if one player is currently excluded then the seller runs a second price
auction among the rest of the bidders with no reserve price and the payments
augmented by T(N — 1) =6 (WZ?(N -1)— ﬁ) . If in that auction at least
one of the players fails to submit a bid, then one of them is chosen randomly
to replace the excluded player (if all submit bids, the excluded player remains
excluded in the next period). Finally, if the seller in the history ever failed to
follow his equilibrium strategy then he selects the static optimum auction in
every period. The equilibrium strategy for all bidders is to bid b = v in all
auctions.

First let’s verify that following these strategies results in the claimed payoff.
In any subgame along the equilibrium path the seller obtains

W = WS(N)+NT(N)=W:(N)+N§ (W;(N) - %)
(1= OWIN) + 6(WS(N) + NWi(N) —e)
(1= 8WE(N) +6(WF(N) —¢)

To verify that it is an equilibrium notice that given that all players other
than ¢ plan to submit bids in every auction, it is strictly optimal for the player
1 to do so as well: not bidding gives zero payoff and bidding 0 gives expected
payoff of 6.

Consider the seller. If he deviates from his strategy, the continuation payoffs
are independent from current actions (both for him and for the buyers), so the
best deviation is to the static optimum auction. Along the equilibrium path
after that deviation his current expected payoff and the expected continuation
payoff is lower than from following the equilibrium strategy.! Outside the equi-
librium path if the seller ever deviated following the strategy is an equilibrium
as this is playing the static Nash every period. If the seller always followed the
equilibrium strategy but at least one of the sellers deviated the seller if follows
the equilibrium strategy obtains:

(1—8)WS(N —1)+6(WE(N —1)—¢)

INote that unlike in typical repeated games we do not have hear the stadard tradeoff
between current gan from deviation and the future punishment. Give that in the stage game
the buyers observe the sellers announcement before they submit bids, the punishment is
immediate.




and if he deviates he obtains W#(N). By assumption he does not want to
deviate. m

Notice that there always exists 6. < 1 s.t. for all § > §. the condition is
satisfied: W (N — 1) > W2(N) so even if N = 2 (and hence W#(N — 1) = 0)
it is satisfied for large 6. In general it is quite mild: it requires that the seller
prefers an auction with N — 1 players plus the expected first order statistic from
N — 1 players in all future auctions over just static auction with N players.

What if the optimal static auction has a non-trivial reserve price?

Proposition 4 Suppose that the static optimal auction has a non-trivial reserve
price. Then if:

(1= 8WIN — 1) + sWF(N — 1) > Wi(N)
there exist equilibria with the seller obtaining payoff arbitrarily close to
(1 —8WE(N) + sWH(N)
Proof. The equilibrium is almost the same as before: along the equilibrium

path the seller runs the first auction as a static optimum and all future auctions
as second price auctions with no reserve price. In all those auctions the payments
are augmented by T(N). If any player deviates by not submitting a bid, he
becomes excluded. If the seller deviates the continuation equilibrium is always
playing static optimum. The bidders bid in every auction b = v.

If those strategies are followed, the payoff is stated in the proposition. The
incentives of all players are the same as in the pervious proof (the condition
assures that the seller has incentives to follow the punishment phase. given that
he does not wan to deviate in the punishment phase, he has even less incentives
to deviate along the equilibrium path) m

In case the reserve price is non-trivial the condition in this proposition is
satisfied for high ¢ if:

WHE(N —1) > Wi(N)

It is is satisfied for all N if v is distributed uniformly. From Bulow and Klemperer
(1996) we know that W2(N) is smaller than a second order statistic from N +1
variables. So for this condition to hold it is sufficient that:

VON —1) 2 VOW +1) (7)

where V®)(N) denotes k — order statistic from N draws. Clearly for large
enough N that is satisfied, but for small N for some distributions it can be
reversed.

In both propositions we have constructed the punishment phase to be such
that the buyer once excluded remains excluded forever. We can clearly make



the punishment less severe: for example allow him to return to the auction if he
bids and pays additional ’entry fee’ of T((s—ivl - where k is the number of periods
that passed since he deviated, so that the expected present value of his entry fee
calculated using the time of deviation as the base period remains unchanged.

If this condition is not satisfied, in order to extract large surplus the seller
needs to use less drastic punishments. We show now how a patient seller can
again extract the full surplus:

Proposition 5 For all F(v) all N and all € > 0 there exists 6. s.t. for all
6 > 6. the seller’s payoffs are arbitrarily close to:

(1 —8WE(N) +6WH(N) (8)

Proof. We propose the following equilibrium:

As usual, in the first period the seller runs the optimal static auction with
payments augmented by T(N) = 6§ (Wl? (N) — %) . As long as there is no devi-
ation he announces a second price auction with no reserve price and payments
augmented by T(N) in all future periods.

If any bidder fails to submit a bid, the seller starts a punishment phase:
he does not run any auctions for k periods. After that he returns to running
the second price auctions with no reserve price and augmented payments. If
somebody deviates, he restarts the punishment phase. Finally, if the seller ever
deviates, he switches to the static optimum forever. The buyer strategy is to
bid b = v in all auctions.

