
“rds009” — 2012/4/18 — 8:01 — page 1 — #1

Beliefs and Private Monitoring
CHRISTOPHER PHELAN

University of Minnesota and Federal Reserve Bank of Minneapolis

and

ANDRZEJ SKRZYPACZ
Graduate School of Business, Stanford University

First version received March2009;final version accepted October2011(Eds.)

This paper develops new recursive,set basedmethods for studying repeated games with private
monitoring. For anyfinite-statestrategy profile, we find necessary and sufficient conditions for whether
there exists a distribution over initial states such that the strategy, together with this distribution, form
a correlated sequential equilibrium (CSE). Also, for any given correlation device for determining initial
states (including degenerate cases where players’ initial states are common knowledge), we provide nec-
essary and sufficient conditions for the correlation device and strategy to be a CSE, or in the case of a
degenerate correlation device, for the strategy to be a sequential equilibrium. We also consider several
applications. In these, we show that the methods are computationally feasible, and how to construct and
verify equilibria in a secret price-setting game.
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1. INTRODUCTION

This paper develops new methods for studying repeated games with private monitoring. In par-
ticular, we develop tools that allow us to answer when a particular strategy is consistent with
equilibrium. For an important subclass of strategies—those which can be represented as finite
automata—we provide readily checkable and computable necessary and sufficient conditions for
equilibrium.

The importance of these methods is as follows: while checking the equilibrium conditions
in public-monitoring games and perfect public equilibria is relatively simple, for games with
privatemonitoring, for almost all strategies, checking the equilibrium conditions has previously
been considered difficult if not impossible. For instance, consider the following repeated game
with private monitoring taken fromMailath and Morris(2002): two partners, privately, either
cooperate or defect, and in each period each, privately, has either a good or a bad outcome.
While each player can neither observe his partner’s action nor his partner’s outcome, outcomes
are correlated: the vector of joint outcomes is a probabilistic function of the vector of joint
actions. (A player cooperating makes it more likely that both players have a good outcome.)

At issue is that even for the simplest games, such as the one presented above, and even the
simplest strategies, such as tit-for-tat, there are an infinite number of possible histories where
incentives must be checked, and to check incentives one must calculate beliefs for all of them.
(This difficulty is not confined to the example above. See,e.g.the work ofKandori, 2002and
Mailath and Samuelson, 2006, Chapter 12.) In this paper, for a very large class of strategies,
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we resolve this issue by showing the necessity and sufficiency of checking incentives only for
“extreme beliefs” (as opposed to checking incentives for all possible histories).

The focus of our analysis is strategies that can be represented by a finite automaton (finite-
state strategies). A key point (first made byMailath and Morris, 2002) is that if all players’
strategies are finite automata, a particular player’s private history is relevant only to the extent
that it gives him information regarding the private states of his opponents. This lets us summarize
a player’s history as abelief over a finite state space, a much smaller object than the belief over
the private histories of opponents (a point also made byMailath and Morris, 2002). Moreover,
unlike the set of possible privatehistories, the set of possible privatestatesfor one’s opponents
does not grow over time.

While many private histories may put a player in the same state of his automaton, they will,
in general, induce different beliefs regarding the state of his opponents. Given this, there are two
advantages to working withsetsof beliefs representing all possible beliefs a player can have in a
given private state. One is that it is necessary and sufficient to check incentives only for extreme
points of those sets instead of looking at beliefs after all histories. The other advantage is that
these sets can be readily calculated using recursive methods (operators from sets to sets) that we
describe and demonstrate computationally.

Fixed points of our main set based operator represent the beliefs a player can have regarding
his opponents’ states “in the long run”. We show that if incentives hold for extreme points of
these sets, one can always use an initial correlation device to, in effect, start the game off as if
it had been already running for a long time.1 This technique alleviates a fundamental difficulty
associated with games with private monitoring: the continuation of (sequential) equilibrium play
in a game with private monitoring is not a sequential equilibrium but rather a correlated equilib-
rium in which private histories function as the correlation device. But asKandori (2002) notes,
the correlation device becomes increasingly more complex over time. Using randomization or
exogenous correlation in period 0 of the game to make it easier to satisfy incentives and hence
support an equilibrium has been suggested bySekiguchi(1997), Compte(2002), andEly (2002).
We present a robust way of applying this method to construct a family of correlated sequential
equilibria.

Our main results are presented as follows. In Section2, we present our model, a standard
repeated game with private monitoring, with finiteness and full support (all signals seen with
positive probability) as its only restrictive assumptions. We also present the subclass of strategies
we study—finite-state strategies, or strategies that can be represented as finite automata.

In Section3, we show a necessary and sufficient condition for a given correlation device
(choosing initial states of players) and a profile of finite automata to form aCSE(Theorem1).
That condition involves checking incentive constraints on only the extreme points of a fixed point
of our set operator (based on Bayes’ rule) which we describe how to compute. Computation is
feasible since we show (Lemma2) that the extreme points of the belief sets of a given iteration
are a function only of the extreme points of the belief sets of the previous iteration. Next, we
show necessary and sufficient conditions for theexistence of a starting correlation devicesuch
that if coupled with a given automaton they form a CSE (Theorem2)—they involve checking
incentives at extreme beliefs of a fixed point of a related operator. The result implies that the
best hope for incentives to hold is to start the playersas if the game has been played for a long
time (without telling them what the outcomes were, but only in which state they should be now).
We also show how to verify which starting conditions can support a CSE and which cannot.
Since we can apply these results to arbitrary correlation devices, and in particular, to degenerate

1. An earlier version of this project entitled “Private Monitoring with Infinite Histories” focused on this point.
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ones, we can answer if a particular strategy profile is asequentialequilibrium—a correlated
equilibrium with a degenerate correlation device.

In Section4, we present two applications of our methods. We start with the partnership
game described above and demonstrate that the methods are easy to apply computationally, and
that allows us to gain new intuition regarding how private monitoring affects incentives. In the
second application, we consider tacit collusion in a duopoly with competition in prices (with
private prices and quantities) and show that one-period price wars are more robust to private
monitoring than two-period price wars.

In Section5, we conclude. Additional results are in an online appendix.
Our results complement the existing literature on the construction of belief-free equilibria

(e.g.the work ofEly and Välimäki, 2002; Piccione, 2002; Ely, Hörner and Olszewski, 2005; and
Kandori and Obara, 2006) in which players use mixed strategies and their best responses are in-
dependent of their beliefs about the private histories of their opponents. In contrast to belief-free
equilibria, the equilibria we construct are belief dependent; players’ best responses do depend
on their beliefs. (For earlier work on constructing belief-dependent sequential equilibria, see
Bhaskar and Obara, 2002andMailath and Morris, 2002. The first paper constructs a particular
equilibrium for an almost-perfect monitoring prisoner’s dilemma game. The second describes a
class of finite-monitoring equilibria in almost public-monitoring games.)

In terms of the focus on strategies instead of pay-offs, our work is closest toMailath and
Morris (2002, 2006). They consider robustness of particular classes of strategies—those that are
equilibria in a public-monitoring game—to a perturbation of the game from public to private,
yet almost-public monitoring. They show that strict equilibria in strategies that look back only a
finite number of periods (a subclass of the strategies we study) are robust to such perturbations.
They also show when infinite history-dependent strategies (partly covered by our analysis) are
not robust.

