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This paper develops new recursiget basednethods for studying repeated games with private
monitoring. For anyfinite-statestrategy profile, we find necessary and sufficient conditions for whether
there exists a distribution over initial states such that the strategy, together with this distribution, form
a correlated sequential equilibrium (CSE). Also, for any given correlation device for determining initial
states (including degenerate cases where players’ initial states are common knowledge), we provide nec-
essary and sufficient conditions for the correlation device and strategy to be a CSE, or in the case of a
degenerate correlation device, for the strategy to be a sequential equilibrium. We also consider several
applications. In these, we show that the methods are computationally feasible, and how to construct and
verify equilibria in a secret price-setting game.
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1. INTRODUCTION

This paper develops new methods for studying repeated games with private monitoring. In par-
ticular, we develop tools that allow us to answer when a particular strategy is consistent with
equilibrium. For an important subclass of strategies—those which can be represented as finite
automata—we provide readily checkable and computable necessary and sufficient conditions for
equilibrium.

The importance of these methods is as follows: while checking the equilibrium conditions
in publiccmonitoring games and perfect public equilibria is relatively simple, for games with
private monitoring, for almost all strategies, checking the equilibrium conditions has previously
been considered difficult if not impossible. For instance, consider the following repeated game
with private monitoring taken fronMailath and Morris(2002: two partners, privately, either
cooperate or defect, and in each period each, privately, has either a good or a bad outcome.
While each player can neither observe his partner’s action nor his partner’s outcome, outcomes
are correlated: the vector of joint outcomes is a probabilistic function of the vector of joint
actions. (A player cooperating makes it more likely that both players have a good outcome.)

At issue is that even for the simplest games, such as the one presented above, and even the
simplest strategies, such as tit-for-tat, there are an infinite number of possible histories where
incentives must be checked, and to check incentives one must calculate beliefs for all of them.
(This difficulty is not confined to the example above. Se=g,the work ofKandori 2002and
Mailath and Samuelser2006 Chapter 12.) In this paper, for a very large class of strategies,
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1638 REVIEW OF ECONOMIC STUDIES

we resolve this issue by showing the necessity and sufficiency of checking incentives only for
“extreme beliefs” (as opposed to checking incentives for all possible histories).

The focus of our analysis is strategies that can be represented by a finite autofinétsn (
state strategieés A key point (first made byMailath and Morris 2002 is that if all players’
strategies are finite automata, a particular player’s private history is relevant only to the extent
that it gives him information regarding the private states of his opponents. This lets us summarize
a player’s history as belief over a finite state space, a much smaller object than the belief over
the private histories of opponents (a point also mad#&lajlath and Morris 2002. Moreover,
unlike the set of possible privatestories the set of possible privatgatesfor one’s opponents
does not grow over time.

While many private histories may put a player in the same state of his automaton, they will,
in general, induce different beliefs regarding the state of his opponents. Given this, there are two
advantages to working witketsof beliefs representing all possible beliefs a player can have in a
given private state. One is that it is necessary and sufficient to check incentives only for extreme
points of those sets instead of looking at beliefs after all histories. The other advantage is that
these sets can be readily calculated using recursive methods (operators from sets to sets) that we
describe and demonstrate computationally.

Fixed points of our main set based operator represent the beliefs a player can have regarding
his opponents’ states “in the long run”. We show that if incentives hold for extreme points of
these sets, one can always use an initial correlation device to, in effect, start the game off as if
it had been already running for a long tirh&his technique alleviates a fundamental difficulty
associated with games with private monitoring: the continuation of (sequential) equilibrium play
in a game with private monitoring is not a sequential equilibrium but rather a correlated equilib-
rium in which private histories function as the correlation device. BuKasdori (2002 notes,
the correlation device becomes increasingly more complex over time. Using randomization or
exogenous correlation in period 0 of the game to make it easier to satisfy incentives and hence
support an equilibrium has been suggeste&ékiguchi(1997), Compte(2002, andEly (2002.

We present a robust way of applying this method to construct a family of correlated sequential
equilibria.

Our main results are presented as follows. In SecZiowe present our model, a standard
repeated game with private monitoring, with finiteness and full support (all signals seen with
positive probability) as its only restrictive assumptions. We also present the subclass of strategies
we study—finite-state strategie®r strategies that can be represented as finite automata.

In Section3, we show a necessary and sufficient condition for a given correlation device
(choosing initial states of players) and a profile of finite automata to fo@8&(Theoreml).

That condition involves checking incentive constraints on only the extreme points of a fixed point
of our set operator (based on Bayes’ rule) which we describe how to compute. Computation is
feasible since we show (Lemn2x that the extreme points of the belief sets of a given iteration
are a function only of the extreme points of the belief sets of the previous iteration. Next, we
show necessary and sufficient conditions for élxestence of a starting correlation devisach

that if coupled with a given automaton they form a CSE (Theoegmthey involve checking
incentives at extreme beliefs of a fixed point of a related operator. The result implies that the
best hope for incentives to hold is to start the players the game has been played for a long
time (without telling them what the outcomes were, but only in which state they should be now).
We also show how to verify which starting conditions can support a CSE and which cannot.
Since we can apply these results to arbitrary correlation devices, and in particular, to degenerate

1. An earlier version of this project entitled “Private Monitoring with Infinite Histories” focused on this point.
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ones, we can answer if a particular strategy profile sequentialequilibrium—a correlated
equilibrium with a degenerate correlation device.
In Section4, we present two applications of our methods. We start with the partnership

game described above and demonstrate that the methods are easy to apply computationally, and

that allows us to gain new intuition regarding how private monitoring affects incentives. In the
second application, we consider tacit collusion in a duopoly with competition in prices (with
private prices and quantities) and show that one-period price wars are more robust to private
monitoring than two-period price wars.

In Section5, we conclude. Additional results are in an online appendix.

Our results complement the existing literature on the construction of belief-free equilibria
(e.g.the work ofEly and Valimakj 2002 Piccione 2002 Ely, Hérner and Olszewsk2005 and
Kandori and Obarg@006 in which players use mixed strategies and their best responses are in-
dependent of their beliefs about the private histories of their opponents. In contrast to belief-free
equilibria, the equilibria we construct are belief dependent; players’ best responses do depend
on their beliefs. (For earlier work on constructing belief-dependent sequential equilibria, see
Bhaskar and Obar2002andMailath and Morris 2002 The first paper constructs a particular
equilibrium for an almost-perfect monitoring prisoner’s dilemma game. The second describes a
class of finite-monitoring equilibria in almost public-monitoring games.)

In terms of the focus on strategies instead of pay-offs, our work is closédailath and
Morris (2002 2006. They consider robustness of particular classes of strategies—those that are
equilibria in a public-monitoring game—to a perturbation of the game from public to private,
yet almost-public monitoring. They show that strict equilibria in strategies that look back only a

finite number of periods (a subclass of the strategies we study) are robust to such perturbations.

They also show when infinite history-dependent strategies (partly covered by our analysis) are
not robust.

Finally, in a recent papeKandori (2010 studies equilibria he calls “Weakly Belief-Free”
and shows that in some games, they can achieve higher pay-offs than any belief-free equilib-
rium. The definition of these equilibria can be translated to our language as follows: incentive
constraints have to hold for initial beliefs and for all extreme beliefs obtainedafteiteration
of our operator on the set @l possible beliefs (in contrast, the belief-free equilibria check
incentives for zero iterations, and our CSE check them after infinitely many iterations).

2. THE MODEL

Consider the gamd,*°, defined by the infinite repetition of a stage gamewith N players,
i =1,..., N, each able to take actioase A;. Assume that with probability?(y|a), a vector of
private outcomey = (y1, ..., yn) (eachy; € Y;) is observed conditional on the vector of private
actionsa = (a1, ...,an), where for all(a, y), P(yla) > 0O (full suppor). Further assume that
A=A x---x Ay andY =Y x --- x Yy are both finite sets, and léfi = A x ;.

The current period pay-off to playéris denotedy; : Hi — R. That is, playeri’s pay-off
is a function of his own current-period action and private outcome. If playeceives pay-off
stream{u; t}5°,, his lifetime discounted pay-off i€l — ) >t A'ui 1, wherep e (0,1). As
usual, players care about the expected value of lifetime discounted pay-offs.

Let hi 1 = (a1, ¥i,t) denote player’s private action and outcome at date {0, 1,...}, and
hit = (hi,0, ..., hit—1) denote player’s private history up to, but not including, dateA (be-
haviour)strategyfor playeri, i = {0i t}{2,, is then, for each date a mapping from playeir's
private historyh! to his probability of taking any given actiam € A in periodt. Leto denote
the joint strategw = (01,...,0N) ando—; denote the joint strategy of all players other than
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playeri or o_j = (01, ...,0i-1,0i+1,...,0N). (Throughout the paper, we use notatien to
refer to all players but player)

2.1. Finite-state strategies

In this paper, we restrict attention to equilibriafinite-state strategiesor strategies that can

be described as finite automata. (However, we allow deviation strategies to be unrestricted.) A
finite-state strategy for playeris defined by four objects: (1) a finite private state sp@ge

(with Dj elementsy;), (2) a functionp; (g |wi) giving the probability of each actios for each
private states; € Q;, (3) a deterministic transition functicwfr: Q; x Hi — Q; determining next
period’s private state as a function of this period’s private state, playprivate actiorg;, and

his private outcomsy;, and (4) an initial stat&pi,o.2 Given this set-upgi o(ai) = pi(a |wi.0),
0i,1(8,0, ¥i,0) (&) = pi (a; lwi+ (wi,0, 8,0, ¥i,0)), and so ort.Note that each player’s automaten
describes play both on and off the equilibrium path. We impose no requirement on the transition
rule a)|+ that all states can be reached on the path of play.

