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A seller wishes to sell multiple goods by a deadline, for example, the
end of a season. Potential buyers enter over time and can strategically
time their purchases. Each period, the profit-maximizing mechanism
awards units to the buyers with the highest valuations exceeding a se-
quence of cutoffs. We show that these cutoffs are deterministic, depend-
ing only on the inventory and time remaining; in the continuous-time
limit, the optimal mechanism can be implemented by posting anony-
mous prices. When incoming demand decreases over time, the optimal
cutoffs satisfy a one-period-look-ahead property and prices are defined
by an intuitive differential equation.

I. Introduction

Each autumn, retailers stock up on coats that they seek to sell over the
subsequent season. The unsold units are then put on a sequence of sales
in January, as retailers make room for spring clothing, with any remain-
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ing inventory scrapped (i.e., given to charity, recycled, or sold at discount
retailers). If a customer discovers a coat he likes in December, he must
therefore choose not only whether to buy, but also when to buy. Delaying
means that the customer pays a lower price, but he also has fewer oppor-
tunities to wear the coat and risks its selling out. This implies that high-
value customers buy immediately while low-value customers postpone
their purchase, consistent with surveys that report around 60 percent
of consumers “wait for a sale to buy what they want.”1 The possibility of
delay is important for retailers since price reductions lead to sales from
both new customers and the reservoir of old customers. For example, fig-
ure 1 shows the sales pattern for a typical women’s coat; price decreases
lead to large spikes in demand that quickly fade, indicating that a stock of
buyers wait for the price to fall. Moreover, such consumer delay means
that the retailer must take into account how its sales strategy at the end
of the season affects consumers’ decisions earlier in the season. For ex-
ample, JC Penney’s customers became accustomed to “endless sales pro-
motions,” meaning that revenue dropped by 25 percent when it experi-
mented with a flatter pricing policy (Robinson 2014).
In this paper, we derive the optimal sales strategy for a seller facing

long-lived buyers who have rational expectations (i.e., are “forward-
looking”). The seller can choose any feasible mechanism, allowing her
to run a series of auctions, issue coupons to buyers who arrive early, or
let the price paid by one buyer depend on reports of others who are wait-
ing to buy. Despite all these options, we show that it is optimal for the seller
to choose a sequence of anonymous posted prices and let buyers reveal
their existence only when they purchase. When incoming demand de-
creases over time, the optimal prices can then be characterized via an intu-
itive differential equation.
This paper contributes to the field of revenue management, which

studies how to sell inventory to customers entering a market over time.
Typical revenue management models assume that buyers are short-lived,
exiting themarket if they do not immediately buy (see the book by Talluri
and van Ryzin [2004]), and it is a well-known open problem to character-
ize optimal pricing with forward-looking consumers. This paper finds a
natural setting in which we can use the tools ofmechanism design to trac-

1 “America’s Bargain-Hunting Habits,” Consumer Reports (April 30, 2014). See also the
survey of American Research Group on “2013 Christmas Gift Spending Plans Stall” (No-
vember 15, 2013) or the Acosta Mosaic Group report “Hot Topic Report—a Shift in the
Lift” (November 2012).
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tably characterize the optimal prices. From a normative perspective, our
model can therefore help design sales policies in a wide variety ofmarkets
in which revenue management is increasingly prevalent, such as online
advertising, package holidays, and concert tickets. From a positive per-
spective, the paper provides a fully solved benchmark that complements
the growing interest in estimating models of dynamic pricing (e.g.,
Gowrisankaran and Rysman 2012; Sweeting 2012; Lazarev 2013). The
predictions concerning prices and sales can helpmake inferences in par-
ticular markets (e.g., whether customers are long- or short-lived); the
model can also provide a basis for counterfactuals (e.g., the impact of re-
sale). In addition, the paper sheds light on common business practices.
We show that profits are higher if buyers are long-lived, which explains
why firms such as Nordstrom benefit from having a predictable sales cycle
and suggests that retailers should embrace price alerts (e.g., Camelcamel-
camel) and price predictors (e.g., Kayak.com). We also show that firms
have no incentive to hide their inventory, consistent with retailers’ willing-
ness to inform customers of their remaining stock.
The paper also elucidates the puzzle of why most goods are sold via

posted prices rather than auctions (e.g., Einav et al. 2013). While posted
prices can be optimal in largemarkets (Segal 2003), one would expect auc-
tions to performmuch better when there are a few items to sell and a few
heterogeneous buyers in the market at the same time. Our paper shows
that this need not be the case in a dynamic market: In our model, buyers
accumulate over time; nevertheless, posted prices implement the “optimal
auction.” This result is particularly important for revenue management
since the literature typically assumes that the seller uses posted prices
(e.g., Su 2007; Aviv and Pazgal 2008). Our analysis indicates when this as-
sumption is without loss and when the seller can do better.

FIG. 1.—Prices and sales for a typical women’s coat. Source: Soysal and Krishnamurthi
(2012).
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In themodel, the seller wishes to sellK goods by timeT and commits to
a dynamic mechanism at the start of the game, analogous to a retailer de-
signing an inventory management system. Potential buyers enter the mar-
ket stochastically over time and possess privately known values and arrival
times. Buyers’ values are drawn from a common distribution, but the num-
ber of entering buyers may vary over time. Once he arrives, a buyer can de-
lay his purchase, incurring a costly delay and risking a stock-out in thehope
of lower prices.Wemodel the social loss of delay by assuming proportional
discounting; in an extension, we show that analogous results obtain if in-
stead the seller incurs inventory costs.
We have two sets of results. First, we consider the set of all dynamic sell-

ing mechanisms and use mechanism design to characterize the profit-
maximizing allocations. Second, we show how to implement these alloca-
tions through posted prices. Tackling the problem in two stages simplifies
the analysis: When the seller changes the price at time t, this affects both
earlier and later sales; by using mechanism design, these effects are built
into the marginal revenues and the problem collapses to a single-agent
dynamic programming problem.
In Section IV, we characterize optimal allocations. We first show that

the seller awards a good to the buyer with the highest valuation if his
value exceeds a cutoff xk

t , where k is the inventory. We apply this principle
repeatedly within a period, somultiple units may be allocated at one time
if the highest value exceeds xk

t , the second-highest value exceeds x
k21
t , and

so on. The optimal cutoffs are deterministic, depending on the number of
units and time remaining, but not on the number of buyers, their values,
or when previous units were sold. This property is surprising: the pres-
ence of forward-looking buyers means that the seller must carry around
a large state variable corresponding to the reservoir of past entrants; how-
ever, this state does not affect the seller’s optimal cutoff. Intuitively, the
seller’s decision to delay allocating a good does not affect when lower-
value buyers buy, whichdepends only on their valuations and ranks.Hence
changing these buyers’ values raises the profits from selling and delaying
equally and does not affect the cutoff type. Since cutoffs are deterministic,
the seller does not need to elicit the valuations of lower-value buyers when
deciding whether or not to allocate it to the highest-value buyer.
The optimal cutoffs are decreasing in the inventory size, k. This means

that the seller will bring forward the sales period if a good has unusually
high inventory and postpone the sales period if the inventory is low. In-
tuitively, if the seller delays awarding the kth unit, then she can allocate it
to an entrant rather than the current leader. As k rises, the current leader
is increasingly likely to be awarded the good eventually, decreasing the
option value of delay and causing the cutoff to fall. When the number
of entering buyers is weakly decreasing over time (in the usual stochastic
order), the optimal cutoffs are also decreasing over time and satisfy a one-
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period-look-ahead property whereby the seller is indifferent between serving
the cutoff type today and waiting exactly one more period before selling
that unit. Analogous to the above intuition, as the seller gets closer to the
deadline T, the option value of delaying awarding a unit falls, as does the
cutoff.
In Section V, we consider implementation in the continuous-time limit,

assuming buyers arrive according to a time-varying Poisson process. We
show that the seller can implement the optimal mechanism with posted
prices; that is, the seller chooses a single price at each point in time and
buyers reveal their existence onlywhen they purchase a unit. Prices are lim-
iting in that they (i) do not discriminate on the basis of arrival times as in a
coupon system, (ii) do not allow the price paid by one buyer to depend on
the reports of waitingbuyers, and (iii) donot adjust within a period as in an
auction. In our model, the seller does not benefit from such mechanisms
because the optimal cutoffs (i) are the same for each cohort, (ii) are deter-
ministic and so independent of others’ values, and (iii) are continuous, so
simultaneous sales do not occur when periods are short.
When the arrival rate of buyers is weakly decreasing, prices are deter-

mined by an intuitive differential equation. If the cutoff type waits a little,
then he gains from the price decrease; but he loses some utility from de-
lay and risks the good being bought by either a new entrant or another
waiting buyer. As a result, the optimal prices depend on the number of
units and time remaining and, unlike the optimal cutoffs, the timing of
previous sales.When compared to amodel with short-lived buyers, cutoffs
are relatively constant and then drop rapidly, and sales are back-loaded.
This helps us understand the importance of end-of-season sales for retailers
and the role of discount websites for package holidays and concert tickets
(e.g., Lastminute.com, Goldstar).
In Section VI, we consider a number of extensions. We first show that

the spirit of themain results continues to apply if impatience comes from
inventory costs or if units arrive and expire over time (e.g., for a retailer
for which shelf space is costly and fashion trends change). Second, if there
are different classes of buyers (e.g., rich media vs. static ads in online dis-
play advertising) or if the distribution of entering buyers gets stronger over
time (e.g., for an airline as the flight date approaches), then the cutoffs are
defined in marginal revenue space, and the seller charges different prices
for different types of buyers. Moreover, in the airline example, we propose
a novel implementation of the optimal mechanism whereby a customer is
issued a coupon when he registers his interest in a flight that can be re-
deemed when the customer makes a purchase. Finally, if buyers disappear
probabilistically (e.g., when selling a house), then optimal cutoffs are no
longer deterministic. This helps explain why real estate sellers use indica-
tive auctions in which all buyers bid and the seller makes a counteroffer to
the highest rather than using posted prices.
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Literature.—Gallien (2006) characterizes the optimal sequence of prices
when a seller of multiple units faces buyers who arrive according to a re-
newal process over an infinite time horizon. Assuming that interarrival
times have an increasing failure rate, Gallien proves that buyers will buy
when they enter the market (or not at all), and the solution thus corre-
sponds to that without recall (e.g., Gallego and van Ryzin 1994; Das Varma
and Vettas 2001) with infinite time. In contrast, our finite horizon means
that the optimal mechanism will induce buyers to delay their purchases
on the equilibrium path.
Pai and Vohra (2013) consider a model in which a seller has multiple

units and wishes to sell them over finite time. This model is very rich, al-
lowing buyers to arrive and leave the market over time and the distribu-
tion of entering buyers to vary. Mierendorff (2009) considers a two-period
version of a similar model and provides a complete characterization of the
optimal contract. Su (2007) considers a model with heterogeneous values
and discount rates, examining how the interaction of these terms deter-
mines the optimal price paths.
Aviv and Pazgal (2008) consider amodel similar to ours but restrict the

seller to choose two prices that are independent of the past sales; this is
extended tomultiple markdowns by Elmaghraby, Gülcü, and Keskinocak
(2008). In contrast to these papers, we allow the seller to choose any
mechanism, show when posted prices are optimal, and then characterize
the optimal prices; interestingly, such prices will tend to rise after sales, so
the seller can do better than a series of markdowns.
The single-unit version of our model is closely related to the classic

“house selling” problem with recall, where an owner receives offers for
his house and picks the largest (e.g., MacQueen and Miller 1960). When
there is a single house and valuations are independently and identically
distributed (IID), the cutoff value is constant, except for the last period
(see Bertsekas 2005, 185). Ross (1971) studies this problem directly in
continuous time. McAfee and McMillan (1988) introduce private infor-
mation into this model, changing values into marginal revenues. With
regard to this literature, our price-posting implementation is new, as is
our analysis of multiple units.
There are a number of adjacent literatures. Buyers’ values may vary over

time (e.g., Board 2007). Thefirmmaybeunable to commit to futureprices
or mechanisms (e.g., Hörner and Samuelson 2011). Theremay be hetero-
geneous goods (e.g., Gershkov and Moldovanu 2009a) or learning about
the distribution of valuations (e.g., Gershkov and Moldovanu 2009b). The
seller may pay the inventory cost until all units of the good have been
sold (e.g., Bruss and Ferguson 1997). There is also a large literature on
selling durable goods without capacity constraints (e.g., Stokey 1979) and
a smaller one on selling durable goods in competitive marketplaces (e.g.,
Deneckere and Peck 2012).