Finally, in a recent paper,Kandori (2010) studies equilibria he calls “Weakly Belief-Free”
and shows that in some games, they can achieve higher pay-offs than any belief-free equilib-
rium. The definition of these equilibria can be translated to our language as follows: incentive
constraints have to hold for initial beliefs and for all extreme beliefs obtained afterone iteration
of our operator on the set ofall possible beliefs (in contrast, the belief-free equilibria check
incentives for zero iterations, and our CSE check them after infinitely many iterations).

2. THE MODEL

Consider the game,0∞, defined by the infinite repetition of a stage game,0, with N players,
i = 1, . . . ,N, each able to take actionsai ∈ Ai . Assume that with probabilityP(y|a), a vector of
private outcomesy = (y1, . . . , yN) (eachyi ∈ Yi ) is observed conditional on the vector of private
actionsa = (a1, . . . ,aN), where for all(a, y), P(y|a) > 0 (full support). Further assume that
A = A1 ×∙∙ ∙× AN andY = Y1 ×∙∙ ∙×YN are both finite sets, and letHi = Ai ×Yi .

The current period pay-off to playeri is denotedui : Hi → R. That is, playeri ’s pay-off
is a function of his own current-period action and private outcome. If playeri receives pay-off
stream{ui,t }∞t=0, his lifetime discounted pay-off is(1− β)

∑∞
t=0β

t ui,t , whereβ ∈ (0,1). As
usual, players care about the expected value of lifetime discounted pay-offs.

Let hi,t = (ai,t , yi,t ) denote playeri ’s private action and outcome at datet ∈ {0,1, . . .}, and
ht

i = (hi,0, . . . ,hi,t−1) denote playeri ’s private history up to, but not including, datet . A (be-
haviour)strategyfor playeri , σi = {σi,t }∞t=0, is then, for each datet , a mapping from playeri ’s
private historyht

i to his probability of taking any given actionai ∈ Ai in periodt . Let σ denote
the joint strategyσ = (σ1, . . . ,σN) andσ−i denote the joint strategy of all players other than
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player i or σ−i = (σ1, . . . ,σi −1,σi +1, . . . ,σN). (Throughout the paper, we use notation−i to
refer to all players but playeri .)

2.1. Finite-state strategies

In this paper, we restrict attention to equilibria infinite-state strategies, or strategies that can
be described as finite automata. (However, we allow deviation strategies to be unrestricted.) A
finite-state strategy for playeri is defined by four objects: (1) a finite private state space�i
(with Di elementsωi ), (2) a functionpi (ai |ωi ) giving the probability of each actionai for each
private stateωi ∈�i , (3) a deterministic transition functionω+

i :�i × Hi →�i determining next
period’s private state as a function of this period’s private state, playeri ’s private actionai , and
his private outcomeyi , and (4) an initial state,ωi,0.2 Given this set-up,σi,0(ai ) = pi (ai |ωi,0),
σi,1(ai,0, yi,0)(ai )= pi (ai |ω

+
i (ωi,0,ai,0, yi,0)), and so on.3 Note that each player’s automatonψi

describes play both on and off the equilibrium path. We impose no requirement on the transition
ruleω+

i that all states can be reached on the path of play.
Throughout the paper, we repeatedly make a distinction between a finite-state strategy’sau-

tomaton(objects 1 through 3) and object 4, playeri ’s initial state,ωi,0. Let ψi = (�i , pi ,ω
+
i )

denote agenti ’s automaton. The collection of automata over all playersψ ≡ {ψ1, . . . ,ψN} is
referred to as thejoint automaton. Finally, let the number of joint statesD =5i ≤N Di , and the
number of joint states for players other than playeri , D−i =5 j 6=i D j .

2.2. Beliefs

Since our solution concept will beCSE, allow playeri ’s initial beliefs over the initial state of
his opponents,ω−i,0, to be possibly non-degenerate. In particular, let playeri ’s beliefs about
the initial state of his opponents,μi,0, be a point in the(D−i − 1)-dimensional unit-simplex,
denoted1D−i . Taking as givenμi,0, the assumption of full support (P(y|a) > 0 for all (a, y))
implies that the beliefs of playeri regarding his opponents’ private histories,ht

−i , are always
pinned down by Bayes’ rule. But since the continuation strategies of players−i depend only on
their current joint state,ω−i,t , to verify playeri ’s incentive constraints after any given private
historyht

i , we need not directly consider playeri ’s beliefs regardingω−i,0 andht
−i . Instead, we

need focus only on playeri ’s beliefs regarding his opponents’ current state,ω−i,t . This is a much
smaller object, and, importantly, its dimension does not grow over time.

For a particular initial belief,μi,0, and private history,ht
i , playeri ’s belief overω−i,t is, like

μi,0, simply a point in the(D−i −1)-dimensional unit-simplex.4 Letμi,t (μi,0,ht
i ) denote player

i ’s belief at the beginning of periodt aboutω−i,t after private historyht
i given initial beliefsμi,0.

Letμi,t (μi,0,ht
i )(ω−i ) denote the probability assigned to the particular stateω−i .

Beliefs μi,t (μi,0,ht
i ) can be defined recursively using Bayes’ rule. LetBi (mi ,hi |ψ−i ) ∈

1D−i denote the belief of playeri over the state of his opponents at the beginning of period
t if his beliefs over his opponents’ state at periodt − 1 weremi ∈ 1D−i and he subsequently

2. The restriction to deterministic transitions is for notational convenience only. All our methods and results apply
to automata with non-deterministic transitions.

3. For a useful discussion of the validity of representing strategies as finite-state automata in the context of games
with private monitoring, seeMailath and Morris(2002) andMailath and Samuelson(2006).

4. Note that if the joint automaton of playeri ’s opponents,ψ−i , hasD−i states but onlyj < D−i are used
on path, the beliefs of playeri are in the( j − 1)-dimensional unit-simplex (rather than in the(D−i − 1)-dimensional
unit-simplex). This implies off path states impose a lower computational burden than on path states.
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observedhi = (ai , yi ). This posterior belief can be written out explicitly (from Bayes’ rule)
as:

Bi (mi ,hi |ψ−i )(ω
′
−i )=

∑
ω−i

mi (ω−i )Hi (ω−i ,ω
′
−i ,hi |ψ−i )

∑
ω−i

mi (ω−i )Fi (ω−i ,hi |ψ−i )
,

where

Fi (ω−i ,hi |ψ−i )=
∑

(a−i ,y−i )

p−i (a−i |ω−i )P(yi , y−i |ai ,a−i ),

Hi (ω−i ,ω
′
−i ,hi |ψ−i )=

∑

h−i ∈G−i (ω−i ,ω
′
−i |ψ−i )

p−i (a−i |ω−i )P(yi , y−i |ai ,a−i ),

and

G−i (ω−i ,ω
′
−i |ψ−i )= {h−i = (a−i , y−i )|ω

+
−i (ω−i ,a−i , y−i )= ω′

−i }

or G−i is the set of(a−i , y−i ) pairs which cause players−i to transit from stateω−i to state
ω′

−i .
To define beliefs recursively, letBs

i (mi ,hs
i |ψ−i ) = Bi (B

s−1
i (mi ,h

s−1
i |ψ−i ),hi,s−1|ψ−i ),

where B1
i (mi ,hi |ψ−i ) = Bi (mi ,hi |ψ−i ). Then,μi,t (μi,0,ht

i ) = Bt
i (μi,0,ht

i |ψ−i ). Note that
Bi (mi ,hi |ψ−i ) does not depend onσi at all, and thus playeri ’s beliefs are the same regard-
less of whether or not playeri is playing a finite-state strategy.