Throughout the paper, we repeatedly make a distinction between a finite-state strategy’s
tomaton(objects 1 through 3) and object 4, playér initial state,w; o. Let yi = (Q;, pi,wi+)
denote agenit's automaton. The collection of automata over all playgrs: {y1,..., yn} iS
referred to as th@int automaton Finally, let the number of joint statd3 = I1; <y Dj, and the
number of joint states for players other than played_j = ITj4 Dj.

2.2. Beliefs

Since our solution concept will bESE allow playeri’s initial beliefs over the initial state of
his opponentse_i o, to be possibly non-degenerate. In particular, let plajgebeliefs about
the initial state of his opponentg, o, be a point in thg D_; — 1)-dimensional unit-simplex,
denotedA P-i. Taking as givery;.o, the assumption of full supporP(yla) > 0 for all (a, y))
implies that the beliefs of playérregarding his opponents’ private historidaé,i, are always
pinned down by Bayes' rule. But since the continuation strategies of playiedepend only on
their current joint statep_; 1, to verify playeri’s incentive constraints after any given private
historyhit, we need not directly consider playies beliefs regardingo—i o andht_i . Instead, we
need focus only on playels beliefs regarding his opponents’ current state;, ;. This is a much
smaller object, and, importantly, its dimension does not grow over time.

For a particular initial beliefyi o, and private historyh!, playeri’s belief overew_i ; is, like
wi.0, Simply a point in theD_; — 1)-dimensional unit-simpleg.Let x; t (xi.0, hit) denote player
i's belief at the beginning of periddaboutw_; + after private historyqit given initial beliefsy; o.
Let uit(ui0, hi‘)(cu_i) denote the probability assigned to the particular siate

Beliefs uit(ui,0,h!) can be defined recursively using Bayes’ rule. Betm;, hi|y_i) €
ADP-i denote the belief of player over the state of his opponents at the beginning of period
t if his beliefs over his opponents’ state at period 1 werem; € AP-i and he subsequently

2. The restriction to deterministic transitions is for notational convenience only. All our methods and results apply
to automata with non-deterministic transitions.

3. For a useful discussion of the validity of representing strategies as finite-state automata in the context of games
with private monitoring, seblailath and Morrig2002 andMailath and Samuelsof2006.

4. Note that if the joint automaton of playés opponentsy _j, hasD_; states but onlyj < D_; are used
on path, the beliefs of playérare in the(j — 1)-dimensional unit-simplex (rather than in tGB_; — 1)-dimensional
unit-simplex). This implies off path states impose a lower computational burden than on path states.
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observedh; = (&, ¥i). This posterior belief can be written out explicitly (from Bayes'’ rule)
as:

Do Mi(w—i)Hi(o-i, o, hily_i)
> Mi(@-)Fi(o-i,hily—i) ~

Bi (mi, hily—i) (o) =

where
Fi(o-i,hily-i)= D p-i@ilo-)P,y-ila,ai),
(a-i,y-i)
Hi (-i, ., hily—i) = > P—i (@-ilw-i)P(yi, y-ilai, a-),
h_i eG_j (w—i, o’ |y—i)
and

G_i(w—i, o jly—i)={h = (&, y-i)lot (o-i,ai,y-i) =’}

or G_j is the set of(a_j, y_i) pairs which cause playersi to transit from states_; to state
;.

To define beliefs recursively, 1eBS(mi, h¥|lw_i) = Bi (BS*(mi, h®1y_i), his—1ly-i),
where BY(mj, hilw_i) = Bi(mi, hi|y—i). Then, ui(uio,ht) = B (uio,hily—i). Note that
Bi (m;i, hij|w—;) does not depend oty at all, and thus playeirs beliefs are the same regard-
less of whether or not playeris playing a finite-state strategy.

2.3. Equilibrium

Consider player following an arbitrary strategy;, while players—i follow a finite-state strat-
egy o_; defined by(w—i 0, w—i). That is, players—i are restricted to finite-state strategies,
but playeri is not. Let\/i,t(hi‘,a)_i loi, w—i) denote the lifetime expected discounted pay-off
to playeri conditional on his private historiyit, and players-i being in stateo_;. Thus,

Vit ooiloi,y-)= D (oir(h)(@)p-i(ailoi ))(Z P(yla)[(1—A)ui(ai, yi)
y

a=(a,a-)

+ )B\/i,t-l-l((hita (al > Vi ))5 wti (C()_i s, Y—i )lai > Wi )])

For arbitrary beliefsn; € AP, let

EVit(hl, miloi, yoi) = D mi(w_i)Vir(h, o_iloi, y—i).

w_j

Playeri’s expected pay-off given correct beligfs; (uio0, ht) is thenE Vi ¢ (h!, ui t (i 0, hD)loi,
Y—i).

If oj is afinite-state strategy (defined twi o, i), letwi t (@i o, hit) denote the private state
for playeri at datet implied by initial statew; o, transition rulemf(cui,a; ,Yi), and histor)h} =
(@0, ¥,0), - - -» (@11, ¥i,t-1))- Then, for all (h{, hf) such thatw; ¢ (w0, h}) = i t(wi0, ),
Vit(ht, w_iloi, y—i) = Vi t(h!, o_i|oi, y—i). Given this, we can write playets lifetime pay-
off, conditional onw_;, as a function of his current private state as opposed to depending
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directly on his private histony!. Thus, we definej (wi, w_ilyi, y—i) = Vit (h},o_ilai, y—i)
for any hit such thatw; = wi,t(wi,o,hit)- Then we denote playdrs expected pay-off, now a
function of his current statey;, and his beliefs over his opponents’ state;, as

Eoi (1, Milyi, y—i) = D Mi(@-i)vi (i, o—i i, y-i).

i

Definition 1. A probability distribution over initial statess € AP, and joint automatony,
form aCSEof I'* if forall i, t, hit, wi,o such thatzw_i,ox(coi,o,w-i,o) > 0, and arbitranyg;,
Evi (it (@i,0, ), it (1,00, @i,0), WD, y—i) = EVE (i, pi 1 (i 0(X, @i,0), W61, y—i),
wherei,o(X, wi,0)(@-i,0) = X(wi,0, 0-i,0)/ 2_5_; , X(@i,0,®-i,0)-

There are two difficulties in verifying whether a givér, ) form a CSE. First, there are
infinitely many deviation strategies. Second, to verify the IC constraints, we need to know the
beliefs players have on and off path after each element of the infinite set of possible private
histories. The first difficulty is shared by all repeated game models and, as usual, it is solved by
using the one-shot deviation principle. The resolution of the second difficulty is the main focus
of this paper.

Lemma 1 (One-shot Deviation Principle). Suppose a correlation device x and joint au-
tomatony satisfy for all i, if, &, andewi o such thaty", . X(wi,o0,@-i0) >0,

Eovi (i t (01,0, 1), it (i 0(X, @i.0), )| wi, w—i)

> > wit(ui 0%, @i 0), ) (@-i) | D p-iailo-i) D P(yla,ai)

w_j aj y
x [(L—B)i (&, yi) + Boi (@ (@it (@10, 0)), &, Vi), 08 (-, asi, y-)lwi, w—i)]

Then,(x, w) form a CSE. That is, it is sufficient to check that player i does not wish to deviate
once and then revert to playing according to his automatgn

Proof. Mailath and Samuelsof2006 p. 397). ||

3. VERIFYING EQUILIBRIA

We now turn to the main methodological contribution of the paper: set based methods deliver-
ing first, necessary and sufficient conditions for when a joint automatamhen coupled with
particular correlation device, forms a CSE (Theorer), and second, necessary and sufficient
conditions for whether there exisiaycorrelation device such that a joint automaton, when
coupled withx, forms a CSE. That is, our second main result (Thea2gnegards whether the

joint automatony itself is consistent with equilibriurd.

5. Note that if a given joint automatom, is not consistent with equilibrium, there may still exist a different joint
automaton,y, with the same on-path play but different off-path play that is consistent with equilibrium. We provide
partial answers to this problem in the online appendix.
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Rather than considering separately the beliefss AP~ that a player will have after some
private history, it is useful to consideetsof beliefs. In particular, leM; (wj) c AP-i denote a
closed convex set of beliefs, ahdj be a collection oD; setsM; (w;), one for eachw;. Let M
denote the space of such collections of $éd{sTo define the distance between two eleméviis
andM/ e M, first let the distance between two beligfs andm; e AP-i be defined by the sup
norm (or Chebyshev distance) denotegl, m{| = max,_; |[mj (w—j) —m{ (w_;)|. Next, for a be-
lief m; and a non-empty closed satc AP-i, let the distance between them (the Hausdorff dis-
tance) be defined a8y, Al = minm{eA |mj, m;|. For two non-empty closed sgt8, A') C A D
the Hausdorff distance between them is definefllg\'| = max{maxn ea|mi, A, MaXy e p
Imi, Al}. If Alis non-empty, letA, 8| = 1 and|@, Al = 1. Finally, let|@, #| = 0. (Note that for
non-emptyA andA’, | A, A’| < 1.) Then the distance between two collections of belief bgts
M/ e M is defined agM;, M/| = max,, |M; (wi), M/ (w)|.