revenue management with forward-looking buyers 1051



II. Model

Basics.—A seller (she) has K goods to sell to buyers (he) arriving over
time. Time is discrete and finite, t ∈ {1, ... , T }.
Entrants.—At the start of period t, Nt buyers arrive. The number of ar-

rivals Nt is independent of past arrivals; the distribution of arrivals may
change over time, allowing us to talk of “increasing” and “decreasing” de-
mand (in the usual stochastic order). For simplicity, we assume that the
number of arrivals Nt is observed by the seller but not by other buyers.
Our analysis is unchanged if Nt is also unobserved by the seller.2

Preferences.—After a buyer enters the market, he wishes to buy a single
unit. A buyer is thus endowed with type (vi, ti), where vi denotes his val-
uation and ti his birth date. The buyer’s valuation, vi, is private informa-
tion and is drawn IID with continuous density f(⋅), distribution F(⋅), and
support ½v ; v�. The buyer’s birth date, ti, is observed by the seller but not
by other buyers. Motivated by the retailing application, a buyer’s value
declines throughout the season: If the buyer purchases at time s for price
ps, his utility is vds 2 ps, where d ∈ (0, 1). Let vk

t denote the kth-highest
order statistic of the buyers entering at time t.
Mechanisms.—At time 0 the seller chooses a mechanism. Applying the

revelation principle, it is without loss of generality to consider communi-
cation mechanisms in which each buyer makes report ~vi when he enters
the market, and the seller tells him only when he is awarded a good
(Myerson 1986). Intuitively, giving any information about the history
of the game as it unfolds (e.g., the number of objects available, the re-
ports of other agents) will add more incentive constraints. A mechanism
consists of an allocation and payment rule hti, TRii that maps buyers’ re-
ports and birth dates into a purchasing time ti for buyer i and expected
transfer TRi. A mechanism is feasible if (a) ti ≥ ti, (b)oi1ti<∞ ≤ K , and (c) ti
is adapted to the seller’s information (i.e., the reports and birth dates of
entrants).3

Buyer’s problem.—Upon entering the market, buyer i chooses his report
~vi to maximize his expected utility,

uið~v i ; vi; t iÞ 5 E 0½vid
tið ~v i ;v2i;tÞ 2 TRið~v i; v2i; tÞjvi; t i�; ð1Þ

where Es denotes the expectation over buyers’ values at the start of period
s, before buyers have entered the market, v is the vector of buyers’ values,

2 When Nt is unobserved by the seller, one can think of our solving the “relaxed” prob-
lem, ignoring the incentive compatibility (IC) constraints on birth dates. In Sec. IV.A, we
show that the optimal allocation is characterized by cutoffs that are independent of buyers’
birth dates, so the IC constraints are satisfied in the optimal mechanism.

3 We work with deterministic mechanisms, but one can allow for random allocation by
letting the mechanism describe a probability space hQ, F , Pi and letting the purchasing
time depend on q ∈ Q. Allocation is linear in probabilities, and we assume that marginal
revenue is increasing in values, so a deterministic mechanism is optimal.
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and t is the vector of their birth dates. A mechanism is incentive compat-
ible if the buyer wishes to tell the truth given that all others are truthful
and is individually rational if the buyer obtains positive utility.
Seller’s problem.—The seller chooses a feasible mechanism to maximize

the net present value of her expected profits

Profit 5 E 0 o
i

TRiðv; tÞ
� �

ð2Þ

subject to incentive compatibility and individual rationality.
Remarks.—The interpretation of the model depends on the applica-

tion at hand. For retailing, timeT can be interpreted as the date the seller
ships unsold goods to a discount retailer (e.g., TJ Maxx) or to a charity
(e.g., the New York Clothing Bank) or recycles them (e.g., into cushion
filler). We normalize the value of these unsold goods to zero. For an on-
line ad, package holiday, or concert, time T is the date of the event. Time
T can also be interpreted as the last time buyers enter themarket since, in
the optimal mechanism, no sales will occur after this point.
The discount factor d represents the loss of value that results from de-

laying allocation.4 With retailing, impatience comes from having fewer
opportunities to wear the good. With an online ad, package holiday, or
concert, it comes from having less time to make complementary decisions
(e.g., organizing an advertising campaign, taking vacation days fromwork,
inviting friends to the concert). As discussed in Section VI.A, one obtains
analogous results if impatience comes from the seller’s inventory costs
rather than the buyer’s discounting.
The model makes a couple of notable assumptions. We assume that

buyers do not know the number of units remaining in the mechanism
(indeed, they know only their value and birth date). However, when im-
plementing the optimal allocation, the seller will tell buyers her remain-
ing inventory and the history of past prices, so the seller does not benefit
from hiding this information.
We also assume that the seller can commit to a mechanism. We think

this is reasonable with applications such as retailing, online ads, and con-
certs in which the seller automates the pricing scheme and uses it repeat-
edly. It is also appropriate when using the model from a normative per-
spective to design the dynamic pricing strategy of, say, an airline. Such
sellers have some degree of commitment since they often do not sell all
their capacity: clothing stores shred or donate capacity rather than lower

4 One could allow the decay rate d to depend on time; this corresponds to rescaling time
in the current model. One can also reinterpret our results using the durable-goods utility
specification ðv 2 ~p

t
Þdt , where time preference comes from a standard discount factor.

Whether or not we discount money does not affect allocations, although prices must be
rescaled under this specification, with the new price given by ~p

t
5 d2t p

t
.
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the price, while airlines often fly with empty seats;5 we take the extreme
case and suppose that they can fully commit. One can thus view this as
an upper bound on the profit a seller can obtain. If the seller cannot com-
mit, the problem is much harder to study (e.g., Fuchs and Skrzypacz 2010;
Hörner and Samuelson 2011; Dilme and Li 2012).
Finally, we solve for the profit-maximizing allocation. This is mainly for

practical relevance; however, if one replaces marginal revenues (defined
below) with values, all our results apply to the welfare-maximizing alloca-
tion. Indeed, our results apply to any single-agent decision problem in
which the agent has K units to allocate or acquire; it can therefore be ap-
plied to a consumer who searches for K goods or a firm that wishes to
hire K employees.
Preliminaries.—When a buyer enters the market, he chooses his report

~vi to maximize his utility (1). As shown by Mas-Colell, Whinston, and
Green (1995, proposition 23.D.2), an allocation rule is incentive com-
patible if and only if (a) the discounted allocation probability

E 0½dtiðv;tÞjvi ; t i � ð3Þ
is increasing in vi and (b) applying the envelope theorem to (1), equilib-
rium utility is

uiðvi; vi; t iÞ 5 E 0 Evi

v

dtiðz;v2i;tÞdzjvi ; t i

" #
;

where we use the fact that a buyer with value v earns zero utility in any
profit-maximizing mechanism. Taking expectations over (vi, ti) and inte-
grating by parts then yields

E 0½uiðvi; vi ; t iÞ� 5 E 0 dtiðv;tÞ
12 F ðviÞ
f ðviÞ

� �
: ð4Þ

Profit (2) equals welfare minus buyers’ utilities. Summing utility (4) over
all buyers, we obtain

Profit 5 E 0 o
i

dtiðv;tÞmðviÞ
� �

; ð5Þ

where the marginal revenue of buyer i is given by mðviÞ ≔ vi 2 ½12 F ðviÞ�=
f ðviÞ. Throughout we assume that m(v) is strictly increasing and contin-
uously differentiable in v, implying that the seller’s optimal allocations
are monotone in valuations and allowing us to ignore the monotoni-
city constraint (3). We also assume that mðvÞ < 0, so the optimal cutoff
is interior.

5 For clothing stores, see “Where Unsold Clothes Meet People in Need,” New York Times,
January 8, 2010. For airlines, Ryanair has unsold capacity on 80–90 percent of its flights
(Malighetti, Paleari, and Redondi 2009).
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One should note that the profit equation (5) allows buyers’ arrival
times to be correlated within and across periods. That is, a buyer’s arrival
time may give him information about when other buyers arrive, as in
McAfee and McMillan (1987). Intuitively, from each buyer’s perspective,
his rents are determined by the expected discounted purchasing time; it
does not matter what is the underlying stochasticity. To characterize op-
timal allocations, we require only that Nt is independently distributed
across periods, allowing us to use backward induction with the state vari-
able equal to the vector of buyers’ values. When we implement these allo-
cations through prices, we assume that entry is Poisson, so buyers have sym-
metric expectations about the competition they face from other buyers.

III. Single-Unit Example

Before launching into the main analysis we develop some intuition by
heuristically deriving the optimal allocation and prices for the case in
which K5 1 and Nt is IID. As an example, suppose that a high-end retailer
is selling a limited-edition jacket or YouTube wishes to sell the main ban-
ner ad on its front page.
First, consider optimal allocations. Since marginal revenue is increas-

ing, the seller will award the good to the buyer with the highest value if it
exceeds a cutoff, xt. As is well known (e.g., Bertsekas 2005, 185), the op-
timal cutoffs are constant up to the penultimate period, xt 5 x* for t < T,
and jump down to the usual monopoly cutoff in the final period, xT 5
m21ð0Þ.6 Period T is identical to a standard auction, so the seller wants
to sell to the buyer with the highest value as long as his marginal revenue
is positive. In earlier periods, the cutoffs are uniquely given by

mðx*Þ 5 dEt11½maxfmðv1
t11Þ;mðx*Þg�: ð6Þ

The seller balances the benefit from selling today (the left-hand side)
against the benefit of waiting one period, receiving a new draw but dis-
counting the profit (the right-hand side). In the penultimate period, the
cutoff is clearly given by (6). In period T2 2, the seller is indifferent be-
tween awarding the good today and waiting until T2 1; if she waits then
she has exactly the same trade-off tomorrow and is indifferent again, so
we can assume that she sells at period T2 1, yielding (6). Working back-
ward, the cutoffs are thus constant for all t < T.7

The cutoffs do not depend on the number of buyers who have entered
in the past and their valuations. This matters because the seller can im-
plement the optimal mechanism without observing the number of ar-

6 This result is also a special case of theorem 2.
7 This logic depends on entering demand Nt being IID. We consider more general de-

mand processes in Sec. IV.
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rivals. In addition, the cutoffs satisfy a one-period-look-ahead property,
with the seller being indifferent between awarding the good to the cutoff
type today and waiting exactly one period. These two properties also hold
in the multiunit case, as shown in Sections IV.A and IV.B.
To consider the continuous-time limit, suppose that buyers enter with

Poisson rate l and the instantaneous discount rate is r. In the discretized
version with periods of length h, the arrival rate is lh and the discount
factor is d 5 e2rh. As the period length h becomes short, then (6) be-
comes

rmðx*Þ 5 lEv ½maxfmðvÞ2 mðx*Þ; 0g�; ð7Þ
where Ev is the expectation over v ∼ F(⋅). If the seller waits dt, she loses
the flow profit from the cutoff type (the left-hand side) but gains the op-
tion value of waiting for a new entrant (the right-hand side). At time T,
the optimal cutoff is given by m(xT) 5 0.
The optimal allocation can be implemented by a deterministic se-

quence of prices with an auction at time T. In the last period, the seller
uses a second-price auction with reserve dTm21ð0Þ. At time t < T, the seller
chooses a price pt that makes type x* indifferent between buying and
waiting. The final “buy-it-now” price, denoted by pT 5 limt→T pt , is chosen
so that type x* is indifferent between buying at price pT and entering the
auction. That is,

p
T
5 dTE 0½maxfy2;m21ð0Þgjy1 5 x*�; ð8Þ

where y j is the value of the jth-highest buyer in the market at time T.
When t < T, the indifference equation for buyer x* yields

dp
t

dt
5 2rx* 2 ðx* 2 p

t
Þl½12 F ðx*Þ�: ð9Þ

When a buyer waits a little, he gains from the falling prices (the left-hand
side) but loses the rental value of the good and risks a stock-out if a new
buyer enters with a value above x* (the right-hand side). Even though the
cutoffs are constant, prices decline since a delaying buyer loses one peri-
od’s enjoyment of the good and risks a stock-out. Price are also concave,
falling more rapidly as t → T.
While we focus on implementation via posted prices, the seller can

also implement the optimal allocations via a conditional contract whereby
a buyer bids at time t and is allocated a unit at a later date if no one offers
a better price beforehand. Formally, suppose that the price path pt is
given by (9) with boundary condition (8). In the game, a buyer bids b
at any time after he enters. If the bid is entered at time t and b ≥ pt, then
he immediately purchases the good at price pt. If pt ≥ b ≥ pT , then the
buyer buys the good at time minfs : ps 5 bg subject to no other buyer
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bidding more beforehand. If b < pT, then this is treated as a bid in a first-
price auction held at time T.8 This implementation is related to the “red
zone contracts” used by some firms (e.g., YouTube) to sell their front-
page banner ad. Such a contract allows a buyer to reserve the ad slot
at a discount if no buyer is willing to pay the full price.