2.3. Equilibrium

Consider playeri following an arbitrary strategyσi , while players−i follow a finite-state strat-
egy σ−i defined by(ω−i,0,ψ−i ). That is, players−i are restricted to finite-state strategies,
but playeri is not. Let Vi,t (ht

i ,ω−i |σi ,ψ−i ) denote the lifetime expected discounted pay-off
to playeri conditional on his private historyht

i , and players−i being in stateω−i . Thus,

Vi,t (h
t
i ,ω−i |σi ,ψ−i )=

∑

a=(ai ,a−i )

(σi,t (h
t
i )(ai )p−i (a−i |ω−i ))

(
∑

y

P(y|a)[(1−β)ui (ai , yi )

+ βVi,t+1((h
t
i , (ai , yi )),ω

+
−i (ω−i ,a−i , y−i )|σi ,ψ−i )]

)

.

For arbitrary beliefsmi ∈1D−i , let

EVi,t (h
t
i ,mi |σi ,ψ−i )=

∑

ω−i

mi (ω−i )Vi,t (h
t
i ,ω−i |σi ,ψ−i ).

Playeri ’s expected pay-off given correct beliefsμi,t (μi,0,ht
i ) is thenEVi,t (ht

i ,μi,t (μi,0,ht
i )|σi ,

ψ−i ).
If σi is a finite-state strategy (defined by(ωi,0,ψi )), letωi,t (ωi,0,ht

i ) denote the private state
for playeri at datet implied by initial stateωi,0, transition ruleω+

i (ωi ,ai , yi ), and historyht
i =

((ai,0, yi,0), . . . , (ai,t−1, yi,t−1)). Then, for all(ht
i , ĥ

t
i ) such thatωi,t (ωi,0,ht

i ) = ωi,t (ωi,0, ĥt
i ),

Vi,t (ht
i ,ω−i |σi ,ψ−i ) = Vi,t (ĥt

i ,ω−i |σi ,ψ−i ). Given this, we can write playeri ’s lifetime pay-
off, conditional onω−i , as a function of his current private stateωi as opposed to depending
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directly on his private history,ht
i . Thus, we definevi (ωi ,ω−i |ψi ,ψ−i ) ≡ Vi,t (ht

i ,ω−i |σi ,ψ−i )
for any ht

i such thatωi = ωi,t (ωi,0,ht
i ). Then we denote playeri ’s expected pay-off, now a

function of his current state,ωi , and his beliefs over his opponents’ state,ω−i , as

Evi (ωi ,mi |ψi ,ψ−i )=
∑

ω−i

mi (ω−i )vi (ωi ,ω−i |ψi ,ψ−i ).

Definition 1. A probability distribution over initial states,x ∈ 1D, and joint automaton,ψ ,
form aCSEof 0∞ if for all i , t , ht

i , ωi,0 such that
∑
ω−i,0

x(ωi,0,ω−i,0) > 0, and arbitrarŷσi ,

Evi (ωi,t (ωi,0,h
t
i ),μi,t (μi,0(x,ωi,0),h

t
i )|ψi ,ψ−i )≥ EVi,t (h

t
i ,μi,t (μi,0(x,ωi,0),h

t
i )|σ̂i ,ψ−i ),

whereμi,0(x,ωi,0)(ω−i,0)= x(ωi,0,ω−i,0)/
∑
ω−i,0

x(ωi,0,ω−i,0).

There are two difficulties in verifying whether a given(x,ψ) form a CSE. First, there are
infinitely many deviation strategies. Second, to verify the IC constraints, we need to know the
beliefs players have on and off path after each element of the infinite set of possible private
histories. The first difficulty is shared by all repeated game models and, as usual, it is solved by
using the one-shot deviation principle. The resolution of the second difficulty is the main focus
of this paper.

Lemma 1 (One-shot Deviation Principle). Suppose a correlation device x and joint au-
tomatonψ satisfy for all i , ht

i , âi , andωi,0 such that
∑
ω−i,0

x(ωi,0,ω−i,0) > 0,

Evi (ωi,t (ωi,0,h
t
i ),μi,t (μi,0(x,ωi,0),h

t
i )|ψi ,ψ−i )

≥
∑

ω−i

μi,t (μi,0(x,ωi,0),h
t
i )(ω−i )




∑

a−i

p−i (a−i |ω−i )
∑

y

P(y|âi ,a−i )

× [(1−β)ui (âi , yi )+βvi (ω
+
i (ωi,t (ωi,0,h

t
i ), âi , yi ),ω

+
−i (ω−i ,a−i , y−i )|ψi ,ψ−i )]



 .

Then,(x,ψ) form a CSE. That is, it is sufficient to check that player i does not wish to deviate
once and then revert to playing according to his automatonψi .

Proof. Mailath and Samuelson(2006, p. 397). ‖

3. VERIFYING EQUILIBRIA

We now turn to the main methodological contribution of the paper: set based methods deliver-
ing first, necessary and sufficient conditions for when a joint automatonψ , when coupled with
particular correlation devicex, forms a CSE (Theorem1), and second, necessary and sufficient
conditions for whether there existsanycorrelation devicex such that a joint automatonψ , when
coupled withx, forms a CSE. That is, our second main result (Theorem2) regards whether the
joint automatonψ itself is consistent with equilibrium.5

5. Note that if a given joint automaton,ψ , is not consistent with equilibrium, there may still exist a different joint
automaton,ψ̂ , with the same on-path play but different off-path play that is consistent with equilibrium. We provide
partial answers to this problem in the online appendix.
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Rather than considering separately the beliefsmi ∈1D−i that a player will have after some
private history, it is useful to considersetsof beliefs. In particular, letMi (ωi ) ⊂1D−i denote a
closed convex set of beliefs, andMi be a collection ofDi setsMi (ωi ), one for eachωi . LetM
denote the space of such collections of setsMi . To define the distance between two elementsMi
andM ′

i ∈M, first let the distance between two beliefsmi andm′
i ∈1D−i be defined by the sup

norm (or Chebyshev distance) denoted|mi ,m′
i | = maxω−i |mi (ω−i )−m′

i (ω−i )|. Next, for a be-
lief mi and a non-empty closed setA ⊂1D−i , let the distance between them (the Hausdorff dis-
tance) be defined as|mi , A| = minm′

i ∈A |mi ,m′
i |. For two non-empty closed sets(A, A′)⊂1D−i ,

the Hausdorff distance between them is defined as|A, A′| = max{maxmi ∈A |mi , A′|,maxm′
i ∈A′

|m′
i , A|}. If A is non-empty, let|A,∅| = 1 and|∅, A| = 1. Finally, let|∅,∅| = 0. (Note that for

non-emptyA andA′, |A, A′| ≤ 1.) Then the distance between two collections of belief setsMi ,
M ′

i ∈M is defined as|Mi ,M ′
i | = maxωi |Mi (ωi ),M ′

i (ωi )|.
We begin by constructing two related operators fromM toM, where fixed points of these

operators will be a focus of our main results. Let the one-step operatorT(Mi ) be defined as6