We begin by constructing two related operators framto M, where fixed points of these
operators will be a focus of our main results. Let the one-step opéFéidr) be defined &

T(Mi) ={T(M)(@)|wj € Qi},
where

T (Mi)(w)) = co({m;| there existsoj € Qj, m; € M;(wi) and(a;, ¥i) € Gi (@i, wj|wi)
such thami = Bi(mi, &, yily-i)}),

where cq) denotes the convex hull an@; (wi,o{|yi) is the set of(a,y;) such thatcoiJr
(wi,a,Yi)=o. TheT operator works as follows: suppose one takes as given the sets of “allow-
able” beliefs player can have over the private state of the other players, last period. For any
given such allowable belief, Bayesian updating then implies what plasteould believe about
o’_; this period for each realization @&, yi), generating a collection of allowable belief sets.
That is, if there exists a way to choose playsrstate last periody;, the beliefs of player over
the private states of his opponents last period consistentwithM; (wj ), and a new realization
of (&, yi) such that Bayesian updating delivers beliefs thenm' e T(Mi)(a)f”(cui ,ai,¥))-In
effect, theT operator gives, for a particular collection of belief sts the belief sets associated
with all possible successor beliefs generated by new data and interpreted thrgugs well
as all convex combinations of such beliefs). Note that sBcandG; depend only on the joint
automatony, as opposed to starting conditions theT operator retains this property as well.
Next, let the operatof Y (M;) (Y for union) be

TV (M) = (TY (M) (@i)|wi € Qi},  whereTY (Mi)(@i) = co(T (Mi)(@i) U M ().

In words, theTY operator calculates for every staig the convex hull of the union of the prior
beliefs playeli could hold last periodM; (wj), and all the posterior beliefs he can hold in that
same statel (M;)(wj).

We note here that th€ and TV operators are relatively easy to operationalize. In particular,
the following lemma implies that the extreme points of the collection of Bélg; ) andTY (M;)
can be calculated using only the extreme points of the collection oMets

Lemma?2. If M;(wj)is closed and convex for all, then T(M;) (i) and TV (M; ) (w; ) are both
closed and convex for alhi. Next, if m is an extreme point of ¥ (M;)(wi) but not T(M;) (i),

6. TheT operator depends op_j and varies across players (as ddef, but to conserve notation, we write
T (M;) rather thanT; (M; |w—j).
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then m is an extreme point of Mwj). Finally, if m; is an extreme point of both(M; )(w;j) and
TY (Mi)(wi), then there existsy, &;, h; such that m= B; (fy, hi |w_;), hi € G (&, wi|yi) and
rf; is an extreme point of Ma;).

Proof. See Appendix. ||

3.1. Fixed points of T and ¥

Our results rely on properties of the fixed pointsToand TV . We writeM? ¢ M if M%(wj) C
Mil(a)i) for all wj. Furthermore, we writd/; is non-empty if there exists a private statesuch
that M; (w;) is non-empty.

Both T and TY are monotonic operators.€. if M? c M2, thenT(M?) c T(M}) and
TY(MO) c TY (MY)). By constructionM;  TY (M) for all M; € M. SinceM; c TV (M;), and
TYM) c TY(TY (M) (from monotonicity), the sequend®;, TY (M;), TV (TY (M), ...}
converges. ThaB; is continuous implieF Y is continuous and thus this limit is a fixed point of
TY. Call this fixed pointV*Y (M;). Next note that ifM; c T (M;), thenT (M;) = TY (M;). This
implies if M; c T (M), the sequencgéM;, T(M;), T(T(M;)), ...} also converges tMi*U (Mj).

3.2. When is a paif(x, i) a CSE?

For an arbitrary correlation device, let the belief setd/j o(x, wi) € APi be defined such that

Mi o(X, @i) = {ui,0(X, @)}

for all wj such thatzw_i X(wi,w—i) > 0. Otherwise, leM; o(X, wi) = @. That is, for allw;, if
wj occurs with positive probability under distribution M; o(X, w;) is the single point belief
set consisting of what playérbelieves abouw_; when his initial state ig;. Let M; o(x) be a
collection of D; setsM; o(X, wj), one for eaclw;, and (with some abuse of notatioM)*U x) =
MY (M 0(x)).

Theorem 1. A correlation device x and a joint automatan form a CSE if and only if the
incentive compatibility conditions

Eovi (@i, Milyi, y—i) = > Mi(o-i) | D p-i@ilo-) D Pyl&,a)l-Aui@E, )
y

w—j aj

+ Bui (o (o1, &, i), 05 (0-i i, Y- lwi, y—i)] D)

hold for all i, &, w;, and m such that mis an extreme point of MJ (X).

Proof. If: since incentive compatibility conditiond) are linear in beliefs, then if they hold
for the extreme beliefs oMi*U (x), they hold for all beliefs in these sets. By monotonicity,
(TYY(Mio(x) Mi*U (x) for all t > 0, so incentives hold in the first period for all initial
signals and in all subsequent periods for all possible continuation histories.

Only if: suppose that incentive compatibility conditior$ ére violated for some statg and
extreme beliefn; Mi*U (X)(wj). Since the incentive conditiond)(are continuous in beliefs
and are weak inequalities, there exists:an0 such that for all beliefay such thatm, mj| < e,
incentives are violated in stat¢ with beliefsm;.
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Now, by definition of TV, for everyt andwi, every extreme point of TV ) (M; o(X))(wi) is
either an extreme point @i Y )!=1(M; (X)) (wi) or an extreme point of ((TY)!=1(M; o(x)))
(wi). Therefore, we can find an initial state o and a private histor! such that player
after h! is in statew; and his beliefsui (i o, ht) satisfy |uit(ui0,ht), mi| < & (using that
(THN(Mi 0(x)) = M*U(x) ). Thus(x, y) are nota CSE. ||

3.3. When does there exist an x such thaty ) is a CSE?

For a joint automatony = (Q, p,w™), denote the Markov transition matrix on the joint state
w € Q by

(0, 0)(y) = > Pyla) [ ] piaile). (2)

(@) S.t. (@.%)eGi (wi o] lyi) for all i [

Sincer (y) defines a finite-state Markov chain, it has at least one invariant distribuatieny ©.

Lemma 3. Letxz be an invariant distribution of the Markov process$y). Then for all i,
Mi,o(z) C T(Mi,o(x)).

Proof. See Appendix. ||

The basic idea behind the proof of LemiBas that beliefs drawn from an invariant distri-
bution are an average, and thus a convex combination, of beliefs which condition on additional
information. Since th@ operator is the convex hull of all possible posteriors from given priors,
and the average posterior belief is the prior belief, the convex hull of the set of possible posterior
beliefs must contain the prior belief. Lemn8athen implies thal (M o()) = TY (M; o(7))
and that{M; o(z), T(Mj o(z)), T(T (M o(x))), ...} converges t(Mi*U ().

Lemma4. Foragiven(x,y)letz =Ilimi_ t%l Z;:OXT(I//)n. Then
(a) The limit exists and is an invariant distribution ofy ).
(b) Mio(z) € M (x).

Proof. See Appendix. ||

Part (b) of Lemmal states that thanitial beliefs playeli can have if initial states are drawn
from the invariant distribution of (y) defined in part (a) (the seldj o()) are always contained
in the set ofall beliefs playeri can have over all dates when starting with the arbitrary corre-
lation devicex, Mi*U (X). The intuition of Lemma is similar to LemmaB: the beliefsM; ()
correspond to drawing initial states from a random time from the Markov ehaif and hence
are a convex combination of beliefs that condition on both calendar time and the realized history,
which in turn are contained iM*Y (x).

Theorem 2. For a given joint automatony, there exists a correlation device x such that
(X, w) form a CSE if and only if for some invariant distributianof z (), incentives hold (i.e.
condition (1) from Theorem 1) for all i; and m which is an extreme point of iT\H () (wi).”

7. The authors thank an anonymous referee for correctly suggesting that one of our sufficient conditions from
a previous version of this paper—that incentives hold for all extreme poinrmi*&f(n) for an invariant distribution
7—was most likely also necessary.
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Proof. If: let x = z. From Lemma3 (and the monotonicity of), the time zero beliefs
of each playei, M; o(z, wi o) € Mi*U (7 )(wi o) for eachw; o drawn with positive probability.
Moreover, the subsequent beliefs for each playare elements oMi*U (7 )(wi t) for each date
t and private historylit, wherew; 1 is playeri’s state at daté after private histor)hit.