IV. Optimal Allocations

We now turn to the analysis of the multiunit model. In Section IV.A, we
consider general sequences of the demand process Nt, showing that the
optimal allocations are characterized by cutoffs that are deterministic. In
Section IV.B, we specialize the model to assume that Nt is weakly decreas-
ing in the usual stochastic order and show that the cutoffs satisfy the one-
period-look-ahead property.

A. General Case

The seller’s problem is to choose a feasible allocation rule htii to maxi-
mize profits (5). Since this is a single-agent optimization problem, the
principle of optimality means we can solve it by backward induction.
Suppose that the seller has k units at the start of period t. First, observe

that the seller does not discriminate on the basis of birth dates. That is, if
buyer (vi, ti) is in the market at time t, then his allocation (and the allo-
cation of all other buyers) is independent of ti. This follows because the
birth date enters only through the feasibility requirement that ti ≥ ti and
is therefore not payoff relevant at time t. Since a buyer’s birth date does
not affect his allocation, the IC constraint on the truthful reporting of
the buyer’s birth date is slack and the seller need not see when buyers
arrive in order to choose the optimal allocations. Intuitively, this follows
because the birth date provides the seller no information about a buyer’s
valuation.
Second, observe that buyers with high values are allocated goods prior

to buyers with low values. That is, if buyers vi > vj are in the market at time
t, then the seller awards a unit to buyer i before buyer j. To see this, sup-
pose, by contradiction, that a unit is allocated to buyer vj at period t 0,
whereas buyer vi is not allocated a good until period t 00 > t 0. When we

8 The revenue equivalence theorem applies to the auction at time T since we have as-
sumed symmetric bidders with independent private values. Under the assumption of Pois-
son arrivals, a bidder makes no inference from his time of arrival, and hence all bidders
below x* have the same beliefs about their competition and there exists a symmetric equi-
librium in the first-price auction. Note that it is important that buyers are not informed
about the existing contingent contracts in the system since this would affect their incen-
tives to wait for a lower price and their optimal bids in the auction.
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swap these two buyers but leave everything else unchanged, profits are
increased by ð12 dt

002t 0 Þ½mðviÞ2 mðvjÞ�, which is strictly positive since
m(⋅) is strictly increasing.
These two observations imply that, when solving the seller’s problem,

we need keep track of the values of only the highest k remaining buyers.
Denote the ordered vector of the k-highest buyers’ values in the market
at time t by y ≔ fy1; ::: ; ykg, where yi ≥ yi11. In the final period the seller
sells to the buyers with the highest marginal revenues, subject to their
marginal revenue being positive, as inMyerson (1981). In earlier periods,
the continuation profit at the start of period t is9

Pk
t ðyÞ ≔ max

ti≥t
E t11 o

i

dti2tmðviÞ
� �

; ð10Þ

where Et11 reflects the fact that the period t entrants have entered and are
included in y. If the seller makes j sales in period t, then we denote the
period t1 1 continuation profit before the period t1 1 entrants have en-
tered by

~P
k2j

t11ðy2jÞ ≔ max
ti≥t11

Et11 o
i

dti2ðt11ÞmðviÞ
� �

ð11Þ

for y2j ≔ fy j11; ::: ; ykg. These equations are related via the Bellman equa-
tion

Pk
t ðyÞ 5 max

j∈f0; ::: ;kg o
j

i51

mðyiÞ1 d~P
k2j

t11ðy2jÞ
" #

: ð12Þ

The proof of the following lemma shows that allocation is monotone
in buyers’ values y. As a result, a mechanism can be characterized by cut-
offs xj

tðy2ðk2j11ÞÞ, j ≤ k, which describe the lowest type that is awarded the
jth unit, assuming that the previous k2 j units have been sold.10 Within a
period, several units may be allocated. We allocate unit k to the highest

9 In this equation, Pk
t depends on y because the seller has the choice of allocating any

good to a current buyer or to a future entrant. One should also note that while we call
Pk

t continuation profit, this includes the impact of time t decisions on the willingness to
pay of buyers who purchase in earlier periods. That is, if we allocate a unit to type v in pe-
riod t, then the seller receives only m(v) since all higher types gain rents, even those that
purchase prior to period t.

10 Fixing y2ðk2j11Þ, the cutoff is well defined if there are some types yðk2j11Þ ≥ yðk2j12Þ who
are not allocated a unit. If all yðk2j11Þ ≥ yðk2j12Þ are allocated a unit, then we define
x j

tðy2ðk2j11ÞÞ 5 v . Below, we show that the optimal allocation can be implemented by deter-
ministic cutoffs that are independent of y2ðk2j11Þ. At that point, we no longer need to con-
dition on whether or not y k2j11 > y k2j12.
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buyer if y1 ≥ xk
t ðy21Þ, unit k 2 1 to the second-highest buyer if y2 ≥

xk21
t ðy22Þ, and so on. In general, we allocate the jth unit if yk2ℓ11 ≥

xℓ

t ðy2ðk2ℓ11ÞÞ for all ℓ ∈f j; ::: ; kg. This is illustrated in figure 2.
Lemma 1. Suppose that the seller starts period t with k units and buy-

ers with values y. The optimal mechanism can be characterized by cutoffs
xj
tðy2ðk2j11ÞÞ.
Proof. Suppose we have sold k 2 j units in period t. By contradiction,

suppose the seller awards unit j to the buyer when his value is yk2j11, but
not when it is ŷ k2j11 > yk2j11. By revealed preference,

mðyk2j11Þ1 Pj21
t ðy2ðk2j11ÞÞ ≥ d~P

j

t11ðyk2j11; y2ðk2j11ÞÞ;
mðŷ k2j11Þ1 Pj21

t ðy2ðk2j11ÞÞ ≤ d~P
j

t11ðŷ k2j11; y2ðk2j11ÞÞ:

Subtracting the first equation from the second,

mðŷ k2j11Þ2mðyk2j11Þ ≤ d½~P j

t11ðŷ k2j11; y2ðk2j11ÞÞ
2 ~P

j

t11ðyk2j11; y2ðk2j11ÞÞ�
≤ d½mðŷ k2j11Þ2mðyk2j11Þ�;

where the second inequality uses the fact that the yk2j11 seller can mimic
the strategy of the ŷk2j11 seller from period t1 1. This yields a contradic-
tion, implying that the allocation of unit j is monotone in yk2j11. Fixing
y2ðk2j11Þ, we can thus define xj

tðy2ðk2j11ÞÞ as the lowest yk2j11 > yk2j12 that
is allocated a unit; if all such yk2j11 > yk2j12 are allocated units, then set
xj
tðy2ðk2j11ÞÞ 5 v . QED
If the seller starts period t with k units, she sells the jth unit if yk2ℓ11 ≥

xℓ

t ðy2ðk2ℓ11ÞÞ for all ℓ ∈ f j ; ::: ; kg, so in order to know if we can sell the jth
unit, we also need to check all the previous units. That is, the seller may
be willing to sell unit k 2 1 once she has sold unit k but refrains from
doing so because she is not willing to sell unit k. The following lemma
shows that if cutoffs are decreasing in k, this problem does not arise

FIG. 2.—Allocation within a period. This figure shows the top three value buyers and the
cutoffs for three units. Unit k is allocated to y1 since y1 ≥ x k

t ðy21Þ. Similarly, unit k 2 1 is al-
located to y2 since unit k was sold and y2 ≥ xk21

t ðy22Þ. However, unit k2 2 remains unsold as
y3 < xk22

t ðy23Þ.

revenue management with forward-looking buyers 1059



and we can treat each unit separately, simply comparing the jth cutoff to
the corresponding buyer’s valuation (as in fig. 2).
Lemma 2. Suppose that period t cutoffs xj

tðy2ðk2j11ÞÞ are decreasing in
j. Then unit j is allocated iff yk2j11 ≥ xj

tðy2ðk2j11ÞÞ.
Proof. If unit j is allocated, then the corresponding buyer’s value

must exceed the cutoff. Conversely, if yk2j11 ≥ xj
tðy2ðk2j11ÞÞ, then

yk2ℓ11 ≥ yk2j11 ≥ x j
tðy2ðk2j11ÞÞ ≥ xℓ

t ðy2ðk2ℓ11ÞÞ
for all ℓ ≥ j , since the cutoffs are decreasing. Hence all units ℓ ≥ j are al-
located to their corresponding buyer. QED
The next step is to observe that we can simplify notation. So far we

have been concerned with the cutoff for unit j, assuming that the seller
starts the period with k units. Since we solve by backward induction, it is
without loss to suppose that unit j is the first unit sold in the period.
Henceforth, we characterize the cutoffs by considering the sale of unit
k to buyer y1, taking into account that the seller may wish to sell further
units.
Define the profit if the seller sells zero units today or if she sells only

one:

Pk
t ðsell 0 todayÞ 5 d~P

k

t11ðy1; y21Þ; ð13Þ

Pk
t ðsell 1 todayÞ 5 mðy1Þ1 d~P

k21

t11 ðy21Þ: ð14Þ
Denote the difference function by

DPk
t ðy1; y21Þ 5 Pk

t ðsell 1  todayÞ2 Pk
t ðsell 0 todayÞ;

which reflects the incentives to sell today rather than wait. These defini-
tions are useful because if cutoffs are decreasing in k, then a seller who is
indifferent between selling to buyer y1 today and waiting weakly prefers
not to sell a second unit today.
The next result, lemma 3, establishes some basic properties ofDPk

t ðy1; y21Þ.
We say that the cutoffs xk

t ðy21Þ aredeterministic if they are independent of y21.
Lemma 3. Suppose that future cutoffs fxj

sgs≥t11
are deterministic and

decreasing in j ≤ k. Then

a. DPk
t ðy1; y21Þ is independent of y21,

b. DPk
t ðy1Þ is continuous and strictly increasing in y1, and

c. DPk
t ðy1Þ is increasing in k.

Proof. See the Appendix.
Part a says that DPk

t ðy1; y21Þ is independent of y21. Intuitively, the deci-
sion of whether or not to allocate one object to buyer y1 does not affect
buyer y2’s rank and therefore when they are allocated a good. Hence the
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value of y2 does not affect the decision of whether or not to allocate a
unit today. Part b says that a higher value of y1 increases DPk

t ðy1Þ since
the cost of waiting is higher. Part c says that more units raise DPk

t ðy1Þ, re-
flecting the idea that such a seller is more eager to allocate goods. We
now have our first main result.
Theorem 1. Suppose that the seller has k goods in period t. The op-

timal allocation rule awards a unit to the highest remaining buyer if his
value exceeds a deterministic cutoff x k

t . The cutoffs x
k
t are decreasing in k

and are uniquely determined by DPk
t ðx k

t Þ 5 0.
Proof. We wish to show that cutoffs x k

t are decreasing in k and deter-
ministic. We do this by backward induction. In period T, cutoffs are de-
fined by mðxk

T Þ 5 0 and therefore are deterministic and (weakly) de-
creasing in k. Now fix t and suppose that future cutoffs fxk

sgs≥t11
are

deterministic and decreasing in k.
Let k 5 1, so y 5 y1. Lemma 3(b) states that DPk

t ðy1Þ is continuously
strictly increasing in y1, so the cutoff is uniquely defined by DPk

t ðxk
t Þ 5 0

and so is (trivially) deterministic.11

Continuing by induction, fix k > 1 and suppose that xj
t ≤ xj21

t for j < k
and that these cutoffs are deterministic. Lemma 3(a) implies that
DPk21

t ðyÞ is independent of y21 and can thus be written as DPk21
t ðy1Þ.

Lemma 3(b) states that DPk21
t ðy1Þ is continuously strictly increasing in y1.

Since xk21
t ≤ xk22

t , the cutoff xk21
t is uniquely defined by DPk21

t ðxk21
t Þ 5 0.

Now suppose, by contradiction, that xk
t ðy21Þ > xk21

t for some y21.12 By
the envelope theorem, profits are continuous in y1, so the cutoff is de-
fined by the indifference condition

Pk
t ðsell 0 todayÞ 5 Pk

t ðsell ≥ 1  todayÞ ≥ Pk
t ðsell 1 todayÞ;

where the inequality uses revealed preference. We thus have

0 ≥ DPk
t ðxk

t ðy21ÞÞ > DPk
t ðxk21

t Þ ≥ DPk21
t ðxk21

t Þ 5 0;

where the second inequality comes from lemma 3(b), and the third in-
equality follows from lemma 3(c). We thus have a contradiction.
We thus know that xk

t ðy21Þ ≤ xk21
t . Fix y21 and consider two cases. If the

seller is indifferent at y1 5 xk
t ðy21Þ ≥ y2, then she weakly prefers not to allo-

catea secondunit y2 ≤ xk21
t , and thecutoff isdeterminedbyDPk

t ðxk
t ðy21ÞÞ 5

0.Lemma 3(a) then implies that the cutoff xk
t is independent of y

21. If the
seller prefers to allocate to all y1 ≥ y2, then DPk

t ðy1Þ ≥ 0.13 We can therefore

11 We can apply the intermediate value theorem since DPk
t ðvÞ ≤ mðvÞ < 0, while

DPk
t ðvÞ 5 ð12 dÞmðvÞ > 0.