T(Mi )= {T(Mi )(ω
′
i )|ω

′
i ∈�i },

where

T(Mi )(ω
′
i )= co({m′

i | there existsωi ∈�i ,mi ∈ Mi (ωi ) and(ai , yi ) ∈ Gi (ωi ,ω
′
i |ψi )

such thatm′
i = Bi (mi ,ai , yi |ψ−i )}),

where co() denotes the convex hull andGi (ωi ,ω
′
i |ψi ) is the set of(ai , yi ) such thatω+

i
(ωi ,ai , yi )=ω′

i . TheT operator works as follows: suppose one takes as given the sets of “allow-
able” beliefs playeri can have over the private state of the other players,ω−i , last period. For any
given such allowable belief, Bayesian updating then implies what playeri should believe about
ω′

−i this period for each realization of(ai , yi ), generating a collection of allowable belief sets.
That is, if there exists a way to choose playeri ’s state last period,ωi , the beliefs of playeri over
the private states of his opponents last period consistent withmi ∈ Mi (ωi ), and a new realization
of (ai , yi ) such that Bayesian updating delivers beliefsm′

i , thenm′
i ∈ T(Mi )(ω

+
i (ωi ,ai , yi )). In

effect, theT operator gives, for a particular collection of belief setsMi , the belief sets associated
with all possible successor beliefs generated by new data and interpreted throughσ−i (as well
as all convex combinations of such beliefs). Note that sinceBi andGi depend only on the joint
automatonψ , as opposed to starting conditions,x, theT operator retains this property as well.

Next, let the operatorTU (Mi ) (U for union) be

TU (Mi )= {TU (Mi )(ωi )|ωi ∈�i }, whereTU (Mi )(ωi )= co(T(Mi )(ωi )∪ Mi (ωi )).

In words, theTU operator calculates for every stateωi , the convex hull of the union of the prior
beliefs playeri could hold last period,Mi (ωi ), and all the posterior beliefs he can hold in that
same state,T(Mi )(ωi ).

We note here that theT andTU operators are relatively easy to operationalize. In particular,
the following lemma implies that the extreme points of the collection of setsT(Mi ) andTU (Mi )
can be calculated using only the extreme points of the collection of setsMi .

Lemma 2 . If Mi (ωi ) is closed and convex for allωi , then T(Mi )(ωi ) and TU (Mi )(ωi ) are both
closed and convex for allωi . Next, if mi is an extreme point of TU (Mi )(ωi ) but not T(Mi )(ωi ),

6. TheT operator depends onψ−i and varies across players (as doesM), but to conserve notation, we write
T(Mi ) rather thanTi (Mi |ψ−i ).
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then mi is an extreme point of Mi (ωi ). Finally, if mi is an extreme point of both T(Mi )(ωi ) and
TU (Mi )(ωi ), then there existŝmi , ω̂i , hi such that mi = Bi (m̂i ,hi |ψ−i ), hi ∈ Gi (ω̂i ,ωi |ψi ) and
m̂i is an extreme point of Mi (ω̂i ).

Proof. See Appendix. ‖

3.1. Fixed points of T and TU

Our results rely on properties of the fixed points ofT andTU . We writeM0
i ⊂ M1

i if M0
i (ωi )⊂

M1
i (ωi ) for all ωi . Furthermore, we writeMi is non-empty if there exists a private stateωi such

that Mi (ωi ) is non-empty.
Both T and TU are monotonic operators (i.e. if M0

i ⊂ M1
i , then T(M0

i ) ⊂ T(M1
i ) and

TU (M0
i )⊂ TU (M1

i )). By construction,Mi ⊂ TU (Mi ) for all Mi ∈M. SinceMi ⊂ TU (Mi ), and
TU (Mi ) ⊂ TU (TU (Mi )) (from monotonicity), the sequence{Mi ,TU (Mi ),TU (TU (Mi )), . . .}
converges. ThatBi is continuous impliesTU is continuous and thus this limit is a fixed point of
TU . Call this fixed pointM∗U

i (Mi ). Next note that ifMi ⊂ T(Mi ), thenT(Mi )= TU (Mi ). This
implies if Mi ⊂ T(Mi ), the sequence{Mi ,T(Mi ),T(T(Mi )), . . .} also converges toM∗U

i (Mi ).

3.2. When is a pair(x,ψ) a CSE?

For an arbitrary correlation device,x, let the belief setsMi,0(x,ωi ) ∈1Di be defined such that

Mi,0(x,ωi )= {μi,0(x,ωi )}

for all ωi such that
∑
ω−i

x(ωi ,ω−i ) > 0. Otherwise, letMi,0(x,ωi ) = ∅. That is, for allωi , if
ωi occurs with positive probability under distributionx, Mi,0(x,ωi ) is the single point belief
set consisting of what playeri believes aboutω−i when his initial state isωi . Let Mi,0(x) be a
collection ofDi setsMi,0(x,ωi ), one for eachωi , and (with some abuse of notation)M∗U

i (x)≡
M∗U

i (Mi,0(x)).

Theorem 1. A correlation device x and a joint automatonψ form a CSE if and only if the
incentive compatibility conditions

Evi (ωi ,mi |ψi ,ψ−i )≥
∑

ω−i

mi (ω−i )




∑

a−i

p−i (a−i |ω−i )
∑

y

P(y|âi ,a−i )[(1−β)ui (âi , yi )

+βvi (ω
+
i (ωi , âi , yi ),ω

+
−i (ω−i ,a−i , y−i )|ψi ,ψ−i )]



 (1)

hold for all i , âi , ωi , and mi such that mi is an extreme point of M∗U
i (x).

Proof. If: since incentive compatibility conditions (1) are linear in beliefs, then if they hold
for the extreme beliefs ofM∗U

i (x), they hold for all beliefs in these sets. By monotonicity,
(TU )t (Mi,0(x)) ⊂ M∗U

i (x) for all t ≥ 0, so incentives hold in the first period for all initial
signals and in all subsequent periods for all possible continuation histories.