Suppose conditionlj holds, for alli, &, wj, and extreme points d‘ﬂi*u (7 ) (i), wherem;
andrh; are two such points. Then since equati@hi$ linear in these beliefs, for adl < [0, 1],
condition @) holds for beliefsxm; + (1 — a)iy, again for alli, &, andw; . Thus, incentives hold
for all datest and private historiek! if initial states are drawn according ta

Only if, suppose there exists a correlation devicguch that(x, ) form a CSE, but for all
invariant distributionse of = (), (z, w) does not form a CSE. Thét, w) forms a CSE implies,
by Theoreml, that incentives hold for all, w; andm; which is an extreme point df/li*U (X).
Let

By Lemmad4, z is an invariant distribution of (y) andM; o(z) C Mi*U (X).
SinceTVY is a monotone operator:

(TH"(Mi o(x)) € (TH' M (%) = MY (x)

and so in the limit:
MY () ¢ MY (x).

Applying Theoremil, this implies tha{(z, y) is also a CSE, a contradiction. ||

3.4. Strategies with unique invariant distributions

In the previous section, we showed that a joint automatas consistent with equilibrium if
and only if it is a CSE to have initial private states drawn from an invariant distributieyof.
Verifying for a particular invariant distributior of z(y) whether(z, ) form a CSE then
involves caIcuIatingMi*U(n) = lims_, o T5(M;j o(x)) and checking incentives at its extreme
points. A second method involvesalculatingM; = lims_,o TS(Aj) (Where A; denotes the
collection of Dj, D_j — 1-dimensional unit simplexes) and checking incentives at its extreme
points. Since the set inclusion relationship, defines a complete lattice on the spaceDpf
closed subsets i P-i, M; is the largest fixed point of and all other fixed points of are
subsets of it (by Tarski’s fixed point theorem). Thus, if incentives hold at the extreme pbints
Mi; (for all i), or incentives hold at the extreme pointsamfy point in the sequenc S(A;)}12°,,

(7, w) is a CSE forany invariant distributionz of z (). But this only establishes a sufficient
condition for equilibrium. Here, we show that4{y) is aregular matrix(i.e. there exists as
such thatz (y)S has all non-zero entries), then incentives holding at the extreme pins

is necessary as well. (Note thatrify) is a regular matrix, then all joint states are reached on
path.)

Lemma5. Suppose (y) is a regular matrixThen M is the unigue non-empty fixed point of
T and for all non-empty Me M, limn_ . T"(Mj) = M;.

Proof. See Appendix. ||
Corollary 1 (of Theorem 2). If z(y) is a regular matrix, then there exists a correlation

device x such thatx, ) form a CSE if and only if incentives hold (i.e. conditit) from
Theoreml) for all i and my such that mis an extreme poirf M;.
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Proof. Lemma5, Lemma3 and that for allM; such thatM; c T(M;), T(M;) = TY (M;)
imply Mi*U (m) = Mj, wherer is the unique invariant distribution af(y). Theorem2 then
implies the result. ||

3.5. Which starting conditions work?

For a given joint automatomr, Theorem?2 gives us necessary and sufficient conditions for the
existence of a correlation devicesuch that(x, ) form a CSE. Suppose we finda that
satisfies these conditions. A natural question is then, wien be used to start the strategies
without violating incentive constraints? From the proof of TheoZmve know that at least one
of the invariant distributions of () can be used.
One can use Theoretrto verify for anyx, whether(x, y) is a CSE. That requires computing
a fixed point of TY for every suchk. We now show that one can compute once a fixed point of
a related operator and use it to evaluate any
In particular, defind\/li' (wi) to be the set of beliefs such that incentives hold in the current
period for all beliefsm; Mi' (wj) if playeri is in statew; and plans to follow the strategy in
the future. Clearly, a necessary condition fat i) to be a CSE is thaM; o(x) C Mi' since
otherwise incentives would be violated in the first period. We need to ensure, however, that
incentives are satisfied not only for a particular belief generated by the correlation device but
also for all possible successors of that belief, and successors of those beliefs, and so on.
Define the operatdF' (M;) (I for incentives) as

T' (M) = (T (M) (@i)|wi € Qi}, where
T (Mi) (i) = co({mi|m; € M; (@) and for all(a;, yi), (3)
Bi(Mi, &, Yily—i) € Mi (o™ (wi,ai, ¥i))}).

In words, T' eliminates an element d¥l; (w;) if there exists a private historga;, y;) and a
successor belief which is not M (wi+ (wi,ai, V).

Clearly, T' is monotone an@' (M;) ¢ M; for any M;. Thus, the sequend€T')"(M,")}2
(starting with the set of beliefs such that incentives hold in the first period), represents a sequence
of (weakly) ever smaller collection of sets, guaranteeing that the limit, deMtédexists. Im-
portantly,Mi*' can be computed independentlyxgfallowing us to then evaluate all correlation
devices to this benchmark:

Corollary 2 (of Theorem 1). A correlation device x and a joint automatgnform a CSE if
and only if for all i, M o(x) ¢ M*!

Proof. For anyM;, by the definition ofT ', we have
M c M = MY (M) c M

hence by Theorerh, (X, w) form a CSE if and only itM; o(x) C Mi*' ol

Since the set of correlated equilibria is convex(xf ) and (x’, ) are CSE, so i$x”, v)
for any x” which is a convex combination of andx’. Finally, for belief-free equilibria (such
as those irEly and Valimakj 2002, the conditions of the corollary hold automatically since
Mi*' = A; or that incentives hold, by construction, for all beliefs.
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4. APPLICATIONS

In this section, we attempt to show that these methods are useful in analysing interesting eco-
nomic applications.

4.1. A repeated partnership game (Mailath and Morris, 2002)

In this example, we use the repeated partnership gamadéth and Morris(2002 to show

that (a) one can use our methods to easily compute the relevant belief sets to verify incentive
conditions, (b) analyse which starting conditions work, (c) do comparative statics regarding
model parameters, and (d) investigate that histories are problematic when parameters are such
that a strategy is not an equilibrium.

We also highlight two somewhat surprising results. First, we show that sometimes tit-for-tat
coordination works if both players start in the bad state but not when both players start in the
good state. Second, we compute an example where knowing too well the state of one’s opponent
can be bad for incentives. If a player has less knowledge about the state of his opponent (because
of stochastic starting conditions or less predictable consumers or less correlated private signals),
it can make it easier to satisfy incentivés.

4.1.1. The partnership game. Consider the two player partnership game in which each
playeri € {1, 2} can take actio € {C, D} (cooperate or defect) and each can realize a private
outcomey; € {G, B} (good or bad). TheP(y|a) function is such that ifn players cooperate,
then with probabilitypm (1 — €)% + (1 — pm)e?, both players realize the good private outcome.
With probability (1 — €)e, player 1 realizes the good outcome, while player 2 realizes the bad.
(Likewise, with this same probability, player 2 realizes the good outcome and player 1 the bad.)
Finally, with probability pme2 + (1 — pm)(1 — €)?, both players realize the bad outcome. Es-
sentially, this game is akin to one in whig, determines the probability of an unobservable
underlying outcome and is the probability that player’s outcome differs from this under-
lying outcome. Thus, whea = 0, outcomes are public, and wherapproaches 0, outcomes
are almost public. Pay-offs are determined by specifyingnd for each player, the vector
{ui (C,G),ui (C, B),ui (D, G), ui (D, B)}.

4.1.2. Tit-for-tat. Next, consider perhaps the simplest non-trivial pure strategy: tit-for-
tat. That is, let each playérplay C if his private outcome was good in the previous period
and D otherwise. This is a two-state strategy wéh = {R, P} for “reward” and “punish”. For
i €{1,2}, pi(CIR) =1, pi(DIP)=1, 0 (vi,a,G) =R, o (wj,a,B) =P for wj e {R, P},
anda; € {C, D}. Since every joint state can be reached from every other joint state with positive
probability, z () is a regular matrix and Corollaryof Theorem2 applies and thus tit-for-tat is
compatible with equilibrium if and only if incentives hold for the extreme points of the unique
non-empty fixed point off, M;. Since the number of states i opponentD_; = 2, theset
Mi (wi) is simply a closed interval specifying the range of probabilities that playés in state
R, given that player is in statew; € {R, P}. OperatorT maps a collection of two intervals (one
for eachw;) to a collection of two intervals.

For # =09, po = 0-3, p1 = 055, andpz = 0.9 and a pay-off of 1 for receiving a good
outcome and a pay-off 0f0-4 for cooperating, we can easily verify that the static game is a
prisoner’s dilemma and that tit-for-tat is an equilibrium of the public outcome Q) game,
starting from either both players in sta®or both players in stat®. Fore > 0, beliefs matter

8. While surprising to us, this effect is presenSakiguchi(1997 andBhaskar and Obar@0032).
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M(P) MR)

.036 r‘/% .189 704 923 972
0 QJ. |

. DN

B ]
M, ®) M, R)
Tit—for-Tat, € = 0.025

FIGURE 1
Belief Sets for Tit-for-Tat

and to check equilibrium conditions, one must construct the iateiM; (w;). The procedure
of iterating theT mapping is relatively easily implemented on a comp@tEor ¢ = 0-025,
the procedure converges (in less than a second) to thesesiistévly (R) = [0-923 0-972],and
M; (P) =[0-036,0-189] (see Figurd).