12 By definition of the cutoff, xk
t ðy21Þ > xk21

t implies that xk
t ðy21Þ > y2 (see fn. 10). Since

type v is immediately awarded a good, we can assume that xk
t ðy21Þ∈ ðy2; vÞ.

13 To see this, consider two cases. If the seller wishes to sell only one good, then we have
DPk

t ðy1Þ ≥ 0. If she wishes to sell two or more, then y2 > xk21
t , so DPk21

t ðy2Þ ≥ 0 and parts b and
c of lemma 3 imply DPk

t ðy1Þ ≥ 0.
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let the cutoff be the solution ofDPk
t ðxk

t ðy21ÞÞ 5 0, which, by lemma 3(a) is
independent of y21. QED
The optimal cutoffs have two important properties. First, they are de-

terministic in that they are independent of the values of lower buyers,
y21. Economically, this means that the decision to allocate the good to
the highest-value buyer depends on the number of periods and units re-
maining, but not on the number of buyers, their valuations, or when pre-
vious units were sold. While the value of y21 does affect the seller’s real-
ized revenue, it does not alter the seller’s allocation decision. As a result,
the seller does not need to elicit values from buyers as they arrive; this
property will become crucial for implementation.
Second, the cutoffs decrease when there are more units available. In-

tuitively, if the seller delays awarding a unit by one period, then she can
allocate it to an entrant rather than to buyer y1. When there are more
goods remaining, buyer y1 is more likely to be awarded one of the units
eventually, reducing the option value of delay and decreasing the cutoff.

B. Weakly Decreasing Demand

In this section we suppose that the arrival rate of incoming demand is
weakly decreasing over time. This captures the idea that the pool of po-
tential new customers falls over time (e.g., if Zara launches a line of
coats). It also includes the canonical case of IID arrivals. We show that
this property means that we can characterize the optimal cutoffs by intu-
itive difference equations (which will become differential equations in
the continuous-time limit).
In theorem 1, a seller is indifferent between selling to buyer xk

t today
and waiting for future entry. We say that an allocation satisfies the one-
period-look-ahead property if the seller is indifferent between selling to
buyer xk

t today and waiting one period and allocating that unit tomorrow.
To analyze this, it will be useful to change the definition of DPk

t to force
a waiting seller to sell at least one unit at time t 1 1. Write the vector of
entering buyers as vt≔fv1

t ; ::: ; v
k
t g, and let fy1; vt11g2

k
represent the or-

dered vector of the second- to kth-highest choices from fy1; vt11g.14 De-
fine

Pk
t ðsell ≥ 1 tomorrowÞ 5 dEt11½maxfmðy1Þ;mðv1

t11Þg1 Pk21
t11 ðfy1; vt11g2

kÞ�

and

14 If there are fewer than k buyers who enter or are present in the market, then the cor-
responding entries equal zero.
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DPk
t ðy1Þ 5 Pk

t ðsell 1 todayÞ2 Pk
t ðsell ≥ 1  tomorrowÞ;

which we can write as a function of y1 alone using the reasoning of
lemma 3(a). Observe that DPk

t ðy1Þ ≥ DPk
t ðy1Þ by revealed preference, with

DPk
t ðy1Þ 5 DPk

t ðy1Þ if y1 ≥ xk
t ≥ xk

t11.
Lemma 4. Suppose thatNt is weakly decreasing in the usual stochastic

order, and future cutoffs are decreasing in time, xj
s ≥ x j

s11 for s ∈ ft 1
1; ::: ;T 2 1g and j ≤ k. Then DPk

t11ðy1Þ ≥ DPk
t ðy1Þ.

Proof. See the Appendix.
Theorem 2. Suppose that Nt is weakly decreasing in the usual sto-

chastic order. Then the optimal cutoffs xk
t are decreasing in t. As a result,

allocations satisfy the one-period-look-ahead property and are uniquely
characterized by DPk

t ðxk
t Þ 5 0.

Proof. We now show that cutoffs xk
t are decreasing in t by induction.

When k 5 1, x1
T21 ≥ x1

T 5 m21ð0Þ. Now, consider xk
t and suppose that xj

s ≥
x j
s11 for all j < k for all s, and for j 5 k and s ≥ t 1 1. Since xk

t11 ≥ xk
t12,

DPk
t11ðxk

t11Þ 5 DPk
t11ðxk

t11Þ 5 0, where the second equality uses theorem 1.
Now suppose, by contradiction, that xk

t < xk
t11, so thatDP

k
t ðxk

t Þ ≥ DPk
t ðxk

t Þ 5
0. We then have

0 ≤ DPk
t ðxk

t Þ < DPk
t ðxk

t11Þ ≤ DPk
t11ðxk

t11Þ 5 0:

In this equation, the second inequality follows from the envelope theo-
remanalogous to the proof of lemma3(b); intuitively, an increase in y1 will
raise the profit from selling today bym0(y1) and raise the profit by waiting
by at most dm0(y1), so the difference DPk

t ðy1Þ increases. The third inequal-
ity uses lemma 4. We thus have a contradiction, implying that xk

t ≥ xk
t11,

as required. Given that xk
t are decreasing in t, the optimal cutoffs are

uniquely defined by DPk
t ðxk

t Þ 5 0. QED
Intuitively, if the seller delays awarding the kth unit by one period,

then she can allocate it to an entrant rather than to buyer y1. As the game
progresses, buyer y1 is more likely to be awarded the good eventually, re-
ducing the option value of delay and decreasing the cutoff.
The one-period-look-ahead property means that cutoffs can be charac-

terized by a series of local indifference conditions. In period t 5 T, the
seller wishes to allocate the goods to the k highest-value buyers, subject
to these values exceeding the static monopoly price. Hence,

mðxk
T Þ 5 0: ð15Þ

In period t 5 T 2 1, the seller balances the revenue from allocating the
kth good against the opportunity cost derived from the possibility of de-
nying the good to the kth-highest new entrant. Hence,

mðxk
T21Þ 5 dET ½maxfmðxk

T21Þ;mðvk
T Þg�: ð16Þ
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In periods t ≤ T2 1, the seller is indifferent between selling to the cutoff
type today and waiting one more period. If she sells today, she sells only
one unit since xk

t are decreasing in k. If she waits, she sells at least one
unit tomorrow by the one-period-look-ahead property. Hence,

mðxk
t Þ1 dEt11½Pk21

t11 ðvt11Þ� 5 dEt11½maxfmðxk
t Þ;mðv1

t11Þg�
1 dEt11½Pk21

t11 ðfxk
t ; vt11g2

kÞ�:
  ð17Þ

In equation (17), we have set y21 5 0 because cutoffs are deterministic.15

V. Implementation

In this section we show that the optimal cutoffs can be implemented with
posted prices as periods become short. The seller uses posted prices if she
announces how many goods are remaining and charges a single price in
each period. The buyers reveal their existence only when they purchase
a unit. The entire price path is public information; if there is excess de-
mand in a given period, the units are rationed randomly.
The fact that prices are optimal is striking since there are many reason-

able pricing tactics that might raise revenue. These include a series of
auctions (e.g., Priceline), pricing as a function of the number of inter-
ested buyers (e.g., using flight query data), the issue of coupons when
buyers register (e.g., Restaurant.com), or pricing as a function of buyers’
indicative bids (e.g., house sales). Remarkably, theorem 3 proves that
none of these tactics is useful in the benchmark model. This is far from
obvious since all of these tactics are beneficial in variations of the model:
Auctions are useful if the entry rate is discontinuous (see Sec. V.A), query-
based pricing is useful if the number of entrants is public (see Sec. V.A),
coupons are useful if different cohorts have different demand functions
(see Sec. VI.D), and indicative bids are useful if buyers disappear over
time (see Sec. VI.E). The traditional revenue management literature al-
lows sellers only to charge posted prices; our analysis shows when this is
without loss and when the seller can do better.16

15 Since we know future cutoffs, the value functions in (17) can be calculated via the se-
quence problem (10) or the Bellman equation (12).

16 While we show that implementation in continuous time is relatively easy, the problem
is much harder in discrete time. With a single good, K 5 1, the optimal cutoffs can be im-
plemented via a sequence of second-price auctions (Board and Skrzypacz 2010). With
more goods, Li (2011) shows that the seller can use a sequence of ascending auctions in
which buyers compete against a robot that acts like the cutoff type. The basic problem
in the discrete-time game is that more is known about older buyers’ values, implying that
a new and an old buyer with the same valuation calculate continuation utilities differently
and therefore bid differently. To overcome this, Li follows Said (2012) in using an ascend-
ing auction; this reveals all buyers’ values each period, allowing buyers to use memoryless
strategies.
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The ordering of this section is parallel to that in Section IV. In Section
V.A, we first consider general sequences of the demand process, showing
that the optimal allocations can be implemented by prices. In Section
V.B, we assume that the entry rate is weakly decreasing and show that
the prices are given by an intuitive differential equation.

A. General Case

Suppose that time is continuous and, motivated by the law of rare events,
buyers enter the market continuously according to a Poisson process
with nonhomogeneous arrival rate lt. Let r be the instantaneous dis-
count rate. Consider the discretized problem in which sales occur at dis-
crete intervals of length h, agents arrive at rate ∫

t1h

t lsds, and the discount
factor is d 5 e2rh. Define P*(h) as the optimal profits derived in Section
IV.A and P* 5 limh→0P*ðhÞ as the continuous-time profits.
Theorem 3. Suppose that lt is Lipschitz continuous in t. If the seller

uses posted prices with a second-price auction for the last unit at time T,
then she can obtain P*2O(h).
Proof. See the Appendix.
Theorem 3 is based on the fact that the cutoffs are deterministic, which

means that the seller does not have to elicit values y21 in order to decide
whether or not to allocate to buyer y1. The proof consists of three parts.
First, if lt is Lipschitz continuous in t, then the optimal allocations xk

t can-
not jump down more than O(h), except for the last unit at time T. Sec-
ond, by backward induction, we can pick prices to make the cutoff types
indifferent. The prices imperfectly implement the cutoffs for two rea-
sons: (i) the cutoffs cannot dynamically adjust within a given period; and
(ii) when buyers are rationed, the good may be allocated to the wrong
buyer. However, these issues arise only if there are two sales in a single pe-
riod. Since cutoffs do not jump down much, the probability of two sales
within any given period is O(h2), and the seller can obtain P*(h) 2 O(h)
for sufficiently small h. Third, a discrete-time seller can always replicate
the strategy of the continuous-time seller delayed by at most one period,
implying that P* 2 P*ðhÞ 5 OðhÞ.
Prices are chosen to make the cutoff type indifferent between buying

immediately and waiting. They therefore depend on the inventory and
time remaining via the cutoff type. In addition, prices depend on the
timing of past sales since this affects a buyer’s belief about other buyers
in the market and, hence, his continuation utility. It is worth stressing
that prices do not depend on the number of arrivals to the market or
the reports of the buyers (else it would not be a posted price mecha-
nism). It is also notable that the seller publicly announces her inventory,
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so she does not gain from keeping k private.17 The general idea is that
the seller wishes to implement cutoffs that depend only on (k, t); if buy-
ers have any information that helps them predict when future units are
sold (e.g., the timing of past sales, which are indicative of the number of
waiting buyers), then the seller must condition prices on this informa-
tion in order to “cancel it out.”18

Theorem 3 assumes lt is Lipschitz continuous. If lt jumps down, then
multiple sales may occur at one point in time, so one would need an auc-
tion to allocate efficiently. Saying this, one can approximate any such
auction by quickly declining prices, analogous to a Dutch auction. Sim-
ilarly, one can replace the “final auction” for the last unit with a rapidly
declining series of prices. Hence the firm’s maximal profit can be ap-
proximated arbitrarily closely by a sales mechanism that uses only prices.19

The assumption of Poisson entry is more important since it implies
that a buyer’s entry time tells him nothing about the arrival rate of other
buyers. As a result, all buyers share the same expectations over the evo-
lution of future cutoffs. If this were not the case, then a buyer’s informa-
tion about his entry time would give him information about other en-
trants’ existence and even their values. For example, if buyers enter in
pairs, then knowing that he entered earlier and no sale had occurred im-
plies that a buyer’s “partner” has a lower valuation.
Finally, we assume that the seller uses a second-price auction, but a

first-price auction with reserve e2rTm21ð0Þ will also suffice. Since entry
is Poisson, all buyers have the same information about others’ values de-
duced from observing the path of prices and there will be a symmetric
equilibrium with increasing bidding strategies.