Only if: suppose that incentive compatibility conditions (1) are violated for some stateωi and
extreme beliefmi ∈ M∗U

i (x)(ωi ). Since the incentive conditions (1) are continuous in beliefs
and are weak inequalities, there exists anε > 0 such that for all beliefsm′

i such that|m′
i ,mi |< ε,

incentives are violated in stateωi with beliefsm′
i .
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Now, by definition ofTU , for everyt andωi , every extreme point of(TU )t (Mi,0(x))(ωi ) is
either an extreme point of(TU )t−1(Mi,0(x))(ωi ) or an extreme point ofT((TU )t−1(Mi,0(x)))
(ωi ). Therefore, we can find an initial stateωi,0 and a private historyht

i such that playeri
after ht

i is in stateωi and his beliefsμi,t (μi,0,ht
i ) satisfy |μi,t (μi,0,ht

i ),mi | < ε (using that
(TU )n(Mi,0(x))→ M∗U (x) ). Thus(x,ψ) are not a CSE. ‖

3.3. When does there exist an x such that(x,ψ) is a CSE?

For a joint automatonψ = (�, p,ω+), denote the Markov transition matrix on the joint state
ω ∈� by

τ(ω,ω′)(ψ)=
∑

(a,y) s.t.(ai ,yi )∈Gi (ωi ,ω
′
i |ψi ) for all i

P(y|a)
∏

i

pi (ai |ωi ). (2)

Sinceτ(ψ) defines a finite-state Markov chain, it has at least one invariant distribution,π ∈1D.

Lemma 3 . Let π be an invariant distribution of the Markov processτ(ψ). Then for all i ,
Mi,0(π)⊂ T(Mi,0(π)).

Proof. See Appendix. ‖

The basic idea behind the proof of Lemma3 is that beliefs drawn from an invariant distri-
bution are an average, and thus a convex combination, of beliefs which condition on additional
information. Since theT operator is the convex hull of all possible posteriors from given priors,
and the average posterior belief is the prior belief, the convex hull of the set of possible posterior
beliefs must contain the prior belief. Lemma3 then implies thatT(Mi,0(π)) = TU (Mi,0(π))
and that{Mi,0(π),T(Mi,0(π)),T(T(Mi,0(π))), . . .} converges toM∗U

i (π).

Lemma 4 . For a given(x,ψ) let π = limt→∞
1

t+1

∑t
n=0 xτ(ψ)n. Then

(a) The limit exists and is an invariant distribution ofτ(ψ).

(b) Mi,0(π)⊂ M∗U
i (x).

Proof. See Appendix. ‖

Part (b) of Lemma4 states that theinitial beliefs playeri can have if initial states are drawn
from the invariant distribution ofτ(ψ) defined in part (a) (the setsMi,0(π)) are always contained
in the set ofall beliefs playeri can have over all dates when starting with the arbitrary corre-
lation devicex, M∗U

i (x). The intuition of Lemma4 is similar to Lemma3: the beliefsMi,0(π)
correspond to drawing initial states from a random time from the Markov chainτ(ψ) and hence
are a convex combination of beliefs that condition on both calendar time and the realized history,
which in turn are contained inM∗U

i (x).

Theorem 2. For a given joint automaton,ψ, there exists a correlation device x such that
(x,ψ) form a CSE if and only if for some invariant distributionπ of τ(ψ), incentives hold (i.e.
condition (1) from Theorem 1) for all i, ωi and mi which is an extreme point of M∗U

i (π)(ωi ).7

7. The authors thank an anonymous referee for correctly suggesting that one of our sufficient conditions from
a previous version of this paper—that incentives hold for all extreme points ofM∗U

i (π) for an invariant distribution
π—was most likely also necessary.
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Proof. If: let x = π . From Lemma3 (and the monotonicity ofT), the time zero beliefs
of each playeri , Mi,0(π,ωi,0) ∈ M∗U

i (π)(ωi,0) for eachωi,0 drawn with positive probability.
Moreover, the subsequent beliefs for each playeri are elements ofM∗U

i (π)(ωi,t ) for each date
t and private historyht

i , whereωi,t is playeri ’s state at datet after private historyht
i .

Suppose condition (1) holds, for alli , âi , ωi , and extreme points ofM∗U
i (π)(ωi ), wheremi

andm̂i are two such points. Then since equation (1) is linear in these beliefs, for allα ∈ [0,1],
condition (1) holds for beliefsαmi + (1−α)m̂i , again for alli , âi , andωi . Thus, incentives hold
for all datest and private historiesht

i if initial states are drawn according toπ .
Only if, suppose there exists a correlation devicex such that(x,ψ) form a CSE, but for all

invariant distributionsπ of τ(ψ), (π,ψ) does not form a CSE. That(x,ψ) forms a CSE implies,
by Theorem1, that incentives hold for alli, ωi andmi which is an extreme point ofM∗U

i (x).
Let

π = lim
t→∞

1

t

t−1∑

n=0

xτn.

By Lemma4, π is an invariant distribution ofτ(ψ) andMi,0(π)⊂ M∗U
i (x).

SinceTU is a monotone operator:

(TU )n(Mi,0(π))⊂ (TU )n(M∗U
i (x))= M∗U

i (x)

and so in the limit:
M∗U

i (π)⊂ M∗U
i (x).

Applying Theorem1, this implies that(π,ψ) is also a CSE, a contradiction.‖

3.4. Strategies with unique invariant distributions

In the previous section, we showed that a joint automatonψ is consistent with equilibrium if
and only if it is a CSE to have initial private states drawn from an invariant distribution ofτ(ψ).
Verifying for a particular invariant distributionπ of τ(ψ) whether(π,ψ) form a CSE then
involves calculatingM∗U

i (π) ≡ lims→∞ Ts(Mi,0(π)) and checking incentives at its extreme
points. A second method involvescalculatingMi ≡ lims→∞ Ts(1i ) (where1i denotes the
collection of Di , D−i − 1-dimensional unit simplexes) and checking incentives at its extreme
points. Since the set inclusion relationship,⊂, defines a complete lattice on the space ofDi
closed subsets of1D−i , Mi is the largest fixed point ofT and all other fixed points ofT are
subsets of it (by Tarski’s fixed point theorem). Thus, if incentives hold at the extreme pointsof
Mi (for all i ), or incentives hold at the extreme points ofanypoint in the sequence{Ts(1i )}∞s=0,
(π,ψ) is a CSE forany invariant distributionπ of τ(ψ). But this only establishes a sufficient
condition for equilibrium. Here, we show that ifτ(ψ) is a regular matrix(i.e. there exists ans
such thatτ(ψ)s has all non-zero entries), then incentives holding at the extreme pointsof Mi
is necessary as well. (Note that ifτ(ψ) is a regular matrix, then all joint states are reached on
path.)

Lemma 5 . Supposeτ(ψ) is a regular matrix.Then Mi is the unique non-empty fixed point of
T and for all non-empty Mi ∈M, limn→∞ Tn(Mi )= Mi .

Proof. See Appendix. ‖

Corollary 1 (of Theorem 2). If τ(ψ) is a regular matrix, then there exists a correlation
device x such that(x,ψ) form a CSE if and only if incentives hold (i.e. condition(1) from
Theorem1) for all i and mi such that mi is an extreme pointof Mi .
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Proof. Lemma5, Lemma3 and that for allMi such thatMi ⊂ T(Mi ), T(Mi ) = TU (Mi )
imply M∗U

i (π) = Mi , whereπ is the unique invariant distribution ofτ(ψ). Theorem2 then
implies the result. ‖

3.5. Which starting conditions work?

For a given joint automatonψ , Theorem2 gives us necessary and sufficient conditions for the
existence of a correlation devicex such that(x,ψ) form a CSE. Suppose we find aψ that
satisfies these conditions. A natural question is then, whatx can be used to start the strategies
without violating incentive constraints? From the proof of Theorem2, we know that at least one
of the invariant distributions ofτ(ψ) can be used.