To see that for large ¢ it is an equilibrium first consider the buyers. As
above, conditional on bidding they are playing a best response. If they follow
the equilibrium strategy they get expected continuation payoff of at least:

5
*(%) ©)
If a bidder deviates his expected payoff is:

s ((1 — WO(N) +6 (i>>
N
A buyer hence have no incentive to deviate if

5(1— 6%

— (i) —SFWO(N) > 0

N
as gm% 6 % = k we can clearly find k£ and 6. large enough so that for all § > 6.
this condition is satisfied.

To check that the seller is playing a best response then along the equilibrium
path in every subgame his payoff is at least:

(1= §WUN)+ 6 (WH(N) —¢)



which for small € and large ¢ is clearly higher than W#(N) which is his payoff af-
ter deviating. Now consider the punishment phase. If he follows his equilibrium
strategy he gets:

S ((L=WIN) +6 (WF(N) —¢))

if he deviates he gets W2 (V) forever. Again, for small ¢, for any k there exists
6. large enough so that for all 6 > . we have

(L= OWIN) +8 (WF(N) —€)) > WE(N)

so indeed we have an equilibrium. Note that in the process we have constructed
two bounds 6. - one looking at the incentives of the buyers and another looking
at the incentives of the seller. Clearly taking the larger of those two is sufficient
for the proposed strategies to form an equilibrium m

In the proof we have used very harsh punishments (against all the players not
only the deviators). Clearly that can be weakened to allow for as good equilibria
even for smaller §. One natural possibility is to exclude only the deviator from
the k auctions. Then the sufficient condition on § is that

o (1 - OWP(N) +5 (%)) <6 (%)
as before and

(L= WON) +6 (WF(N) — ) +(1-6") (WO (N-1)+sWF (N-1)) > WE(N)

3.3 Detail-free auctions

In all the equilibria above the seller runs auctions that are not detail-free: the
calculation of the entry fee T'(N) requires knowledge of the distribution of values.
Given that we usually think that the seller is less informed than the buyers, that
is clearly problematic.

If we want a detail-free auction design, the seller can still improve upon the
static optimum:

Proposition 6 Suppose that the static optimum auction has no reserve price.
Then for large 6 there exist equilibria in which the seller earns arbitrarily close
to:

(1—=8)WS(N — 1)+ sWE(N —1) (10)

Proof. The equilibrium we construct is a follows: the rules of all auctions
along the equilibrium path are the same, but the first one is with N players
and all the rest are with N — 1 players. The rules are: all buyers submit a two-
element vector of bids. The buyer with the highest first element wins the object
and pays the second highest bid. Additionally, one of players that submitted
the lowest second element of the bid vector is excluded in the next auction and



all others pay his bid. if the seller ever deviates from the equilibrium strategy
he plays static optimum forever. The bidders submit bits b = (v, SWJ(N — 1)).
In all subgames other than the first one the seller obtains a payoff

WE(N —1)+6(N — D)WS(N — 1) (11)
= (1=8WSN-1)+sWEHN-1) (12)

and in the first subgame the expected payoff is even higher as the first auction
has all N players.

To see that for high & this is an equilibrium notice that W¥(N — 1) >
W2 (N —1) so the seller has no incentives to deviate. The bidders clearly choose
optimally the first element of the bid, as it does not influence their continuation
payoffs and in a one-shot game this is a dominant strategy. The second element
is also optimal. In fact it is a strictly dominant strategy: the value of being
included in the next auction is SWJ(N —1). m

The equilibrium described above explores again the idea of charging the play-
ers an entry fee. Given that, however, the seller does not know the distribution
of values, he has to auction off the rights to be included in the auctions and in
order to have the market reveal the price he has to limit the supply (with excess
supply the price is 0). That is why he needs to exclude one player.

We see that this simple mechanism for the seller allows him to extract more
than the static optimum auction even if he does not know the distribution of
values. That example illustrates how creating a group of privileged biders may
increase the seller payoffs as in order to be ’included’ bidders will be willing to
compete away their future payoffs.

4 Collusive bidders

In all the equilibria constructed in the previous section we have treated the
bidders as trying to play independently and have only imposed the restriction
that conditional on the behavior of other players any one bidder does not want
to deviate unilaterally. But what if the bidders coordinate their actions?

In this section we assume that given the strategy of the seller the bidders
pick the best strategy for themselves, but are not able to write any binding
agreements between themselves.

4.1 Commitment case

First, note that if the bidders can indeed sustain perfect collusion (they always
only pay the reserve price and the good goes to the buyer with the highest
v) then in a one-shot game the best the seller can do is just to post a price
- the optimal reserve price with players having v distributed as the first order
statistic from N draws from F(v). Denote expected payoffs corresponding to
this mechanism by W¢ for the seller and Wy for all the buyers.