B. Weakly Decreasing Demand

When entering demand is decreasing over time, theorem 2 says that
cutoffs are decreasing and satisfy the one-period-look-ahead property.
This allows us to heuristically derive the allocations and prices in the
continuous-time limit via local indifference conditions.

17 The seller need not actually announce her inventory since the cutoff is a decreasing
function of her inventory, so the buyers could infer k from the price.

18 As an example, if buyers observed other buyers’ entry into the market, this would pro-
vide information about the competition faced by a buyer, and so prices would also have to
depend on Nt.

19 Intuitively, consider the continuous-time limit and take any sequence of cutoffs xk
t ,

which may include jumps. By Luzin’s theorem, we can approximate this by continuous cut-
offs that are almost identical almost everywhere; since the approximation is close in L1, the
lost profit (5) is small. The continuous cutoffs and Poisson entry imply that the probability
of two simultaneous sales is zero; analogous to claim C of Sec. C in the Appendix, we can
now implement these continuous cutoffs via prices.

1066 journal of political economy



First, consider optimal allocations. In period T, the optimal cutoffs are
given by mðxk

T Þ 5 0. In period t < T, equation (17) becomes

rmðxk
t Þ 5 ltE v½maxfmðvÞ2 mðxk

t Þ; 0g1 Pk21
t ðminfv; xk

t gÞ2 Pk21
t ðvÞ�;

ð18Þ

where Ev is the expectation over v ∼ F(⋅). Equation (18) states that the
seller is indifferent between selling today and delaying a little. The cost
of delay is the forgone rental value (the left-hand side); the benefit is the
option value of a new buyer entering the market (the right-hand side).
Such delay leads to a higher marginal revenue tomorrow, if a new buyer
enters, and a lower state variable in the continuation game. As t→ T, the
cutoff jumps down discontinuously to m21(0) if k 5 1. However, if k ≥ 2,
then Pk21

t ðvÞ→ maxfmðvÞ; 0g, the right-hand side converges to zero,
and the cutoffs converge continuously, xk

t →m21ð0Þ. Intuitively, in the
last instant, there is an option value from the possibility of a single en-
trant arriving with a value higher than y1; however, the probability of
two or more entrants is zero.20

Figure 3 illustrates the optimal cutoffs when the seller starts with two
goods and buyers enter with constant hazard rate l. When there is one
unit remaining (the right panel), the cutoffs are constant in periods t < T
and drop down at time T (see Sec. III). When there are two units remain-
ing (the left panel), the option value of waiting falls over time since the
seller needs two entrants to make it worthwhile to delay allocation. As a
result, the cutoffs decrease over time.
The optimal cutoffs can be implemented by a sequence of decreasing

prices pk
t
with an auction for the last unit in period T. These prices can be

derived backward, starting at time T. When k 5 1, the seller can use a
second-price auction with reserve e2rTm21ð0Þ at timeT. As t→T, the price
must be set so that the cutoff type x1

T2h is indifferent between taking the
“buy it now” price and entering the auction at time T. This yields a price

p1
T
5 e2rTE 0 maxfy2;m21ð0Þgjy1 5 lim

h→0
x1
T2h; fsT ðxÞgx≤y1

� �
; ð19Þ

where sT(x) denotes the last time the cutoff went below x when looking
back from time T.21 To understand this last term, note that buyer y1 uses
the sequence of past cutoffs to update about the presence of lower-value
buyers in the market at time T; since he cares only about the buyers re-
maining, a sufficient statistic is the last time the cutoff went below x. As
a result, p1

T
depends on when other buyers purchased units; in particular,

20 The proof of theorem 3 shows that the properties of the cutoffs as t → T do not de-
pend on having weakly decreasing demand.

21 That is, if k(t) is the realized number of units left at time t, then sT ðxÞ 5 maxft ≤ T :
xkðtÞ
t ≤ xg.
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the more time that has passed since those units were sold, the more com-
petition buyer y1 expects at time T, and the higher is p1

T
. When k ≥ 2, the

allocation converges to the static monopoly outcome, xk
t →m21ð0Þ, as

does the price, pk
t
→ e2rTm21ð0Þ.

At time t < T, the cutoffs xk
t are decreasing over time, so the prices are

such that the cutoff type is indifferent between buying now and waiting a
little. This becomes

dpk
t

dt
5 2rxk

t 1
dxk

t

dt
f ðxk

t ÞEt

stðxk
t Þ
lsds 2 lt ½12 F ðxk

t Þ�
" #

� ½xk
t 2 pk

t
2 U k21

t ðxk
t ; fstðxÞgx ≤xk

t

Þ�;
ð20Þ

where U k21
t ðxk

t ; fstðxÞgx ≤xk
t

Þ is the utility of buyer type xk
t at time t when

there are k 2 1 goods left, conditional on xk
t being the highest-value

buyer at time t.22 Intuitively, when a buyer waits a little, he gains from
the falling prices (the left-hand side) but loses the rental value of the
good and risks a stock-out if good k is bought by either a new buyer with
a value above xk

t1dt or an old buyer with value between xk
t and xk

t1dt (the
right-hand side). The possibility of a stock-out means that prices drop
faster if buyers think they have more competition from existing buyers.
Overall, the price path falls smoothly over time but jumps up with every
sale.

FIG. 3.—Optimal cutoffs and prices with two units. The left panel shows the optimal cut-
offs/prices when the seller has two units remaining. The right panel shows the optimal cut-
offs/prices when the the seller has one unit remaining. The three price lines illustrate the
seller’s strategy when she sells the penultimate unit at times t5 0, t5 0.3, and t5 0.6. In this
figure, buyers enter continuously with Poisson parameter l 5 10, meaning that 10 inter-
ested buyers enter during an average season. They have values v ∼ U[0, 1], so the static mo-
nopoly cutoff is 0.5. Total time is T5 1 and the interest rate is r5 ln(4/3), so a good loses
one-fourth of its value over the season.

22 Buyer type xk
t ’s utility depends on how much competition he believes he faces from

existing buyers and hence depends on the history of cutoffs.
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Figure 3 illustrates the optimal prices for a seller with two goods.
When there is one unit remaining (the right panel), the prices fall even
though the cutoff stays constant. Intuitively, when the buyer delays, he
forgoes one period’s enjoyment of the good, so the price has to drop to
make up for the rental value. But since he is also risking the arrival of
new competition, the price has to fall faster. While cutoffs are determinis-
tic, depending only on the number of units and time remaining, prices
also depend on when the penultimate unit was sold. We illustrate this with
three price lines. Intuitively, if the penultimate unit is sold early on, then
buyers think that there may be many other buyers in the market waiting
for the price to drop, meaning that the seller can charge a higher price
to implement the same cutoff. When there are two units (the left panel),
the prices fall over time reflecting the declining cutoffs, buyers’ impa-
tience to buy the good early, and buyers’ concern of another buyer poach-
ing the good.
Figure 4 illustrates the unconditional probability of both units being

sold as a function of time. With both units, the probability of the sale in-
creases rapidly as t→ T. When k5 1, there is an atom at time T; when k5
2, the probability rises as the cutoff rapidly declines.

FIG. 4.—Probability of sale with two units. This figure shows the unconditional proba-
bility the the last/penultimate unit is sold by time t. The parameters are the same as in fig-
ure 3.
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The existence of the last-minute sale comes from the concavity of the
path of cutoffs (see fig. 3) and the stock of buyers building up, waiting to
buy. This pattern of posted prices and a “last-minute” sale is qualitatively
consistent with the sale of online ads or package holidays. Similarly, in
the secondary market for baseball tickets, Sweeting (2012) shows that
prices decline by 60 percent in the month before the game, with the
price decline accelerating, the probability of sale increasing, and auc-
tions becoming more popular as the game day approaches.

C. Short-Lived versus Long-Lived Buyers

Typical revenue management models assume that buyers are short-lived,
leaving the market if they do not buy immediately (e.g., Gallego and van
Ryzin 1994). In this case, the state variable is time and the number of
units remaining (k, t), so the cutoffs are automatically deterministic. If
V k

t is the seller’s continuation value, then the optimal cutoffs are given
bymðxk

t Þ 5 dðV k
t112V k21

t11 Þ. These optimal allocations can be implemented
with auctions in discrete time, or prices in continuous time, with the (re-
serve) price being set equal to the corresponding cutoff. In contrast, with
forward-looking buyers, cutoffs are deterministic while prices depend on
the timing of past sales.23

Figure 5 illustrates the optimal cutoffs/prices and the probability of
sale when buyers are short-lived, under the same parameters as in fig-
ures 3 and 4. A first observation is that profits are higher when buyers
are forward-looking.24 This initially might seem surprising since forward-
looking buyers can time their purchase to lower their payments. For ex-
ample, fixing the retail prices, Soysal and Krishnamurthi (2012) found
that profits for women’s coats would be 9 percent higher if customers
were short-lived. However, when the seller is choosing the optimal mech-
anism, the ability to delaymeans that the seller can pool different cohorts
of buyers together, raising the efficiency of allocation and revenue.
Second, the total number of sales is higher when buyers are forward-

looking. With forward-looking customers, the seller sells k goods if there
are at least k entrants with values above m21(0). With short-lived custom-
ers, the seller might refuse to sell to a buyer with value abovem21(0) early
in the game and be unable to return to them later.

23 One may also consider a third case: long-lived but myopic buyers, analogous to Lazear
(1986). With a fixed population of buyers, the seller can fully extract by having prices start
high and quickly fall; buyers then purchase as soon as their valuation equals the price. With
buyers entering over time, the seller can maintain high prices most of the time and hold
regular fast, deep sales to allocate units. This would extract the buyers’ information rents
while allowing the seller to approximately implement the welfare-optimal cutoffs.

24 Proof: Since the arrival time is observable, the seller could replicate the short-lived al-
location. Yet lemma 1 shows that it is optimal to treat all generations of buyers equally.
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Third, sales occur later when buyers are forward-looking. When buy-
ers are short-lived, sales occur fairly evenly throughout [0, T], as seen
in figure 5. When buyers are forward-looking, the combination of con-
cave cutoffs (fig. 3 vs. fig. 5) and waiting buyers produces a fire sale, as
illustrated by figure 4. Indeed, while total sales are higher with forward-
looking buyers, sales in the first period are higher with short-lived buy-
ers.25 This is easily seen in the limit as d → 1, where a seller facing
forward-looking buyers simply holds an auction at time T.
Overall, these results suggest that,when retailers are facedwith forward-

looking buyers, cutoffs are relatively constant and then drop rapidly, and
sales are back-loaded. They also suggest that firms should encourage buy-
ers to be forward-looking. This could mean having regular, predictable
sales (e.g., Nordstrom’s half-yearly sale) and notifying buyers when a sale
is about to take place. Sellers could also embrace tools that help custom-
ers time their purchases including price prediction tools and price alerts
(e.g., Kayak) and price-freezing options (e.g., United).

VI. Extensions

In this section we consider a number of extensions. This has the dual
purpose of allowing us to explore the robustness of the main results as
well as illustrating the applicability of the model.

FIG. 5.—Short-lived buyers with two units. The left panel shows the optimal cutoffs and
prices when the seller starts with two units and buyers are short-lived. The right panel shows
the unconditional probability of sale of one/both units. The parameters are the same as in
figure 3.

25 Proof: The forward-looking cutoffs exceed the short-lived cutoffs since delaying sale
has a higher option value. In the first period, there is no backlog of buyers in either case,
so the probability of a sale is higher under myopia.
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A. Inventory Costs

In the benchmark model we assume that impatience comes from pro-
portional discounting. However, in some applications, a primary cost
of delay comes from the cost of maintaining inventories. For example,
a retailer prefers to sell these units sooner rather than later because they
take up valuable shelf space in the store. In order to model this form of
impatience, suppose that buyers do not discount over the shopping sea-
son, d5 1, but the seller pays a per-unit inventory cost, ct; so a firm selling
in period t gets profit pt 2 ct, where ct increases in t.26 We can adapt (5) to
obtain the firm’s profits,

Profit 5 E 0 o
i

½mðviÞ2 cti �1ti≤T 2 K 2o
i

1ti≤T

� �
cT11

� �
:

Much of the previous analysis carries over to this new setting. The op-
timal cutoffs are deterministic (theorem 1). If the number of arriving
buyers Nt falls over time and costs ct are convex in t, then the cutoffs de-
cline and the one-period-look-ahead property holds (theorem 2). In the
continuous-time limit, if the arrival rate lt and marginal cost Dct ≔ ct11 2
ct are Lipschitz continuous, then the optimal cutoffs can be implemented
with prices (theorem 3).27

To see the effect of inventory costs, suppose that entry is decreasing
and costs ct are convex, so the marginal cost Dct weakly increases in t.
Adapting (17), the one-period-look-ahead property implies that cutoffs
are determined by

mðxk
t Þ1 Et11½Pk21

t11 ðvt11Þ� 5 Et11½maxfmðxk
t Þ;mðv1

t11Þg�
1 Et11½Pk21

t11 ðfxk
t ; vt11g2

kÞ�2 Dct

for t < T, with mðxk
T Þ 5 2DcT . The resulting cutoffs are decreasing over

time because the option value of delay falls, while the cost of delay Dct
rises. In the continuous-time limit, assuming ct is differentiable, we can
adapt (18) to obtain

dct
dt

5 ltE ½maxfmðvÞ2 mðxk
t Þ; 0g1 Pk21

t ðminfv; xk
t gÞ2 Pk21

t ðvÞ�:

26 We eliminate discounting for simplicity; one could include both inventory costs and
discounting.

27 To prove theorem 1 one must change the difference formula DPk
t to account for the

cost of delay. One should also interpret discounted stopping time d
t in parts b and c of

lemma 3 as 1t≤T ; this is still strictly less than one in expectation because of the possibility
of stocking out. For theorem 2, the first step of lemma 4 should be changed so that
D̂Pk

t11 assumes that there areNt11 entrants (rather thanNt12) and the delay cost isDct (rather
than Dct11). If the number of entrants is weakly decreasing and cutoffs are convex, then
DPk

t11 ≥ D̂Pk
t11. For theorem 3, the DPk

t terms have to be adjusted to account for the chang-
ing marginal costs, but this new term is also Lipschitz continuous by assumption.