One can use Theorem1 to verify for anyx,whether(x,ψ) is a CSE. That requires computing
a fixed point ofTU for every suchx. We now show that one can compute once a fixed point of
a related operator and use it to evaluate anyx.

In particular, defineM I
i (ωi ) to be the set of beliefs such that incentives hold in the current

period for all beliefsmi ∈ M I
i (ωi ) if player i is in stateωi and plans to follow the strategy in

the future. Clearly, a necessary condition for(x,ψ) to be a CSE is thatMi,0(x) ⊂ M I
i since

otherwise incentives would be violated in the first period. We need to ensure, however, that
incentives are satisfied not only for a particular belief generated by the correlation device but
also for all possible successors of that belief, and successors of those beliefs, and so on.

Define the operatorT I (Mi ) (I for incentives) as

T I (Mi )= {T I (Mi )(ωi )|ωi ∈�i }, where

T I (Mi )(ωi )= co({mi |mi ∈ Mi (ωi ) and for all(ai , yi ), (3)

Bi (mi ,ai , yi |ψ−i ) ∈ Mi (ω
+(ωi ,ai , yi ))}).

In words, T I eliminates an element ofMi (ωi ) if there exists a private history(ai , yi ) and a
successor belief which is not inMi (ω

+
i (ωi ,ai , yi )).

Clearly,T I is monotone andT I (Mi )⊂ Mi for anyMi . Thus, the sequence{(T I )n(M I
i )}

∞
n=0

(starting with the set of beliefs such that incentives hold in the first period), represents a sequence
of (weakly) ever smaller collection of sets, guaranteeing that the limit, denotedM∗I

i , exists. Im-
portantly,M∗I

i can be computed independently ofx, allowing us to then evaluate all correlation
devices to this benchmark:

Corollary 2 (of Theorem 1). A correlation device x and a joint automatonψ form a CSE if
and only if for all i , Mi,0(x)⊂ M∗I

i

Proof. For anyMi , by the definition ofT I , we have

Mi ⊂ M∗I
i ⇐⇒ M∗U

i (Mi )⊂ M∗I
i

hence by Theorem1, (x,ψ) form a CSE if and only ifMi,0(x)⊂ M∗I
i . ‖

Since the set of correlated equilibria is convex, if(x,ψ) and(x′,ψ) are CSE, so is(x′′,ψ)
for any x′′ which is a convex combination ofx andx′. Finally, for belief-free equilibria (such
as those inEly and Välimäki, 2002), the conditions of the corollary hold automatically since
M∗I

i =1i or that incentives hold, by construction, for all beliefs.
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4. APPLICATIONS

In this section, we attempt to show that these methods are useful in analysing interesting eco-
nomic applications.

4.1. A repeated partnership game (Mailath and Morris, 2002)

In this example, we use the repeated partnership game ofMailath and Morris(2002) to show
that (a) one can use our methods to easily compute the relevant belief sets to verify incentive
conditions, (b) analyse which starting conditions work, (c) do comparative statics regarding
model parameters, and (d) investigate that histories are problematic when parameters are such
that a strategy is not an equilibrium.

We also highlight two somewhat surprising results. First, we show that sometimes tit-for-tat
coordination works if both players start in the bad state but not when both players start in the
good state. Second, we compute an example where knowing too well the state of one’s opponent
can be bad for incentives. If a player has less knowledge about the state of his opponent (because
of stochastic starting conditions or less predictable consumers or less correlated private signals),
it can make it easier to satisfy incentives.8

4.1.1. The partnership game. Consider the two player partnership game in which each
playeri ∈ {1,2} can take actionai ∈ {C,D} (cooperate or defect) and each can realize a private
outcomeyi ∈ {G,B} (good or bad). TheP(y|a) function is such that ifm players cooperate,
then with probabilitypm(1− ε)2 + (1− pm)ε

2, both players realize the good private outcome.
With probability (1− ε)ε, player 1 realizes the good outcome, while player 2 realizes the bad.
(Likewise, with this same probability, player 2 realizes the good outcome and player 1 the bad.)
Finally, with probability pmε

2 + (1− pm)(1− ε)2, both players realize the bad outcome. Es-
sentially, this game is akin to one in whichpm determines the probability of an unobservable
underlying outcome andε is the probability that playeri ’s outcome differs from this under-
lying outcome. Thus, whenε = 0, outcomes are public, and whenε approaches 0, outcomes
are almost public. Pay-offs are determined by specifyingβ and for each playeri , the vector
{ui (C,G),ui (C,B),ui (D,G),ui (D,B)}.

4.1.2. Tit-for-tat. Next, consider perhaps the simplest non-trivial pure strategy: tit-for-
tat. That is, let each playeri play C if his private outcome was good in the previous period
andD otherwise. This is a two-state strategy with�i = {R,P} for “reward” and “punish”. For
i ∈ {1,2}, pi (C|R) = 1, pi (D|P) = 1,ω+

i (ωi ,ai ,G) = R, ω+
i (ωi ,ai ,B) = P for ωi ∈ {R,P},

andai ∈ {C,D}. Since every joint state can be reached from every other joint state with positive
probability,τ(ψ) is a regular matrix and Corollary1 of Theorem2 applies and thus tit-for-tat is
compatible with equilibrium if and only if incentives hold for the extreme points of the unique
non-empty fixed point ofT , Mi . Since the number of states ofi ’s opponentD−i = 2, theset
Mi (ωi ) is simply a closed interval specifying the range of probabilities that player−i is in state
R, given that playeri is in stateωi ∈ {R,P}. OperatorT maps a collection of two intervals (one
for eachωi ) to a collection of two intervals.

For β = 0∙9, p0 = 0∙3, p1 = 0∙55, andp2 = 0∙9 and a pay-off of 1 for receiving a good
outcome and a pay-off of−0∙4 for cooperating, we can easily verify that the static game is a
prisoner’s dilemma and that tit-for-tat is an equilibrium of the public outcome (ε = 0) game,
starting from either both players in stateR or both players in stateP. For ε > 0, beliefs matter

8. While surprising to us, this effect is present inSekiguchi(1997) andBhaskar and Obara(2002).
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FIGURE 1
Belief Sets for Tit-for-Tat

and to check equilibrium conditions, one must construct the intervals Mi (ωi ). The procedure
of iterating theT mapping is relatively easily implemented on a computer.9 For ε = 0∙025,
the procedure converges (in less than a second) to these intervals: Mi (R)= [0∙923,0∙972],and
Mi (P)= [0∙036,0∙189] (see Figure1).

Again, tit-for-tat is compatible with equilibrium if and only if each player indeed wishes to
play C when he believes his opponent is in stateR with either probability 0∙923 or 0∙972 and
indeed wishes to playD when he believes his opponent is in stateR with either probability
0∙036 or 0∙189 (assuming a reversion to path play after a deviation). This is a matter of simply
checking equation (1) for each of these four beliefs, and it holds in this case, thus there exist
starting conditions such that tit-for-tat is an equilibrium.