Again, tit-for-tat is compatible with equilibrium if and only if each player indeed wishes to
play C when he believes his opponent is in st&avith either probability @23 or 0972 and
indeed wishes to playp when he believes his opponent is in st&eawvith either probability
0-036 or 0189 (assuming a reversion to path play after a deviation). This is a matter of simply
checking equationlf for each of these four beliefs, and it holds in this case, thus there exist
starting conditions such that tit-for-tat is an equilibrium.

In particular, Theoren2 delivers one such starting condition. If both players follow the equi-
librium, the transition matrix () between joint state € Q = {RR RP, PR, PP} andw’ € Q
implies a unique invariant distributian = (0-659, 0-038 0-038 0-264). If one chooses the cor-
relation devicex =, then if playeii € {1, 2} hasR as his initial recommended state, he believes
his opponent’s initial recommended statdRisvith probability 0945= 0.659/(0-659+ 0-0398).
Likewise, if his initial recommended state 5 he believes his opponent’s initial recommended
state isR with probability 0127= 0-038/(0-038+ 0-264). Note that Lemma 4 implies the belief
of playeri after recommendatioR, xi o(R) = 0-945¢ M; (R) and likewise ui o(P) = 0-127¢
Mi (P). Thus, the correlation device= = and tit-for-tat form a CSE.

Are there any other starting conditions for which tit-for-tat is an equilibrium? Usind the
operator, one can also readily calculate the Mité for playersi € {1,2}. In this example,
Mi*' (R) =[0-704 1] and Mi*' (P) =[0,0-704]. Corollary2 then implies any correlation device
x that delivers conditional beliefg; o(R) € [0-704 1] and uij o(P) € [0, 0-704], together with
tit-for-tat, forms a CSE. Thus, starting each player off in state- R with certainty (orx puts
all mass orw = RR) and following tit-for-tat is asequentialequilibrium sinceM; o(x, R) =
{1} ¢ M*'(R) and M o(x, P) = 8 ¢ M*' (P). Likewise, starting each player off in stale(x
puts all weight oreo = P P) is also a sequential equilibrium sinté o(x, R) =0 C Mi*' (R)and
Mi o(x, P)={0} C Mi*' (P). Finally, lettingx be such that one player starts off in st&and his
opponent starts off in state (with certainty) isnota sequential equilibrium sindd; o(x, R) =
{0} ¢ Mi*' (R). Note bycalculatingM; and Mi*' , we have evaluatedll deterministic starting
conditions and thus all potential sequential equilibria associated with tit-for-tat.

If € is increased t@ = 0-04, then the intemis M; (w;) shift towards the middle and widen
and tit-for-tat ceases to be equilibrium for any starting conditions. Rvtailath and Morris
(2002, we know that in this example, for sufficiently smalltit-for-tat is an equilibrium, and
obviously for sufficiently higke, it is not. Our analysis of this example allows us to go further:
to establish exactly for which’s the profile is an equilibrium. That is, our methods allow us

9. The Matlab code for checking arbitrary finite-state strategies for arbitrary games can be found on the authors’
Web sites.
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to consider whether any proposed strategy is an equilibrium strategy regardless of whether the
outcomes are nearly public.

Next, rather than increasirgrom ¢ = 0-025 toe = 0-04, instead consider keepiag= 0-025
and decreasing the cost to cooperating from ® 0357. Since the beliesetsM; do not
depend on pay-offs, they are still represented by FigurEurther, for these new pay-offs,
incentives continue to hold at the extreme poiafsM; (R) and M; (P), ensuring that let-
ting the correlation devic& on initial recommended states be the invariant distributios
(0-659,0-038 0-038 0-264) remains a correlated equilibrium. However, given this change in
pay-offs, lettingx be such that both players start off in st&evith certainty is now no longer
a sequential equilibrium. In fact for these pay-offs, the only sequential equilibrium associated
with tit-for-tat is for both players to start off in staf® with certainty, which delivers thevorst
pay-off over all ways of starting up a tit-for-tat equilibrium.

How can starting off with too much certainty be a problem? The difficulty with starting each
player off in the reward state with certainty is that while each player is willing to cooperate
in the first period, each is unwilling to defect in the second period, as tit-for-tat calls for, if he
sees a bad outcome in the first period. The problem is that the certainty that one’s opponent
was in stateR in the first period makes the player in the second period (after a bad outcome
in the first period) insufficiently confident that his opponent is also in Sfatén particular,
his belief in period 2 that his opponent is in st&eB; (mj o = 1,h; = (C, B)|y_i) = 0- 203,
which is outsideof M; (P) = [0-036,0-189]. On the other hand, if the correlation device-
(0-8,0-03,0-03,0-14) on the initial state2 = {RR RP, PR, PP}, then if playeri receives
recommended staig; o = R, he believes his opponent is in staewith probability mj o =
0-8/0-83=0-964. Then,B; (m;j o = 0-964 h; = (C, B)|w—i) = 0-185, which is sufficiently low
such that tit-for-tat is again a correlated equilibrium. (In fact, one can use our methods to find
the correlation devicg that delivers théestsymmetric equilibrium pay-off associated with any
given strategy. In this case, this is approximatekg (0-8,0-03,0-03,0-14).)

Finally, in an online appendix, we demonstrate our methods are not confined to two-state
strategies by considering for this game a strategy that we label “tit for tat-tat” (cooperate only
if one has observed a good outcome in the last two periods). This is a three-state strategy that
nevertheless is computed in seconds.

4.2. Secret price cuts

In this section, we study a secret price cutting game with a rich action and signal space. First, we
show that a natural strategy from the public-monitoring game, namely Taking Turns, is not going
to work with private monitoring. Second, we show that one-period price wars can support collu-
sion, but they may require random correlated starting conditions. Finally, we show an example
with two-period price wars that support collusion, while one-period ones are not enough. In that
example, if customer behaviour is more predictable, it is more difficult to sustain collusion in the
private-monitoring case. It also suggests that strategies with two-period punishments are much
more fragile to private monitoring than one-period punishments.

4.2.1. A Bertand pricing game. Consider a repeated Bertrand duopoly game. At each
date, each of two players (firms) privately chooses a @ice{0,0-01,0.02, ..., 4}. A player’s
private outcome is his number of customgrs Y; = {0, 1, 2, 3, 4, 5}. With probability (1 —¢),
the total number of customery; + y» = 5, and with probabilitye /10, the total number of
customers is any particular element0f1, 2, 3,4, 6, 7, 8,9, 10}. If both players choose the same
price, each customer flips a fair coin to determine from which firm he buys. If the firms choose
different prices, each customer chooses the lower price firm with probab#ity. 1If the total
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number of customers is more than five, and these coin flips imply one player selling to more
than five customers, that player is assumed to have exactly five customers, with the other player
selling to the other customers.) Production is assumed to have a constant margital st
sou(a,Y) = (g —c) =Y. If 6 =0, and as the grid on prices gets infinitely fine, the unique
stage game Nash equilibrium is for both firms to choose @icec. If ¢ andd are each strictly
positive, all joint outcomesy1, y») occur with positive probability for alla;, a2) and this game

fits in our framework.

4.2.2. Taking turns. Consider the following three-state strategy: in stiste, playeri
chooses; = 3-99, while in statey ou, playeri chooses; = 4. In stateP (Punishment), player
i chooses; = 0. If in stateMe, playeri receives 3 or more customers, he transits to state
otherwise he transits to stafe If in stateY ou, playeri receives 2 or fewer customers, he transits
to stateMe, otherwise he transits to stake Finally, if in stateP, playeri receives 0, 1, 4, or
5 customers, he stays in sta®e if he receives 2 customers, he transits to stdeand if he
receives 3 customers, he transits to statel

If #=0.95,0=0-05, andc = 1, for the game with public monitoring & 0), this strategy
is a perfect public equilibrium when one player starts in stdtand the other in stat¥ ou
As long as the lower price firm gets a majority of the customers (a high probability event), both
players choose a high price (with one slightly undercutting the other) and take turns regarding
which one receives most of the customers. In the unlikely event that a firm receives a majority of
the customers out of turn, a price war ensues. In a price war, each firm has the incentive to charge
a; = 0 since this maximizes the probability that customers will be split as evenly as possible,
causing the price war to end.

First, note that the conditions for Lemngahold in this example, thus checking incentives
at the extreme points of the largest fixed pointTaf M; (wi) is necessary and sufficient for
the existence of starting conditions such that Taking Turns is a correlated equilibrium. But here,
whenM; (Me) andM; (P) are calculated, their intersection is non-empty. Thus, for the incentive
conditions to be satisfied, each player must be indifferent between following the continuation
strategy associated with statée and the continuation strategy associated with seafer all
points in this non-empty intersection, which is not the case here. One reason the non-empty
intersectionof Mj (Me) and M; (P) occurs in this game is that if player 1 is in staite and
receivesy; = 2 customers, he transits to std®e while if he is in stateP and receives; = 2
customers, he transits to statée. Thus, if he starts in statde and receives a long even-
numbered string of; = 2 outcomes, he will be in statéle, while if he starts in stat® and
receives the same long even-numbered string ef 2 outcomes, he will be in state. But in
this game, regardless of starting beliefs, if a player takes the same action and receives the same
outcome period after period, his beliefs converge to the same point, which, by construction, will
be inbothM; (Me) andM; (P).