1072 journal of political economy



Adapting (20), prices are then determined by the differential equation

dpk
t

dt
5

dxk
t

dt
f ðxk

t ÞEt

stðxk
t Þ
lsds 2 lt ½12 F ðxk

t Þ�
( )

½xk
t 2 pk

t
2 U k21

t ðxk
t Þ�

with boundary condition analogous to (19). Note that although buyers
do not discount, they are still impatient because delay may lead the seller
to sell the good to another buyer and stock out.

B. Arriving and Expiring Supply

In the benchmark model, there are K units of a good that can be sold
over time {1, . . ., T }. However, in some applications, supply arrives and
departs over time. For example, consider the Fulton Fish Market, where
dealers must sell their fish to customers arriving over time prior to the
end of the week (Graddy 2006). During the week, new stock arrives,
largely determined by weather conditions, while fish expire after a few
days, resulting in an exogenous death process. A similar issue arises with
airlines or display ads, where the seller sells a sequence of goods with dif-
ferent flight/broadcast times.
We model arrivals by supposing that there is an arrival process (a1, . . .,

aT) such that at units have arrived in the market by date t. Similarly, there
is an exogenous death process (b1, . . ., bT) such that bt goods must be sold
by date t, else they disappear. Finally let zt be the number of goods dis-
posed by time t. The seller’s problem is then to maximize profit (5) sub-
ject to the constraint that the number of sales plus disposals satisfy

at ≥o
i

1ti≤t 1 z t ≥ bt :

One can then view the baseline model as a special case in which there are
K goods at time t 5 1 that expire at time T. If we let K 5 aT be the total
number of units available and k be the number that have yet to be sold/
destroyed, lemma 1 implies that we can characterize the optimal alloca-
tions by a sequence of cutoffs fxk

t gk∈f1; ::: ;Kg, where the seller must sell/de-
stroy between at and bt units by time t.
Much of the previous analysis carries over to this new setting. The op-

timal cutoffs are deterministic (theorem 1).28 The cutoff for the last
unit to expire in a given period jumps to m21(0), while the cutoffs for
previous units that expire in the same period continuously converge
to m21(0). Intuitively, if a single unit expires, there may be an entrant
at the last moment with a value higher than y1; the probability of two
or more entrants is zero. Prior to expiring, if Nt is weakly decreasing

28 Theorem 1 derives from the fact that the decision to sell to y1 does not affect when y 2

gets a unit, so the new constraints on the supply side have no impact on this result.
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over time and at, bt are deterministic, then cutoffs fall over time and the
one-period-look-ahead property holds (theorem 2).29 This result fails,
however, if entry or departure is stochastic; for example, if the market
expects a large delivery of fish but few turn up, then the cutoff will rise.
Turning to prices, one can use prices to implement the optimal alloca-
tions (theorem 3) with an auction for the last unit to expire in a period,
since this is when the cutoffs jump down. However, as discussed in Section
V.A, one can approximate these auctions with posted prices analogous to a
Dutch auction.

C. Third-Degree Price Discrimination

The benchmarkmodel assumes that all customers look alike to the seller.
However, in some applications, firms can divide their customers intomul-
tiple groups. For example, Yahoo! sells ad space to movie studios that de-
mand richmedia ads (e.g., video, flash) and to insurance companies that
buy static display ads. Similarly, Graddy (2006) discusses how dealers in
the Fulton Fish Market discriminate between white and Asian buyers,
who often resell to very differentmarkets and therefore have different de-
mand functions.
To model group pricing, suppose that buyers of rich and static ads are

drawn from distributions fR and fS, inducing marginal revenues mR and
mS, and the seller knows from which distribution a given buyer is drawn.
The seller has K units that she can allocate to either type of buyer. The
seller’s problem is thus to maximize profit

Profit 5 E 0 o
i

dtimiðviÞ
� �

;

subject to the constraint oi1ti≤T ≤ K , where mi ∈ {mR, mS}. The major dif-
ference relative to the benchmark model is that the ranking of buyers’
values no longer corresponds with the ranking of the marginal revenues.
If the fR hazard rate dominates fS, then a static buyer with the same value
as a rich-media buyer will have a higher marginal revenue, and the seller
will bias allocation in favor of the static buyer.
To solve the problem, the seller should now treat the k highest mar-

ginal revenues {m1, . . ., mk} as the state variable rather than the underlying
values. The optimal cutoffs (inmarginal revenue space) are deterministic
(theorem 1). If the number of both types of entrants is weakly decreasing
over time, then the order statistics of the entrants’ marginal values fall
over time and the one-period-look-ahead property holds (theorem 2).

29 For theorem 2, the key step is to observe that if future cutoffs and Nt are decreasing
over time, then tk21

t11 ðzÞ2 ðt 1 1Þ ≥ tk21
t12 ðzÞ2 ðt 1 2Þ in lemma 4, even if units expire at dif-

ferent times. This means that the option value of delay falls over time, along with the cut-
off.
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The seller can then implement the optimal cutoffs with two different
price paths for the two types of buyers (theorem 3). These are related
through the inventory, so a sale of a static ad raises the prices for both
types of buyers.30

D. Changing Distributions of Incoming Values

The benchmark model assumes that demand is IID, no matter when a
buyer enters the market. However, in some applications, the distribution
of entrants’ values may change over time. For example, in the airline
market, McAfee and Te Velde (2006) observe that prices rise in the last
few days before the flight date, suggesting that late-arriving buyers have
higher values.31 If we suppose that buyers who enter in period t have dis-
tribution Ft, each generation is associated with a different marginal rev-
enue and equation (5) can be adjusted to yield

Profit 5 E 0 o
i

dtimtiðviÞ
� �

:

As in Section VI.C, the seller would thus like to bias allocation toward
generations with higher marginal revenues for a given value, which
broadly corresponds to generations with weaker distributions (in the haz-
ard rate order). As above, if the seller can discriminate between differ-
ent generations, then she can use the highest marginal revenues as state
variables and implement these with cohort-specific price paths pk

t
ðt iÞ.

This may take a relatively simple form: for example, if the distributions
are exponential, F tðvÞ 5 12 e2v=mt , then mtðvÞ 5 v 2 mt and the seller
can use nondiscriminatory posted prices pk

t
with a cohort-specific fee

of e2r tmt i
. Even if the seller cannot discriminate between different co-

horts, this mechanism is still incentive compatible if the distribution Ft
gets stronger over time, as with airlines. In this case, the seller would like
to bias allocation toward earlier generations, and the intergenerational
IC constraints will be slack since a generation t buyer would not wish to
pretend to be born in t1 1 (and cannot pretend to be born in t2 1). For
example, in the above exponential example, the seller could implement

30 Theorem 1 relies on the fact that a buyer’s allocation depends only on his marginal
revenue and his rank; the distribution and arrival rate of marginal revenues can vary over
time, as long as they are independent of past realizations (which ensures that the marginal
revenues are a sufficient state variable). The proof of theorem 2 is identical. For theorem 3,
observe that the cutoffs in marginal revenue space correspond to different cutoffs in value
space for the different buyers. These are Lipschitz continuous if lt is Lipschitz continuous
and can be implemented in prices, with a different price sequence for each type of buyer.

31 Lazarev (2013) estimates such a model with “business” and “leisure” customers and
finds that, in order to justify realized price paths, business customers constitute a quarter
of the market, have values up to six times higher than those of leisure customers, and tend
to enter in the market in the last week.
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the optimalmechanism by issuing a coupon worth e2r tðmT 2 mt i
Þ to a buyer

who registers for a flight in period ti and buys at time t.32

In some applications, it is natural to consider a nondiscriminatory
price scheme, pk

t
, which would lead buyers in the market with values ex-

ceeding some cutoff xk
t to buy at time t, independent of their birth date.

Since buyers from different generations will merge, one must consider
the averagemarginal revenue from selling to a particular type (see Board
[2008] for a related construction).While we will not solve this problem, it
is interesting to note that the introduction of long-lived, forward-looking
buyers may now lower the firm’s profits. When buyers become long-lived,
the seller gains from the option value to delay selling a unit but loses from
intergenerational price discrimination becoming harder. If the distribu-
tion Ft gets stronger over time, profits are still higher with long-lived buy-
ers because a delaying buyer has a higher marginal revenue than a youn-
ger buyer.33 However, if the distribution Ft grows weaker over time, then
profits may be lower with long-lived customers as stronger generations
delay to merge with weaker generations.

E. Disappearing Buyers

The benchmark model assumes that buyers are long-lived, remaining in
the market until they buy. However, in some applications, it would seem
natural to allow buyers to exit probabilistically over time. For example,
when an owner wishes to sell her house, the potential buyers will disap-
pear if they purchase another property.
This extension considerably complicates the analysis. First, it means

that the seller must keep track of all remaining buyers, rather than just
the khighest, since any buyermay disappear at any time. Second, itmeans
that theorem 1 fails and optimal cutoffs are no longer deterministic. To
understand why, suppose that there are two buyers with values vH > vL and
one good. The seller’s decision to award the good to buyer vHwill depend
on the level of vL because if the seller delays, buyer vHmay disappear, forc-
ing the seller to award the good to vL. It immediately follows that posted
prices are not optimal: The seller would like to elicit the value vL before
deciding whether or not to award the good to vH.
The general problem with this example is that the seller’s ranking of

buyers can change over time. In the above example she initially prefers

32 If demand weakens over time, then the intergenerational IC constraints will bind.
This is an interesting problem but is beyond the scope of this paper.

33 Proof: Fix some optimal cutoffs with short-lived buyers xk
t . Now, suppose that a buyer v

who enters in period s < t gives rise to a doppelgänger in period t with marginal revenue mt

(v). Since we have just increased the number of buyers in each period, this raises the sell-
er’s expected profit. Next, suppose that this buyer contributed marginal revenue msðvÞ ≥
mtðvÞ if he buys in period t. This second step increases the seller’s profits in every state;
it also corresponds to the profit with forward-looking buyers and cutoffs xk

t .
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vH to vL but may prefer vL in period 2 if vH disappears (since disappearing
is isomorphic to having one’s value jump to zero). This problem is also
seen if different types of buyers have different discount factors, d∈fdL; dHg,
since the seller’s ranking of a more patient buyer can rise above that of a
less patient buyer over time. Hence the optimal mechanism is again not
deterministic: the seller should elicit the value of patient buyers before
awarding a unit to an impatient buyer.
When thinking about the housing application, this analysis helps ex-

plain the use of indicative bidding mechanisms in real estate pricing. If
the house seller thinks that a buyer may disappear at any stage, then
the optimal mechanism will have buyers first submit indicative bids be-
fore the seller makes a counteroffer to the highest bidder.