In particular, Theorem2 delivers one such starting condition. If both players follow the equi-
librium, the transition matrixτ(ψ) between joint stateω ∈�= {RR,RP,P R,P P} andω′ ∈�
implies a unique invariant distributionπ = (0∙659,0∙038,0∙038,0∙264). If one chooses the cor-
relation devicex = π , then if playeri ∈ {1,2} hasR as his initial recommended state, he believes
his opponent’s initial recommended state isR with probability 0∙945= 0∙659/(0∙659+0∙038).
Likewise, if his initial recommended state isP, he believes his opponent’s initial recommended
state isR with probability 0∙127= 0∙038/(0∙038+0∙264). Note that Lemma 4 implies the belief
of playeri after recommendationR, μi,0(R)= 0∙945∈ Mi (R) and likewise,μi,0(P)= 0∙127∈
Mi (P). Thus, the correlation devicex = π and tit-for-tat form a CSE.

Are there any other starting conditions for which tit-for-tat is an equilibrium? Using theT I

operator, one can also readily calculate the setsM∗I
i for playersi ∈ {1,2}. In this example,

M∗I
i (R)= [0∙704,1] andM∗I

i (P)= [0,0∙704]. Corollary2 then implies any correlation device
x that delivers conditional beliefsμi,0(R) ∈ [0∙704,1] andμi,0(P) ∈ [0,0∙704], together with
tit-for-tat, forms a CSE. Thus, starting each player off in stateωi = R with certainty (orx puts
all mass onω = RR) and following tit-for-tat is asequentialequilibrium sinceMi,0(x,R) =
{1} ⊂ M∗I

i (R) andMi,0(x,P) = ∅ ⊂ M∗I
i (P). Likewise, starting each player off in stateP (x

puts all weight onω= P P) is also a sequential equilibrium sinceMi,0(x,R)= ∅ ⊂ M∗I
i (R) and

Mi,0(x,P)= {0} ⊂ M∗I
i (P). Finally, lettingx be such that one player starts off in stateR and his

opponent starts off in stateP (with certainty) isnota sequential equilibrium sinceMi,0(x,R)=
{0} 6⊂ M∗I

i (R). Note bycalculatingMi and M∗I
i , we have evaluatedall deterministic starting

conditions and thus all potential sequential equilibria associated with tit-for-tat.
If ε is increased toε = 0∙04, then the intervals Mi (ωi ) shift towards the middle and widen

and tit-for-tat ceases to be equilibrium for any starting conditions. FromMailath and Morris
(2002), we know that in this example, for sufficiently smallε, tit-for-tat is an equilibrium, and
obviously for sufficiently highε, it is not. Our analysis of this example allows us to go further:
to establish exactly for whichε’s the profile is an equilibrium. That is, our methods allow us

9. The Matlab code for checking arbitrary finite-state strategies for arbitrary games can be found on the authors’
Web sites.
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to consider whether any proposed strategy is an equilibrium strategy regardless of whether the
outcomes are nearly public.

Next, rather than increasingε from ε= 0∙025 toε= 0∙04, instead consider keepingε= 0∙025
and decreasing the cost to cooperating from 0∙4 to 0∙357. Since the beliefsets Mi do not
depend on pay-offs, they are still represented by Figure1. Further, for these new pay-offs,
incentives continue to hold at the extreme pointsof Mi (R) and Mi (P), ensuring that let-
ting the correlation devicex on initial recommended states be the invariant distributionπ =
(0∙659,0∙038,0∙038,0∙264) remains a correlated equilibrium. However, given this change in
pay-offs, lettingx be such that both players start off in stateR with certainty is now no longer
a sequential equilibrium. In fact for these pay-offs, the only sequential equilibrium associated
with tit-for-tat is for both players to start off in stateP with certainty, which delivers theworst
pay-off over all ways of starting up a tit-for-tat equilibrium.

How can starting off with too much certainty be a problem? The difficulty with starting each
player off in the reward state with certainty is that while each player is willing to cooperate
in the first period, each is unwilling to defect in the second period, as tit-for-tat calls for, if he
sees a bad outcome in the first period. The problem is that the certainty that one’s opponent
was in stateR in the first period makes the player in the second period (after a bad outcome
in the first period) insufficiently confident that his opponent is also in stateP. In particular,
his belief in period 2 that his opponent is in stateR, Bi (mi,0 = 1,hi = (C,B)|ψ−i ) = 0 ∙ 203,
which is outsideof Mi (P) = [0∙036,0∙189]. On the other hand, if the correlation devicex =
(0∙8,0∙03,0∙03,0∙14) on the initial states� = {RR,RP,P R,P P}, then if playeri receives
recommended stateωi,0 = R, he believes his opponent is in stateR with probability mi,0 =
0∙8/0∙83= 0∙964. Then,Bi (mi,0 = 0∙964,hi = (C,B)|ψ−i ) = 0∙185, which is sufficiently low
such that tit-for-tat is again a correlated equilibrium. (In fact, one can use our methods to find
the correlation devicex that delivers thebestsymmetric equilibrium pay-off associated with any
given strategy. In this case, this is approximatelyx = (0∙8,0∙03,0∙03,0∙14).)

Finally, in an online appendix, we demonstrate our methods are not confined to two-state
strategies by considering for this game a strategy that we label “tit for tat-tat” (cooperate only
if one has observed a good outcome in the last two periods). This is a three-state strategy that
nevertheless is computed in seconds.

4.2. Secret price cuts

In this section, we study a secret price cutting game with a rich action and signal space. First, we
show that a natural strategy from the public-monitoring game, namely Taking Turns, is not going
to work with private monitoring. Second, we show that one-period price wars can support collu-
sion, but they may require random correlated starting conditions. Finally, we show an example
with two-period price wars that support collusion, while one-period ones are not enough. In that
example, if customer behaviour is more predictable, it is more difficult to sustain collusion in the
private-monitoring case. It also suggests that strategies with two-period punishments are much
more fragile to private monitoring than one-period punishments.

4.2.1. A Bertand pricing game. Consider a repeated Bertrand duopoly game. At each
date, each of two players (firms) privately chooses a priceai ∈ {0,0∙01,0∙02, . . . ,4}. A player’s
private outcome is his number of customersyi ∈ Yi = {0,1,2,3,4,5}. With probability(1− ε),
the total number of customers,y1 + y2 = 5, and with probabilityε/10, the total number of
customers is any particular element of{0,1,2,3,4,6,7,8,9,10}. If both players choose the same
price, each customer flips a fair coin to determine from which firm he buys. If the firms choose
different prices, each customer chooses the lower price firm with probability 1− δ. (If the total
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number of customers is more than five, and these coin flips imply one player selling to more
than five customers, that player is assumed to have exactly five customers, with the other player
selling to the other customers.) Production is assumed to have a constant marginal costc ≥ 0
so ui (ai , yi ) = (ai − c) ∗ yi . If δ = 0, and as the grid on prices gets infinitely fine, the unique
stage game Nash equilibrium is for both firms to choose priceai = c. If ε andδ are each strictly
positive, all joint outcomes(y1, y2) occur with positive probability for all(a1,a2) and this game
fits in our framework.