Such state-dependent transitions appear (at least to us) to be essential to any turn-taking
equilibrium with public monitoring. That is, which outcomes require a transition to a given state
would typically rely on whose turn it was to win the majority of customers last period (or whether
the players are currently in the punishment state if such a state is also used). But, certainly for
this example and we suspect more generally, these state-dependent transitions make the strategy
not an equilibrium with private monitoring.

4.2.3. High equal prices with price wars. Now consider a different strategy. In stdRe
(Reward), each firm choosas= 4 and in staté® (Punish), each firm choosas= 0. From any
state, ify; € {0, 5} (a firm sells to either zero or five customers), it transits to deaie the next
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period regardless of its prieg. If y; € {1, 2, 3, 4}, from any state, it transits to statomorrow.

In words, each firm sets a price of four unless last period it had an extreme number of customers.
If € =0 or the total number of customers is certain to be five, this is a game of public monitoring,
and this strategy is a public equilibrium as longiathe probability that a customer chooses the
high-price firm, is not too high (or fgf near 1 < 0-06).

If € <0.04 (with # = 0.95, 6 = 0-05, andc = 1), unlike taking turns, there exists a cor-
relation device such that this strategy is also an equilibrium of the private-monitoring game
(specifically, drawing initial states from the unique invariant distribution, where joint state
{RR RP, PR, PP} is drawn with probability(0-90, 0-01, 0-01, 0-08)). Interestingly, however,
for these parameters, there existsdaterministiccorrelation device such that this is an equi-
librium. Starting one player in stafe and the other in statB is obviously not an equilibrium.
However, for less obvious reasons, starting both in d8ate both in stateP is also not an equi-
librium. Fore = 0-04, M; (R) = [0-263 0-994]andM; (P) = [0-016, 0-124], relatively wide but
non-overlapping belief sets, and incentives hold on their extreme points. However, if both players
start off in stateR with certainty, whileM*Y (P) = M; (P), M (R) = [0-104, 1.000]# M; (R).

The intervaIMi*U (R) has not only a higher upper boutttan M; (R), but also a smaller lower
bound. At this reduced lower bound, incentives do not hold.

Which histories create the problem? Specifically, the lower boumz!i’iﬁ‘f(R) is generated
by assuming player believes his opponent is in stak with probability 1, setssy = 0 and
receives one customérd. B (m; =1, h; = (0, 1)|w—;) = 0-104). Bayesian updating essentially
depends on reconciling the player’'s observations with its possible explanations and the most
likely explanation for player receiving only one customer when he undercut his opponent is
that the total number of customers was actually only one and this customer chose the lower price,
putting player—i in stateP (which happens with probability 4 0-104). On the other hand, if
playeri is only 994% certain that his opponent is in stae(the upper bounaf M; (R)),
then if he sets; = 0 and receives one customer, he now believes his opponent is inRstate
with probability 0265 M; (R) and incentives hold. This change in updating occurs since the
small amount of doubt leaves another explanation for playeceiving only one customer—his
opponent was actually in staeand thus both set a price of zero, and thus it is more likely his
opponent received a positive number of customers. A similar explanation rules out both players
starting out in stat with certainty.

4.2.4. Two-period price wars. For this game, if the marginal cost of productiog- O,

one can show analytically that the two-state strategy considered in the previous section is not an
equilibrium of thee = 0 public game. A price war of possibly only one period of zero profits (as
opposed to negative profitsdf> 0) is an insufficient punishment to hinder slightly undercutting
one’s opponent. In this section, we show that a minimum two-period punishment can be an
equilibrium, but that the co-ordination necessary for two-period punishments implies that the
number of customers must be very close to public information.

Consider the following three-state strategy: In sRteach firm chooses = 4 and in states
P1 andP2, each firm chooseg = 0. From any state, if; € {0, 5} (a firm sells to either O or
5 customers), it transits to stakl in the next period regardless of its prige On the other
hand, ify; € {1, 2, 3,4}, it transits to stat&k tomorrow if today’s state waR or P2 and transits
to stateP2 tomorrow if today’s state waB1. In words, each firm sets a price of zero unless in
each of the last two periods, it had an interior number of customers=1®, or the total number
of customers is certain to be 5, this is a game of public monitoring, and this strategy is a public
equilibrium as long asg, the probability that a customer chooses the high-price firm, is not too
high (or for g near 1 < 0-16).
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FromMailath and Morrig(2002, we then know for any givei andd, there existane > 0
such that for all O< € < €, this strategy is also an equilibrium of the private-monitoring game
with an uncertain number of customers. However, assurfiiag0-95, if 6 = 0-1 (or the cus-
tomer chooses the lower price with probabilit@)) our computation method shows that for the
above strategy to be an equilibrium, one needs 4 x 107, or there must be less than four
chances in 10 million that the number of customers differs from five. For snaglterfor higher
probabilities that consumers choose the lower prieghjust be everower. If 6 = 0-05 (or the
customer chooses the lower price with probabilit9®), equilibrium requires < 4 x 1079,
or there must be less than four chances in a billion that the number of customers differs from
five.

The reasor must be so small (and small relativedpagain comes from a player’s off path
Bayesian updating. For instance, suppesende/J are both positive but infinitesimal. Then,
regardless of a player’s action and regardless of his beliefs regarding his opponent’s state (and
thus his action) if he receives 0 or 5 customers, he concludes his opponent also received 0 or 5
customers, and if he receives one through 4 customers, he concludes his opponent did as well.
This guarantees that regardless of starting states and actions taken, within two periods, each
player is convinced the other player is in the same state he is. (More formally, in the limit as
€ — 0 for a givend > 0, Mi (R) = {(1,0,0)}, M; (P1) = {(0, 1,0)}, andM; (P2) = {(0,0, 1)}.)

On the other hand, € andd/e are both positive and not infinitesimal, very different Bayesian
updating occurs.

Suppos@ = 0-1 ande = 10~8 (which is too high for this strategy to be an equilibrium). What
goes wrong? Again, one feature of our computation method is that it points out at exactly which
state,w;, and which extreme beligh M (wj) incentives fail to hold. For these parameters,
incentives fail to hold for an extreme poiitt M; (P2) when playeri believes his opponent
is in stateR with (approximately) 50% probability and staf2 with (approximately) 50%
probability. Here, with this level of doubt, playéris unwilling to playa; = 0, preferring a
higher price.

Further, as in the previous example, our methods allow one to trace how an extreme belief
can be supported. This particular extreme belief (playem stateP2 but believes his opponent
is 50/50 in R or P2) is generated as follows: suppose playierin stateR, believes his opponent
is also in stateR (with certainty), deviates and plags = 0, and receives 0 customers, putting
him in stateP1 tomorrow. One possibility is that the number of customers was 5, but each
of them chose the higher price firm. This happens with probabifity(1 — ¢) which is about
31x 1077, or one in 31 million. In this scenario, players opponent had 5 customers and
is in stateP1 tomorrow. A second possibility is that the number of customers was 1 and this
single customer chose the higher price firm. This happens with probabiity/10), which
is 1:25x 107, or one in eight hundred thousand. In this second scenario, player 1's opponent
had one customer and is in std®tomorrow. The ratio of these events i€0016 (or one in
625), which closely matches the actual posterior of playgven this scenario. And given he is
in stateP1 and believes his opponent is in st&# with probability 099984 and stat&® with
probability 000016, he wishes to follow the strategy and pday= 0.

But from this state and belief, suppose playahen chooses an intermediate prigec
{0.0L,...,3:99} and receives three customers, putting playierstateP2 the following period.

How does he account for this event? One possibility is that his opponent was iP&tésad
thus playeda_; = 0) and four out of five customers chose the higher price firm, putting player
—i in stateP2 tomorrow. This happens with probability9®9984x 5 x 0% « (1 — ) (1 — ¢€),
which is about @0003. Another possibility is that his opponent was in sRtand thus played

a_j = 4) and only one out of five customers chose the higher price firm, putting playar
stateR tomorrow. This happens with probability@016« 5 (1— )% x5 % (1— €), which is also
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about 000003. Since the ratio of these two events is near 1, from Bfatplayeri now believes
player—i is in stateR with (about) 50% probability and stafe? with 50% probability.

5. CONCLUDING REMARKS

Beyond using our methods directly to compute equilibria, one can extend and apply these meth-
ods in several ways.

First, as shown in a recent paperkgndori and Obaré2010, one can use set-based methods
similar to ours to study strategies that can be represented by finite automata on the equilibrium
path but can be much more complicated off the equilibrium path. For example, they allow the
strategy off the equilibrium path to be a function of beliefs over other players’ states, which
implies an infinite number of the automaton states (since players believe that others are always
on the equilibrium path, the beliefs are still manageable).

Second, one can prove that if incentives hold strictly (uniformly bounded) for all extreme
beliefs of the fixed point operatdi, then this CSE is robust to small perturbations of the stage
game pay-offs or the discount factor. The reasoning is as follows: firsT, theperator and the
initial belief setsM; o(x) are independent of the pay-offs. Hence, the fixed point is independent.
Second, the incentive constraints are continuous in the stage-game pay-offs and the discount
factor. Hence, if for the given game the incentives hold strictly for all extreme beliefs of the
fixed point of theTY operator, they also hold weakly for small perturbations of the pay-offs or
the discount factor. Then, Theorehimplies that for the perturbed game, the samxegy) are a
CSE. Similar arguments can be used for perturbations of the monitoring technolodp( {ttze
function) to study robustness to changes in monitoring.