We start by showing that a seller that can commit to a set of auction rules
and can extract asymptotically the whole surplus:



Proposition 7 If the seller can commit to the auction rules for all periods and
the bidders coordinate to play their best collusive response, then the seller can
extract at least:

swt (13)

Proof. Consider the following set of auction rules: the seller runs for the
players in every period the knockout auction described by McAfee McMillan
(1982) augmented by payments T = § WTF The rules of the knockout auction
are the following: all players submit bids. The highest bid wins the object, but
his bid instead going to the seller is divided equally among the losing bidders.
Given that there is no reserve price the expected total payoff for the bidders
(gross of T) is W - this auction has an efficient equilibrium and the good is
always sold with the seller getting 0 revenue. If any player ever fails to submit
any bid, the seller stops selling the objects forever.

Given this strategy of the seller the buyers cannot deviate in any way, either
individually or as a group to increase their payoffs. Gross of the fees they are
maximizing joint payoff and every player is playing individual best response.
Any deviation to {nb} implies zero payoffs forever, while sticking to the equi-
librium strategies guarantees strictly positive payoff. m

This strategy for the seller is asymptotically optimal: for large 6 he is able
to extract almost the whole surplus.

For low ¢ this is a bad strategy, but for low ¢ the cartel will have a hard
time to provide any incentives for the cartel members to stick to a collusive
agreement. Hence the results from the previous section are more appropriate.

4.2 Non-commitment case

Suppose that the seller cannot commit to a strategy at time 0. Instead, as in the
previous section, every period he can choose a new auction. Then the threat of
no more auctions after the players fail to pay the entry fee is no longer credible.

We consider a case where ¢ is large enough that if the seller treats all the
buyers symmetrically after every history of the game, then they are able to
sustain perfect collusion. For any current auction if the buyers decide to par-
ticipate they can run a knockout auction before the true auction as described
in McAfee McMillan (1982) with transfer payments with a threat of switching
to competitive bidding forever if somebody deviates.

In that setup we first show that the best the seller can do with symmetric
auction rules is just to post a price every period.

Proposition 8 For any € there exists 6. < 1 such that for 6 > 6. there exist
PBE in which the seller obtains the payoff at least

S(WF —¢) (14)

regardless whether the buyers are colluding or not.



Proof. We suggest the following set of auction rules: along the equilibrium

path in every auction the seller runs the knockout auction? with all players with
wr_¢
N

the payments augmented by T = § < ) (so the total payments he receives

is 6 (WF — 5). Along the equilibrium path all the bidders submit bids as they
would in a one-shot knockout auction.

If there is a buyer’s deviation (at least one of the players does not submit
any bids) then the seller does not held any auctions for k periods. If the seller
ever deviates, he switches to a static optimal auction (which depends on the
conduct of the bidders but with payoff W2 < W),

To see that this is an equilibrium note that conditional on all the players
bidding, they play a best response, both as individual buyers and as a cartel.
Second, the continuation payoff of each player along the equilibrium path is

€
— 1
so not deviating yields at least:
€
—(1=8T + 66— 16
(1= 6T +6= (16)
a deviation (not to submit a bid) gives a total payoff of: at most:
6t (1 -sWT +6~)
(1= W + 5=

so for no incentives to deviate for any particular player it is sufficient that:

S =T -8 (1=—WF +5=
6~ (=T -8 ((1 ) +5N) >0 (17)
that is equivalent to:
5(1—5k) € kyiF
T N—T—(S W+ >0 (18)

the limit of that expression as 6 — 1 is
k= T -WF (19)
N

clearly for any ¢ > 0 we can find ¢, and k such that for all § > 6. the incentive
compatibility constraint is satisfied. We can also see that when this constraint
holds for a single-player deviations, then it holds also for deviations of the whole
cartel.

Finally, to see that the seller is playing a best response in all subgames note
that following the strategy he expects in any subgame at least

ST (WE —¢) (20)

2Gee the previous proof for the rules of a knockout.
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while after deviation he gets
1% (21)

for any ¢ small enough so that WE — ¢ > W (which clearly exists) there exists
a &, st. for all § > &, the first expression is strictly higher, so the seller is
also playing a best response. By taking for the critical § the maximum of &,
and &, we satisfy all incentive compatibility constraints and indeed we have an
equilibrium m

Remark 9 1. Asymptotically in this equilibrium the seller is able to extract all
surplus. What is important is that along the equilibrium path he does meed to
know whether the buyers are able to collude or not.

2. There are two major problems with this equilibrium First, as 6 — 1 the as-
sumption that the buyers do not know their future v becomes unrealistic. Instead
we should assume that they know their values for some time interval T and do
not know their values after that. We conjecture that in that case the seller can
extract at least close to e "W if he can run the auctions frequently: he can
charge at time t entry fees for time (t +T). Of course, if he knows whether the
players are colluding or not, he can extract even more, by running an optimal
static auction given the buyers conduct plus charging entry fees for period t+T.
3. The second major problem is that now it is not detail-free. And unlike with
a competitive conduct, the seller cannot induce a collusive cartel to reveal the
entry fee by simply running an auction for the right to participate in the next
auction: the cartel will collude to set very low fees.

4. Related problem is that in many auctions we would think that as the frequency
of auctions increases, the values become correlated over time. That changes the
model a lot, however. But suppose that the current value is correlated with val-
wes till time T and uncorrelated with later values. Then the mechanism from
point 2 should still work.
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