VII. Conclusion

We have considered a seller who wishes to sell multiple goods by a dead-
line to buyers who enter the market over time and are forward-looking.
The optimal mechanism consists of a sequence of cutoffs that are deter-
ministic and, in continuous time, can be implemented with posted prices.
If the number of entrants decreases over time, the cutoffs are also decreas-
ing and satisfy the one-period-look-aheadproperty, while prices are charac-
terized by an intuitive differential equation.
The analysis provides a natural benchmark for a number of markets,

such as retailing, ad auctions, and airlines. For retailing, our results make
predictions about when retailers should initiate sales and how quickly
prices should fall. If consumers enter uniformly over time, then, fixing
the inventory, prices should be decreasing and concave. If consumers
are very aware of when new products are released, entry will decrease
over time and prices should fall even faster. And if the good is faddish,
then agents are more impatient, sales are more front-loaded, and prices
will decline faster. For ad auctions, our results make predictions about
the price paths and popularity of ad exchanges used for last-minute ex-
cess capacity. Such ad exchanges are large and anonymous, selling slots
on the basis of demographics and giving rise to the seller’s reservation
value, v0. Our results then show that the price in the forward market
should always converge to the same final price, independent at the re-
maining inventory, and that this last-minute price exceeds the clearing
price in the exchange. Moreover, as prebooking becomes more impor-
tant for buyers (e.g., movie releases), then sales shift forward, ad ex-
changes become less popular, and prices for a fixed inventory fall faster.
For airlines, evidence suggests that the distribution of values increases
over time (e.g., Lazarev 2013), meaning that anonymous prices are no
longer optimal. In such a situation, our model indicates that the seller
can raise profits by using a coupon-based mechanism, whereby buyers
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who register earlier get larger coupons giving them a discount on the
market price.
Our analysis helps us understand broader features of pricing data. If

buyers are long-lived, then price declines lead to temporary bursts of
sales, price paths exhibit more last-minute discounts, sales are more
back-loaded, and profits are higher than in a world with short-lived buy-
ers. The results thus help researchers identify whether buyers are long-
or short-lived in particular markets and assess the incentives for firms
to encourage such behavior via “price alerts,” “contingent contracts,” or
other mechanisms. The paper characterizes the optimal price path under
commitment, and so also helps one understand how much commitment
power firms possess. As a comparison, without commitment, one would
expect the seller to dispose of much more of her inventory by date T and
for prices to cycle as the seller discards excess capacity (Conlisk, Gerstner,
and Sobel 1984; Dilme and Li 2012). Finally, by showing that the opti-
mal mechanism can be implemented via posted prices, we help explain
the limited appeal of more complicated auction-likemechanisms and also
clarify when they are of use (e.g., when there is a mix of short- and long-
lived buyers).
While our model provides a natural benchmark, specific applications

raise a number of issues that are not covered by our analysis. First, one
would like to allow the seller to learn about the rate at which buyers en-
ter, implying that the Nt variables are correlated over time. In this case,
cutoffs are still deterministic, but they will depend on the number of
past entrants, which are indicative of future entry. Indeed, Gershkov,
Moldovanu, and Strack (2013) solve such a model and show that if buy-
ers arrive according to a Poisson process, then it is incentive compatible
for buyers to announce their arrival date truthfully. Second, for some
markets, one should interpret our model of proportional discounting
as a reduced form for “attention costs” or “coordination costs.” It would
be interesting to model this in a more sophisticated way. Finally, since ad
slots on a website differ by position and size, one would like to allow for
different qualities of goods, studying how buyers trade off intratemporal
decisions (e.g., which type of ad to buy) and intertemporal decisions
(when to buy).

Appendix

A. Proof of Lemma 3

Part a: We wish to prove that

DPk
t ðyÞ 5 mðy1Þ1 d~Pk21

t11 ðy21Þ2 d~Pk
t11ðyÞ
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is independent of y21. Consider buyer y j at time t for j ≥ 2, and let rs( j) denote his
rank in the distribution of buyers, including y and all subsequent entrants, at
time s > t. Since future cutoffs are deterministic and do not depend on the sell-
er’s choice to sell at time t, lemma 2 implies that, whether or not the seller sells at
time t, buyer y j is allocated a good at the first time t such that y j ≥ xk2r tð jÞ11

t
. Since

the allocation of y j is independent of the decision whether or not to sell a unit at
time t, y j makes the same contribution to profits (5) in both cases, and DPk

t ðyÞ is
independent of y j.

Part b : Continuity follows from the envelope theorem. Using equation (14),

d

dy1
Pk

t ðsell 1  todayÞ 5 m 0ðy1Þ:

Using equation (13) and the envelope theorem,

d

dy1
Pk

t ðsell 0  todayÞ 5 m 0ðy1ÞEt11½dtk1ðy1Þ2t �;

where tk1ðy1Þ is the time y1 buys when he is in first position at time t and there are k
goods to sell. The result follows from the fact that tk1ðy1Þ > t and d < 1.

Part c: Suppose that fxk
sgs ≥t11

are deterministic and decreasing in k. We first
prove a preliminary result. Let fy1; ::: ; ykg and f~y 1; ::: ;~ykg be ordered vectors,
where y j ≥ ~y j for each j. We claim that for time j ≥ t 1 1,

Pk
j
ðy1; ::: ; ykÞ2 Pk

j
ð~y 1; ::: ;~ykÞ

5 E j11 d2jEfy1; ::: ;ykg

f~y 1
; ::: ;~y kg

½m 0ðz1Þdtk1ðz1Þ; ::: ;m 0ðzkÞdtkkðzkÞ�dðz1; ::: ; zkÞ
" #

≥ E j11 d2jEfy1; ::: ;ykg

f~y 1
; ::: ;~y kg

½m 0ðz1Þdtk21
1 ðz1Þ; ::: ;m 0ðzkÞdtk21

k ðzk Þ�dðz1; ::: ; zkÞ
" #

5 Pk21
j

ðy1; ::: ; ykÞ2 Pk21
j

ð~y1; ::: ;~ykÞ:

ðA1Þ

The first line applies the envelope theorem to equation (11), where tkj is the pur-
chasing time of the buyer in the j th position at time j when there are k objects
for sale. The second line follows from the fact that tkj ðzjÞ ≤ tk21

j ðzjÞ since fxk
sgs≥j11

are decreasing in k. Note that tk21
k 5 ∞ since a seller with k 2 1 goods cannot al-

locate a kth good. The final line again uses the envelope theorem.
Suppose that the seller has k units at time t. In periods s ≥ t, the seller follows

the optimal strategy as dictated by the deterministic, decreasing cutoffs fxk
sgs≥t11

.
By part a, DPk

t ðy1Þ is independent of the other buyers, so we can set y21 5 ∅.
Letting v j

ðt ;s� be the jth-highest value of a buyer who has entered over {t1 1, . . .,
s), define j 5 minfs ≥ t 1 1 : maxfy1; v1

ðt ;s�g ≥ xk21
s g as the (random) time the seller

with k units at time t 1 1 next makes a sale. Define vðt;j� ≔ fv1
ðt ;j�; ::: ; v

k
ðt ;j�g, let

fvðt;j�g1

k21
be the ordered vector of the largest k 2 1 elements from vðt;j�, and let

fy1; vðt;j�g2

k
be the second- to k th-highest choices from fy1; vðt;j�g. We claim that
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DPk
t ðy1Þ 5 mðy1Þ1 d~P

k21

t11 ð∅Þ2 d~P
k

t11ðy1Þ
5 mðy1Þ1 Et11½dj2t ½Pk21

j
ðfvðt;j�g1

k21
Þ2maxfmðy1Þ;mðv1

ðt ;j�Þg
2 Pk21

j
ðfy1; vðt;j�g2

k
Þ��

≥ mðy1Þ1 Et11½dj2t ½Pk22
j

ðfvðt;j�g1

k21
Þ2maxfmðy1Þ;mðv1

ðt;j�Þg
2 Pk22

j
ðfy1; vðt;j�g2

k
Þ��

≥ mðy1Þ1 d~P
k22

t11 ð∅Þ2 d~P
k21

t11 ðy1Þ
5 DPk21

t ðy1Þ:
The first line is the definition ofDPk

t ðy1Þ. The second line uses the fact that a seller
with k units makes a sale weakly before a seller with k2 1 units since future cutoffs
are decreasing in k. The third line comes from (A1) and the fact that fy1; vðt;j�g1

k21

is pointwise larger than fy1; vðt;j�g2

k
. The fourth line uses the fact that a seller with

k 2 1 goods stops at a weakly later time than a seller with k units, so

dt11 ~P
k22

t11 ð∅Þ 5 Et11½djPk22
j

ðfvðt;j�g1

k21Þ�
and

dt11 ~P
k21

t11 ðy1Þ ≥ Et11½maxfmðy1Þ;mðv1
ðt;j�Þg1 Pk22

j
ðfy1; vðt;j�g2

kÞ�:
QED

B. Proof of Lemma 4

The proof is in two steps. First, we wish to nullify the effect of the decreasing de-
mand so we can compare like with like. Writing out the value of selling immedi-
ately, we have

DPk
t11ðy1Þ 5 mðy1Þ1 dEt12½Pk21

t12 ðfvt12g1

k21Þ�
2 dEt12½maxfmðy1Þ;mðv1

t12Þg1 Pk21
t12 ðfy1; vt12g2

kÞ�;
where we use the analogue of lemma 3(a) to ignore y21. We now show that the
option value of waiting is higher if the entrants have higher values. If we use
the envelope theorem to differentiate

Pk21
t12 ðfvt12g1

k21Þ2maxfmðy1Þ;mðv1
t12Þg2 Pk21

t12 ðfy1; vt12g2

kÞ ðA2Þ
with respect to v j

t12, we obtain

m 0ðv j
t12Þ½dt̂

1

j ðv j

t12Þ 2 dt̂
0

j ðv j

t12Þ�d2ðt12Þ; ðA3Þ
where t̂1j is the purchasing time of v j

t12 under “sell 1 today” and t̂0j is the purchas-
ing time under “sell 0 today and ≥ 1 tomorrow.” In the former case, v j

t12 has rank j
at time t 1 2; in the latter case, v j

t12 may have rank j or j 2 1. Given that future
cutoffs are deterministic, t̂0j ðv j

t12Þ ≤ t̂1j ðv j
t12Þ and (A3) is negative. Hence (A2) is

decreasing in vt12.
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Now, let v̂t12 be order statistics at time t 1 2 drawn from the same distribution
as Nt11. Replacing vt12 with v̂t12 in DPk

t11ðy1Þ, define
D̂Pk

t11ðy1Þ 5 mðy1Þ1 dEt12½Pk21
t12 ðfv̂ t12g1

k21Þ�
2 dEt12½maxfmðy1Þ;mðv̂ 1

t12Þg1 Pk21
t12 ðfy1; v̂ t12g2

kÞ�:
Since Nt is decreasing in the usual stochastic order, v̂t12 exceeds vt12 in the usual
stochastic order, and since (A2) is decreasing in vt12, DP

k
t11ðy1Þ ≥ D̂Pk

t11ðy1Þ. Intu-
itively, the seller has more to gain from selling today if there are fewer entrants
tomorrow.

For the second step, we prove that D̂Pk
t11ðy1Þ ≥ DPk

t ðy1Þ. To do this, we can
write the Pk21

t11 terms in DPk
t ðy1Þ in terms of a single variable and then apply the

envelope theorem to obtain

Pk21
t11 ðfvt11g1

k21Þ2 Pk21
t11 ðfy1; vt11g2

k
Þ

5 Pk21
t11 ðfv1

t11; v
�1
t11g1

k21
Þ2 Pk21

t11 ðfmaxfvk
t11;minfy1; v1

t11gg; v�1
t11g1

k21
Þ

5 Et12 Ev1
t11

maxfvk
t11;minf y1;v1

t11gg
m 0ðzÞdtk21

t11 ðzÞ2ðt11Þ   dz

" #
;

where tk21
t11 ðzÞ is the time the object is allocated to type z looking forward from

time t1 1, holding v21
t11 constant. The same term in D̂Pk

t11ðy1Þ is defined the same
way but advanced one period. That is,

Pk21
t12 ðfv̂ t12g1

k21Þ2 Pk21
t11 ðfy1; v̂ t12g2

kÞ

5 Et13 Ev̂
1

t12

maxfv̂ k

t12;minfy1;v̂ 1

t12gg
m 0ðzÞdtk21

t12 ðzÞ2ðt12Þ   dz

" #
:

Recall that buyer z buys a unit at time s if he has the highest value and his value is
above the corresponding cutoff. Since v̂t12 and vt11 have the same distribution,
we can suppose v̂t12 5 vt11. If tk21

t11 ðzÞ 5 s for s < T, then tk21
t12 ðzÞ ≤ s 1 1 since fu-

ture cutoffs decrease in t and Nt falls over time.34 In addition, if tk21
t11 ðzÞ 5 T , then

tk21
t12 ðzÞ ≤ T since more entrants enter over time. Putting this together, tk21

t11 ðzÞ2
ðt 1 1Þ ≥ tk21

t12 ðzÞ2 ðt 1 2Þ for all z. Taking expectations over the distribution of
entrants, the integral equations then imply that D̂Pk

t11ðy1Þ ≥ DPk
t ðy1Þ. Combining

both parts of the proof, we thus haveDPk
t11ðy1Þ ≥ D̂Pk

t11ðy1Þ ≥ DPk
t ðy1Þ as required.