APPENDIX A

Proof of Lemma&

Proof. First, recall thafl (M;)(wj) is convex from the definition of . Next, from its definition, we can express
T(Mj)(w)) as

T(M)(w)) = C0(Uy, by eG; (o ! 1y )y T(Mi) (i, b )@))),

where T (M;)(«j, hi)(@{) = {m{| there existsm; € M;(wj) such thatm/ = Bj(m;,hjly_i)}. Next, note that
Bj (mj, h; |y/_i)(a)i/) is continuous im; on the whole domaim; € AP-i and Mi; (wj) is closed (and bounded). Since
T (M) (@i, hi )((ui’) is an image of a closed and bounded set under a continous mapping, it is closed (and bounded) as
well. As a finite union of closed set$,(M; )(wi’) is closed as well. The same reasoning applies td’fﬁmperator. The
observation that if; is an extreme point of Y (M; )(w;) but notT (M;)(wj), thenm is an extreme point of; (w;)
follows directly from the definition off V..

For the last part of the lemma, we use an important property of the non-linear fulBtion, hj |y _;)(w—;). For
all’;, mt, m2, hj anda € (0, 1),

Bi (amy! + (1= )M, hi ly—i) (@) = &' By (, hily—) (@) + (L= &) Bi (M?, hi [y (@)

for somea’ € (0,1). That is, the posterior of a convex combination of bel'refsand mi2 is a convex combination of
their posteriors, albeit with different weights. To see this, algebraic manipulation delivers
X 1 2 1. X /
Bi (ami” + (L—a)mf, hi [y _j ) (@’})
@Y M) Fi(o_i,hily_)

= Bi (M hi ly—i) (@
S @) + A= oo ) iy =)

A-a) 3, Mi@_i)Fi(o_i,hily_i)
Yo @mt@ )+ (L—a)m?(@_)Fi (@i, hily_i)

Bi (2, hi ly_i)(@.)).
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Note
@ X0 M@ Fi (i, hily_i) N L=a) X, Mi@—)Fi(@—i,hily_i) 3
S @mi@_)+ Q=M (@_)Fi (@i, hily—i) 3, @mie_)+@-0mi(@_)F(©-i,hilv_i)

Further, examination of the first quotient has the numerator strictly positive and strictly less than the denominator. So

indeed .
@Yo M(@-)Fi (@i, hily_i)

Yo (amt@_i) + (1= )M (@-i)F (=i, hily-i)

Now take anym; which is an extreme point af (M; )(wj ) and suppose that for all collectiofrs, “’u s hl’) such that
m; = B; (ml, ||W i) m e M; (wi) andh e Gj (a)I , ), the bellefm’ is not an extreme point d¥; (a) ). Thatimplies
that there exist two prlorsm m:) that are extreme points cm, (w,) such thatm/ is a strict convex combination of
them. There are three possmnmes (B.)(ml, ; ! lw_i) = B (mI ,hi !ly_i) or (2) B, (ml, i "ly_i) = B; (m1 hI lw_j) or
(3) B; (ml, ||W i) is a strict convex combination d8; (mI ,hl |w_j) and B; (mI s ||‘/’ i). In the first two cases, we
have then found the priors that lead to the posterigra contradiction. In the third casey is not an extreme point of
T (Mj)(wj), again a contradiction. ||

o (e, mt,m?) = € (0,1).

Proof of Lemma

Proof. Forwj such thatZE_i 7 (wj,@_j) >0, Ietmio(a;i Wo_j) = %
(()_I ’

point in the seM; o(z, ;). Sincer is an invariant distribution, for ath = (wj, w_j)

That is,m0(w) is the single

2,07 (@) iy e (00,0 1) i €6 @0, oy i) P @ 10D i (@i 02 P(yIa)
2,07(@) X 6, (09,01 ) 2hi P (@ lef)pi (@il P(yIa)
2,0 2 e6; @0.an yi) P @lo) > 0, 7 (@O)Hi (@2, i, hily_i)
X0k o e P @S 558 0 m@)Fi 2 hily=i)

m0(wi) (i) =

Next, note that

ngi 7 (@, 02 H; (@2, 0, hily_i)

ng 71'(60 CU i)Fi (w_|’h| ly—i)

Bi (M (@), hily—i)(@-i) =
We wish to show for albsj, m; (w.) is a convex combination dB; (m hj |w_j) over all (w hj) such thath;
Gj (wI , i |wi). For all(m hi) such that; € G; (a)I i |wp), let
pi (ai o) ngi 7 (@0, 09)F (@9, hily_i)

250 25 <Gy @Poo ) P @ @) 2.0, 7@, 02 )Fi (@0 hily_i)

a(w hjwi) =

Since the denominator uf(a)lo, hj |w|) is the sum of the numerators over (iblio, hj) such that; € G; (a)io,a)i |wi), itis

clear thaty, 3y . @001 |W)ot(w| Shilei) =1
Next, foraglverw| anda)_| consider

Z Z a(wi > i | ) Bj (m?(wi), hi ly—)(o—j)

o hi €Gj (@0, lyi)
wlo h; €G; (wP,wi lwi)
200 Zhy i @0 ) P @ 1D Z0, 7@ Hi @20, hily—i)
200 2o Gy (@0 1) P @1 )Z J 7 (@O)F (@2, hily_i)

= mP(ei) (@)

P @) X0 7@ o) F @2, hily—i) B (@), hi ly—i)(@-i)
ZE_O Zﬁl €G; (@_O,wi lvi) Pi (al |w )Z 0 ”(w| ,(U_I )FI (w_| 5 hI |‘// I)
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Proof of Lemmat

Proof. First, that the limit exists and is a stationary distribution of is a standard result on Markov chains (see,
e.g.Theorem 11.1 in Stokey and Lucas).

Next, define

1 &
Tt = —— Xrn.
t+1 o

Note thatzt is a probability distribution over joint states for any(it is the distribution over joint states given
starting correlation device and the transition matrix, averaged over period§, ..., t}).

We prove by induction that for ail M; o(zt) ¢ (TY)!(M; 9(x)) andM; g(xz') © (TY)(M; o(x)) (where(TY)0
(M) = M).

Fort =0, all these collections of sets are equal, so the claim is true. Now, suppose the claim is trud.for

Letmf (o) (i) = s— @i0-D) e the belief player assigns to playersi being in states_; conditional on

o mt(wio-i)
t " .
observing that the correlation devige puts him in stateo; . Also let m} (0j)(w—j) = 5 (Xr())((:")éfg 5 (analogous
D_j i ®W—j

belief for correlation devicez!). Note that

B Z;:Oth B trp_q + Xzt
Tot+1 T t41

Tt ,
that is, 7t is a weighted average of distributiong_1 andxz!.

By the same calculation as in Leml&érh} (wj)(w—j) is a convex combination of posterior beIieBs(mit_l, hjlw—i)
over all (wi‘_l, hj) such thath; € G;j (wit_l,wi |w—_j). The intuition is than’hi‘(a;i)(a;_i) can be thought of as beliefs
playeri has after learning that at tintene is in states; but not knowing his history of the game so far. If he knew that
his belief last period Waﬁﬁit_l he could then compute his posterior using that prior and averaging over all one-period
histories that according to the equilibrium path could have brought him to the currenbstate

Since by the inductive hypothesis all priaf§ ~(w;) € (TY)!'=1(M; o(x))(}), all such posteriorsfi (w;)
T(TY)HMi 000 (@) € (T (M 0(x)) (@)

Finally, since the correlation deviea draws joint states either accordingstp_1 (with probability Hil) or Xt
(with probability Hil) the posterior satisfies

t

(o), 0—j)
2o (i, o)
-0 o) + g (Xt (e, o)
2o mt(wi, o)
t 2o mt-1(o, o)
B m Za_i ”t(wiaa—i)
1 Xp ke mi)
t+1 > mt(ep, o)
Since the coefficients on the two beliefs are positive and add up tmu}mei )(w—j) is a convex combination of the

beliefsm! ™ (w; ) (w_i) andri! (o} ) (@_i ). Since we have shown tht (a; ) € (TY)! (M (X)) (w; ) and by the inductive
hypothesis,

m! (i) (@_i) =

mit_l(wi N ew—i)

il (i) (@)

m (@) e (MY)1Mi o)) (@) € (TVHHM; o(x) (@),

we conclude tham! () c (TY)!(M; 0(X)) (e ), which finishes the proof of induction.
As M; o(wt) C (TY )t(Mi,O(x)) for allt, it also holds in the limit, so indeell; o(7) C Mi*U (Mjo(x)). Il

Proof of Lemmd&b

Proof. Thatz(y) is a regular matrix implies that there exists larsuch that for any joint states and«’, the
players on equilibrium path move with a positive probability from state ' in exactlyL periods. That implies that
for any non-emptyM; (i.e. that there exists at least omg such thatM; (wj) is non-empty), the set"(M;)(wj) is
non-empty for alkvj € Q; foranyn > L.