C. Proof of Theorem 3

This proof consists of several steps. For a small time interval h, lemma 5 shows
that cutoffs do not jump down more than ah in any period t < T. Lemma 6 dem-
onstrates that the cutoffs also do not jump down in the last period as long as k ≥
2. Finally, lemma 7 shows that the seller can use posted prices to obtain the prof-
its from the optimal mechanism, P*.

34 If N s ≥ N s11 in the usual stochastic order, then there exists a state space Q such that
N sðqÞ ≥ N s11ðqÞ almost surely. We are implicitly adopting this state space to conclude that
the stopping time is ranked almost surely.
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Lemma 5. For t ≤ T 2 2h, there exist positive constants a, h0 such that xk
t 2

xk
t1h ≤ ah for h < h0.
Proof. Let Lt1h 5 ∫

t1h

t lsds be the arrival rate over (t, t1 h], and let Nt1h be the
realized number of arrivals in period t 1 h. We then have

Pk
t ðsell 1 todayÞ 5 mðy1Þ1 e2rhe2Lt1hPk21

t1h ð∅Þ
1 e2rhð12 e2Lt1h ÞEt1hjN t1h≥1½Pk21

t1h ðvt1hÞ�;
Pk

t ðsell ≥ 1 tomorrowÞ 5 e2rhe2Lt1h ½mðy1Þ1 Pk21
t1h ð∅Þ�

1 e2 rhð12 e2Lt1h ÞEt1hjN t1h≥1½maxfmðy1Þ;mðv1
t1hÞg

1Pk21
t1h ðfy1; vt1hg2

hÞ�:
Subtracting the second line from the first,

DPk
t ðy1Þ 5 ð12 e2rhÞmðy1Þ1 e2rhð12 e2Lt1h ÞEt1hjN t1h≥1½mðy1Þ1 Pk21

t1h ðvt1hÞ
2maxfmðy1Þ;mðv1

t1hÞg2 Pk21
t1h ðfy1; vt1hg2

kÞ�;
ðA4Þ

where the term in brackets is between zero and 2mðvÞ. We would like (1) a lower
bound on how DPk

t ðy1Þ changes in y1 and (2) an upper bound on how DPk
t ðy1Þ

changes over time.
For point 1, letm 0 ≔ inf v∈½v ;�v �m

0ðvÞ; this is strictly positive becausem(v) is strictly
increasing and continuously differentiable. Differentiating (A4),

d

dy1
DPk

t ðy1Þ ≥ ð12 e2rhÞm 0ðy1Þ ≥ 1

2
rhm 0 ðA5Þ

for h ≤ h0 ≔ ðln 2Þ=r .
For point 2, note that PrðNt 5 1Þ 5 Lt e

2Lt and PrðN t ≥ 2Þ 5 12 e2Lt ð11 LtÞ ≤
L2

t ≤ l
2
h2, using the fact that 12 e2x ≤ x for x ≥ 0 and �l ≔ maxt∈½0;T �lt . Splitting (A4)

into the case in which there is one entrant and that in which there are multiple
entrants,

DPk
t ðy1Þ ≥ ð12 e2rhÞmðy1Þ1 e2rhLt1he

2Lt1h Ev ½mðy1Þ1 Pk21
t1h ðvÞ

2maxfmðy1Þ;mðvÞg2 Pk21
t1h ðminfy1; vgÞ�2 �l

2
mð�vÞh2;

ðA6Þ

where Ev is the expectation over the value of a single entrant. Advancing one
period,

DPk
t1hðy1Þ ≤ ð12 e2rhÞmðy1Þ1 e2rhLt12he

2Lt12h Ev ½mðy1Þ1 Pk21
t12hðvÞ

2maxfmðy1Þ;mðvÞg2 Pk21
t12hðminfy1; vgÞ�:

Subtracting these and completing the square gives us

DPk
t1hðy1Þ2DPk

t ðy1Þ ≤ e
2rhðLt12he

2Lt12h 2 Lt1he
2Lt1h Þ

�Ev ½mðy1Þ1 Pk21
t1h ðvÞ2maxfmðy1Þ;mðvÞg2 Pk21

t1h ðminfy1; vgÞ�
1 e2rhLt12he

2Lt12h Ev ½ðPk21
t12hðvÞ2 Pk21

t12hðminfy1; vgÞÞ
2ðPk21

t1h ðvÞ2 Pk21
t1h ðminfy1; vgÞÞ�1 �l

2
mð�vÞh2:
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Consider the first term on the right-hand side. If Lt12h ≥ Lt1h , the entire term is
negative and so is bounded above by zero. Conversely, assume Lt12h < Lt1h . Using
the mean value theorem, let Lt1h 5 ~lt1hh, for some ~lt1h in the range of flt :
t ∈½t; t 1 h�g, and similarly for Lt12h. And since lt is Lipschitz continuous, let the
bound on its derivative be denoted b. The first right-hand-side term is bounded
above by

ðLt1he
2Lt1h 2 Lt12he

2Lt12h Þmð�vÞ ≤ ðLt1h 2 Lt12hÞð12 Lt12hÞe2Lt12hmð�vÞ
≤ ð~l t1h 2 ~l t12hÞmð�vÞh2 ≤ 2bmð�vÞh2;

where the first inequality uses the fact that ze2z is increasing and concave on z ∈ [0,
1] and so can be bounded by its tangent through z5 Lt12h. With the second right-
hand-side term, we claim that

Pk21
t1h ðvÞ2 Pk21

t1h ðminfy1; vgÞ 5 Et12h Ev

minfy1;vg
m 0ðzÞe2r ðt k21

t1h ðzÞ2t2hÞdz

" #

using the envelope theorem as in (A1), where tk21
t1h ðzÞ is the purchasing time of the

single buyer present at time t 1 h. Subtracting these two integrals, we claim that
the second term is

e2rhLt12he
2Lt12h

(
Et13h Ev

minfy1;vg
m 0ðzÞe2rðt k21

t12hðzÞ2t22hÞdz

" #

2 Et12h Ev

minfy1;vg
m 0ðzÞe2rðt k21

t1h ðzÞ2t2hÞdz

" #)

≤ �lh½ð12 e2Lt12h Þmð�vÞ1 e2Lt12h ð12 e2rhÞmð�vÞ�
≤ �lð�l 1 r Þmð�vÞh2:

The first inequality comes from considering two cases. If there is entry over (t1 h,
t 1 2h], then this might lead to tk21

t1h ðzÞ 5 ∞, yielding an upper bound of mðvÞ. If
there is no entry, then tk21

t1h ðzÞ ≤ tk21
t12hðzÞ, implying an upper bound of ð12

e2rhÞmðvÞ. The second inequality uses the fact that 12 e2x ≤ x for x ≥ 0. Putting
all this together, we have

DPk
t1hðy1Þ2 DPk

t ðy1Þ ≤ ð2b1 2�l
2
1 �lrÞmð�vÞh2: ðA7Þ

To finish the proof, suppose that xk
t1h ≤ xk

t , else there is nothing to prove. We
now claim that

ð2b1 2�l
2
1 �lrÞmð�vÞh2 ≥ DPk

t1hðxk
t Þ2 DPk

t ðxk
t Þ

5 Ex k
t

x k
t 1h

d

dy1
DPk

t1hðy1Þdy1 1 DPk
t1hðxk

t1hÞ

≥ ðx k
t 2 xk

t1hÞ
1

2
rhm 0
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for h ≤ h0. The first inequality comes from (A7), the second line usesDPk
t ðxk

t Þ 5 0,
and the third lines usesDPk

t1hðxk
t1hÞ ≥ DPk

t1hðxk
t1hÞ 5 0 and (A5). Rearranging then

implies that there exists a > 0 such that ðxk
t 2 xk

t1hÞ ≤ ah for h ≤ h0. QED
Lemma 6. If k ≥ 2, there exist positive constants a, h0 such that xk

T2h 2 xk
T ≤ ah

for h ≤ h0.
Proof. In period t 5 T 2 h, if m(y1) ≥ 0, then (A6) becomes

DPk
T2hðy1Þ ≥ ð12 e2rhÞmðy1Þ2 �l

2
mð�vÞh2; ðA8Þ

since the term in brackets in (A6) is zero.
In period T, we have xk

T 5 m21ð0Þ. Since the seller will never sell to a buyer with
negative marginal revenue, we have xk

T2h ≥ xk
T . We now claim that

�l
2
mð�vÞh2 ≥ DPk

T2hðxk
T2hÞ2 DPk

T2hðxk
T Þ

5 Exk
T2h

xk
T

d

dy1
DPk

T2hðy1Þdy1

≥ ðxk
T2h 2 xk

T Þ
1

2
rhm 0

for h ≤ h0. The first line uses (A8), mðxk
T Þ 5 0, and DPk

T2hðxk
T2hÞ 5 0. The second

line follows from the fundamental theorem of calculus. The third line uses (A5).
Rearranging yields the result. QED

Lemma 7. The firm can obtain profitsP* 2O(h) by using posted prices with a
second-price auction for the last unit at time T.

Proof. We use the following mechanism: In each period the seller chooses a
price pk

t
and allocates the good to anyone willing to pay; the only exception is in

period T if there is a single unit, when she runs a second-price auction with re-
serve e2rTm21ð0Þ. If there is more demand than supply in a given period, alloca-
tions are randomized.

First, we claim that these prices induce a series of cutoffs xk
t , such that buyers

wish to buy if their value exceeds the cutoff, where k is the number of units at the
start of the period. To see this, observe that since buyers enter according to a
Poisson process, each type (v, t) has the same expectation over prices. A buyer
with type (v, t) thus chooses a (random) purchasing time t after his entry date
t to maximize

uðv; t; tÞ 5 E 0½v1t ≥ t e
2rt 2 p

t
�: ðA9Þ

Here, the price pt is a random variable, depending on the sales to other buyers. If
other buyers demand as many as or more units than the seller has to offer, the
price may also rise to infinity depending on the priority of the buyer at the ration-
ing stage; a choice of t5 ∞ then indicates that the buyer does not buy. The func-
tion u(v, t, t) has strictly decreasing differences in (v, t) since r > 0 and is (weakly)
supermodular in t. Hence every optimal selection t*(v, t) is decreasing in v by
Topkis (1998, theorem 2.8.4), and we can let xk

t 5 inffv : t*ðv; tÞ 5 tg be the low-
est type who wishes to buy in period t.

Conversely, we claim that any sequence of cutoffs canbe implemented by prices.
These prices can be constructed by backward induction (e.g., Kruse and Strack
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2014). Alternatively, one can consider the utility of a buyer with type xk
t who enters

at time t,

e2r t xk

t 2 pk

t
5 E 0 E

v

xk
t

e2rtðz;tÞdz

" #
;

where the left-hand side is his direct utility, and the right-hand side comes from
applying the envelope theorem to utility (A9). In this equation, t(z, t) is the (ran-
dom) purchasing time of a buyer with value z born at time t induced by the cut-
offs fxk

tg and the rationing rule.
We next claim that a posted price mechanism attains profits P*(h) 2 O(h),

where P*(h) is the seller’s profits from the optimal mechanism in the discretized
problem. To do this, consider the case in which t < T or t 5 T and k ≥ 2 and as-
sume that the seller chooses the prices so that the induced cutoff xk

t coincides
with the optimal cutoffs when starting the period with k units. This will imple-
ment the wrong allocation only if two buyers wish to buy in a single period, in
which case the loss is bounded by mðvÞ. To show that two sales occur with small
probability, fix a realization of cutoffs up to time t 2 h. Let st(x) denote the last
time the cutoff went below x when looking back from time t. Over the time (t2 h,
t], the next sale arrives according to a nonhomogeneous Poisson process in
which the integral of the arrival rate is, for h ≤ h0,

Ft 5 Exk
t2h

xk
t

Et2h

st ðzÞ
ls  dsdF ðzÞ1 Et

t2h

lsds

 !
½12 F ðxk

t Þ�

≤ �lT�f ah 1 �lh ≕ gh;

where the first term captures sales from existing buyers, and the second term
captures sales from new buyers. The inequality uses lemmas 5 and 6, and f is
the upper bound on the continuous density. The probability of two or more sales
over (t 2 h, t] is 12 eFt ð11 FtÞ ≤ F2

t ≤ g2h2. The probability of two or more sales
in any period is thus bounded above

12 ð12 g2h2ÞT=h ≤
T

h
g2h2 5 Tg2h

for h ≤ h0, as required. Finally, if t5 T and k5 1, then it is a weakly dominant strat-
egy for the buyers to bid their true value in the second-price auction. Hence the
unit is allocated to the buyer with the highest value, as in the optimal mechanism.

The seller can thus attain profits P*(h) 2 O(h) with posted prices. Since the
discrete-time seller can mimic the continuous-time seller with a delay of at most
one period, we have P* 2 P*ðhÞ ≤ rhP*. Putting these observations together im-
plies that the price mechanism obtains P* 2 O(h). QED
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