Next, let #(h;) denote theD_; x D_; matrix H; (w_i,w’_i,hi |w—j) where rows correspond @_; and the
columns taw’ ;. We note that the matri%/(h;) has all entries between 0 and 1 and that the rows add up to at ezst 1
that if some element is positive, all other elements are strictly bounded away from 1.
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Sincet(y) is a regular matrix and we have assumed that the set of signals playesbserve with positive
probability does not depend on playeactions (full support) for alhj 1, ..., hj | all elements of the matrigi(h; | ) *

---xH(hj 1) contain no zeros (since playeassigns positive probability to the other players moving from any state to
any state inL periods on the equilibrium path). Let> 0 be the lower bound on the elements of that matrix (it exists

sinceL and the set of; are finite).

The rest of the proof has two steps. Let beliefs® andmF? be such thamf0(«?;) = 1 andmFl(w!,) = 1. That
is, mEC puts all probability on state®; andmE? puts all weight on state; . First, we show that for alfh n}3
limns oo 1BMNMEC, W' y_i), BM(MEL, hy_j)| = 0. Next, we show that this implies lim, oo T"(M;) = M; for all
non-emptyM; € M.

Step 1:

Recall from Lemmal that

2o Mi(o—)Hi(w—i, o, hily—i)

Bi (mi, hily—i) (o) = o, M @ @ i)

Let Bj (m;, hj|w_j) denote the vectd; (m;, h; | i )(w’_i ) andF;j (hj|w_;j) denote the vectdF; (w_j, hj|w_j). We
can then re-write Bayes’ rule in the matrix form as

1
Bi (mj, hily—i) = m m; H(hy), (A1)
scalar

wherem; is a row vector with elements; (w_j).

If playeri starts with priormiO and observegh; |, ..., hj 1) (with hj 1 being the most recent observation), then his

posterior beliefs aftet periods are
BE(mP hi L. b lv—i)
_ 1
BEHmO hi L. i 2ly—i) - Fi(hi aly—i)
_ 1
mOH (i L)... H(hi 2)) - Fi (hi 1ly—i)

BEL O hi L. hi2ly—iH (i 1)

mOH (i L) .. H (N ).

This implies that forj € {0, 1}, Bi'- (m, ',hi,L,...,hi,1|¢/_i) is equal to theu'_i row of matrix

1
(MO HDLL), - H b 2) - Fi (i alyi)

Hhi L), ..., H(hi ).

For a matrixQ, let RiQ = > 0k be the sum of the elements of rdvof this matrix. Denote byR(Q) a matrix
obtained by dividing each element of matx by the correspondin@Q, that is, if B = R(Q), thenbyg = q'—é. By

definition, the rows oR(Q) add up to 1Hence,R(H (hj L), ..., H(hj 1)) is a probability matrix and the posterior belief

BEMEC,hy ..., hi 1ly_i) is equal to thes®; row of R(H(hi L), ..., H(hj 1))
Let dg(Q) be the difference between the largest and smallest eleme@ssafolumnk: dy (Q) = max_j (g —
gjk))- Letd(Q) be the vector of these differences. Then g)wa)d(R(H(hi’L),...,H(hi,l)))(w’_i) is the maximum
-1
distance of the posterior belie (mE%, hi | ,....hj 1]y—i) andB-(MmEL hi | ,....hj 1]y_;) over all extreme priors,
mEQ andmFL. To continue, we invoke the following technical lemma (proven below):
Technical Lemma:

Suppose thath}ﬁo=1 is a sequence of square matrices with all elemegs ¢ (¢, 1—¢) for somee > 0. Then
there exists @ e (0, 1) such that for every n

d(R(Qn,.., Q1)) < 8d(R(Qn_1,.-., Q1)) < 3" *d(R(Qy)),

i.e. the distance between the normalized rows @f .Q, Q1 contracts by a factor of at leastas we left-multiply it by
another matrix from the sequence.

Now, since there exists > 1 ande > 0 such that for al(h; | , ..., hj 1), all elements of(h; | ),...,H(hj 1) are
bounded betweee, 1 — ¢), this technical lemma implies that there exists& (0, 1) such that for any integer.

d(REH (N L), -, H(hi 1)) < 0 AR noyL)s -, Hhi 1)) <"1,
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wherel is a vector of ones (of lengtB_j). Therefore, for any’, we can finch large enough so that for any history of
lengthnL and any two extreme priormiEO and miEl, the distance between the posteriors will be less #iaBo, for
every historyhi“, ash — oo, the posteriors converge to the same belief for all extreme priors.

Step 2:

As we have shown in the proof of Lemn® beliefs B; (m hj|w_j) are a convex combination of beliefs
B; (mI ,hilw_j) of all extreme prlorsnlE Applying this reasoning iteratively (that if prior beliefi is a convex
combination of priorsmi’ and mi”, then after applyingB;, the posterior oim; is a convex combination of the pos-
teriors of mi’ and mi” ), we get that for any history sequence, the posteriors after all possible beliefs are convex
combinations of posteriorB-(mE, hj ( ,...,hj 1]y—). Since for any sequendél-}>_,, for all mE, the posteriors
Bi'- (miE, hi.L,...,hi,1lw_i) converge, the same is true for posteriors after arbitrary priors. In other words, after long
enough histories, the posteriors depend (almost) only on the history and not on the prior.

As we described in the text, by the Tarski's fixed point theor&rhas at least one fixgubint, Mj . Now, suppose
that there exists a collection of sé# such that lim_, oo T"(M?) # M; (either because the sequer@®(M2)}3°
converges to something else or does not converge at all).

By monotonicity of T, for all n, T”(Mio) c T"(Aj). SinceT"(Aj) convergeso M;, for anye > 0, we can find
n large enough so that for allj € Q; and allm; T”(Mio)(a;i), [mi, Mj (wj)] < &. That is, the seté’"(Mio) cannot
“stick out” of Mj in the limit.

So the only remalnlng possibility for lig oo T“(MO) # M; is that there exists > 0 such that for alh’, we
can have thah > n’ and a stateo such that e v (@) T (MO)(w”) mi| > ¢ (in words, that theset M; (w“)

strictly “sticks out” of the sefl"( MO)(wI”) even for arbitrarily largen). If so, then we can find an extreme belief
m! € M; ((un) that satisfiesm", T"(M?)(oM)| > 0. Fix n’ such that the distance betwe&? (mEC h'jy_;) and
BI”(mIEl My_j) is uniformly bounded by:/2 for all historiesh! (for all n > n’) and all extreme pointmiEO, mFL.
Since lim— 00 T"(Aj) = Mj, we can find a historii" and a priomEP such thatB"(mEC, h'jy_;),m"| < ¢/2 and a
starting stateoo such that after that history, players in the stateo Now, take any pr|omO € Mo(wo) Itis a convex
combination of the pr|orsn . Moreover, after the hlstory the posterlorB”(mI .hy My_j) e T”(MO)(w”) and it is

a convex combination of the posterl(ﬁ‘(mE Mw_j). (The last claim follows from inspection of (Al)—see also
Lemma2.) Therefore,

1B (mP. hly—i). BN MO hflly_) < max BN mLhly_i). BIMEZ A ly—i)] < ¢/2.
mi=t,m;

Using the triangle |nequal|t3}']3”(mI ,h'lw_i), m| < & but that contradicts than" ,T”(MO)(w")| >e |

Proof of Technical Lemma

Proof. Consider a general multiplicatio®Q = Qn,..., Q1. LetC = Qn, F = Qn_1, B=Qn_2,..., Q1. Also,
let G = FB, so thatQ = CG = CFB. By assumption all the elements 6fandF are bounded from below ky> O,
but we do not know that abo@ or G.

For arbitrary matrixA, let RkA be the sum of elements in rawof that matrix Then

RO=DTaj=> [ D ciktkj | =D ak D ok = DO ckRE.
i i k k i k

Moreover,
Qij i 9kj
7Q — rk7’
R R
where G
r _ _GkR
k — G-
2ucR

In words, the elements d®(QnG) are a weighted average of elementsg6) (note thaty", Il = 1).
We now bound the WeighﬂSL uniformly away from zero for alG. To this end, bound

_ G
Iy = G R > Gik R

> ci RG >IRE
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Next,
RC _ kiR kfikRe Xk fikRE
LIPS f|kRkB k> fikRE Sk RELE

fik '— fik

whereLkF is the sum of elements of colunkof matrix F and

F pB
yk=Lk7§kFe[o,11.
2k ReLg

Note that for any matrice andB, > ) yx = 1.
Therefore, we can find a bourg € (0, %) that depends only oR andC :

| c .
T} > Gk ——x zamin'—é >eL,
2R k Ly

wheree| can be chosen independentlyi aindk.

To finish the proof, we show how to chooge Consider any columik. Any element of columrk of matrix
R(Qn, ..., Qq) is a weighted average of elements in the same colun®(Qf,_1, ..., Q1), with the weights bounded
uniformly away from zero by . Suppose that the largest and smallest elements of coluofiiR(Qn_1,..., Q1) are
equal togy andq,, respectively. Then

dk(R(Qn, ..., Q1) < (1—e)th+eLq —(eLOh+ (L —ep)q) = (1 -2 )dk(R(Qp—1, .-, Q1))-

Sowe canpickh = (1—2¢). ||
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