4.2.2. Taking turns. Consider the following three-state strategy: in stateMe, player i
choosesai = 3∙99, while in stateY ou, playeri choosesai = 4. In stateP (Punishment), player
i choosesai = 0. If in stateMe, playeri receives 3 or more customers, he transits to stateY ou,
otherwise he transits to stateP. If in stateY ou, playeri receives 2 or fewer customers, he transits
to stateMe, otherwise he transits to stateP. Finally, if in stateP, playeri receives 0, 1, 4, or
5 customers, he stays in stateP, if he receives 2 customers, he transits to stateMe and if he
receives 3 customers, he transits to stateY ou.

If β = 0∙95, δ = 0∙05, andc = 1, for the game with public monitoring (ε = 0), this strategy
is a perfect public equilibrium when one player starts in stateMe and the other in stateY ou.
As long as the lower price firm gets a majority of the customers (a high probability event), both
players choose a high price (with one slightly undercutting the other) and take turns regarding
which one receives most of the customers. In the unlikely event that a firm receives a majority of
the customers out of turn, a price war ensues. In a price war, each firm has the incentive to charge
ai = 0 since this maximizes the probability that customers will be split as evenly as possible,
causing the price war to end.

First, note that the conditions for Lemma5 hold in this example, thus checking incentives
at the extreme points of the largest fixed point ofT , Mi (ωi ) is necessary and sufficient for
the existence of starting conditions such that Taking Turns is a correlated equilibrium. But here,
whenMi (Me) andMi (P) are calculated, their intersection is non-empty. Thus, for the incentive
conditions to be satisfied, each player must be indifferent between following the continuation
strategy associated with stateMe and the continuation strategy associated with stateP for all
points in this non-empty intersection, which is not the case here. One reason the non-empty
intersectionof Mi (Me) and Mi (P) occurs in this game is that if player 1 is in stateMe and
receivesy1 = 2 customers, he transits to stateP, while if he is in stateP and receivesy1 = 2
customers, he transits to stateMe. Thus, if he starts in stateMe and receives a long even-
numbered string ofyi = 2 outcomes, he will be in stateMe, while if he starts in stateP and
receives the same long even-numbered string ofyi = 2 outcomes, he will be in stateP. But in
this game, regardless of starting beliefs, if a player takes the same action and receives the same
outcome period after period, his beliefs converge to the same point, which, by construction, will
be inboth Mi (Me) andMi (P).

Such state-dependent transitions appear (at least to us) to be essential to any turn-taking
equilibrium with public monitoring. That is, which outcomes require a transition to a given state
would typically rely on whose turn it was to win the majority of customers last period (or whether
the players are currently in the punishment state if such a state is also used). But, certainly for
this example and we suspect more generally, these state-dependent transitions make the strategy
not an equilibrium with private monitoring.

4.2.3. High equal prices with price wars. Now consider a different strategy. In stateR
(Reward), each firm choosesai = 4 and in stateP (Punish), each firm choosesai = 0. From any
state, ifyi ∈ {0,5} (a firm sells to either zero or five customers), it transits to stateP in the next
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period regardless of its priceai . If yi ∈ {1,2,3,4}, from any state, it transits to stateR tomorrow.
In words, each firm sets a price of four unless last period it had an extreme number of customers.
If ε = 0 or the total number of customers is certain to be five, this is a game of public monitoring,
and this strategy is a public equilibrium as long asδ, the probability that a customer chooses the
high-price firm, is not too high (or forβ near 1,δ ≤ 0∙06).

If ε ≤ 0∙04 (with β = 0∙95, δ = 0∙05, andc = 1), unlike taking turns, there exists a cor-
relation device such that this strategy is also an equilibrium of the private-monitoring game
(specifically, drawing initial states from the unique invariant distribution, where joint stateω ∈
{RR,RP,P R,P P} is drawn with probability(0∙90,0∙01,0∙01,0∙08)). Interestingly, however,
for these parameters, there exists nodeterministiccorrelation device such that this is an equi-
librium. Starting one player in stateR and the other in stateP is obviously not an equilibrium.
However, for less obvious reasons, starting both in stateR or both in stateP is also not an equi-
librium. Forε = 0∙04, Mi (R)= [0∙263,0∙994]andMi (P)= [0∙016,0∙124], relatively wide but
non-overlapping belief sets, and incentives hold on their extreme points. However, if both players
start off in stateR with certainty, whileM∗U

i (P)= Mi (P), M∗U
i (R)= [0∙104,1∙000] 6= Mi (R).

The intervalM∗U
i (R) has not only a higher upper boundthanMi (R), but also a smaller lower

bound. At this reduced lower bound, incentives do not hold.
Which histories create the problem? Specifically, the lower bound ofM∗U

i (R) is generated
by assuming playeri believes his opponent is in stateR with probability 1, setsai = 0 and
receives one customer (i.e. Bi (mi = 1,hi = (0,1)|ψ−i )= 0∙104). Bayesian updating essentially
depends on reconciling the player’s observations with its possible explanations and the most
likely explanation for playeri receiving only one customer when he undercut his opponent is
that the total number of customers was actually only one and this customer chose the lower price,
putting player−i in stateP (which happens with probability 1− 0∙104). On the other hand, if
player i is only 99∙4% certain that his opponent is in stateR (the upper boundof Mi (R)),
then if he setsai = 0 and receives one customer, he now believes his opponent is in stateR
with probability 0∙265∈ Mi (R) and incentives hold. This change in updating occurs since the
small amount of doubt leaves another explanation for playeri receiving only one customer—his
opponent was actually in stateP and thus both set a price of zero, and thus it is more likely his
opponent received a positive number of customers. A similar explanation rules out both players
starting out in stateP with certainty.

4.2.4. Two-period price wars. For this game, if the marginal cost of productionc = 0,
one can show analytically that the two-state strategy considered in the previous section is not an
equilibrium of theε = 0 public game. A price war of possibly only one period of zero profits (as
opposed to negative profits ifc> 0) is an insufficient punishment to hinder slightly undercutting
one’s opponent. In this section, we show that a minimum two-period punishment can be an
equilibrium, but that the co-ordination necessary for two-period punishments implies that the
number of customers must be very close to public information.

Consider the following three-state strategy: In stateR, each firm choosesai = 4 and in states
P1 andP2, each firm choosesai = 0. From any state, ifyi ∈ {0,5} (a firm sells to either 0 or
5 customers), it transits to stateP1 in the next period regardless of its priceai . On the other
hand, ifyi ∈ {1,2,3,4}, it transits to stateR tomorrow if today’s state wasR or P2 and transits
to stateP2 tomorrow if today’s state wasP1. In words, each firm sets a price of zero unless in
each of the last two periods, it had an interior number of customers. Ifε = 0, or the total number
of customers is certain to be 5, this is a game of public monitoring, and this strategy is a public
equilibrium as long asδ, the probability that a customer chooses the high-price firm, is not too
high (or forβ near 1,δ ≤ 0∙16).
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FromMailath and Morris(2002), we then know for any givenβ andδ, there existsanε > 0
such that for all 0< ε ≤ ε, this strategy is also an equilibrium of the private-monitoring game
with an uncertain number of customers. However, assumingβ = 0∙95, if δ = 0∙1 (or the cus-
tomer chooses the lower price with probability 0∙9), our computation method shows that for the
above strategy to be an equilibrium, one needsε < 4× 10−7, or there must be less than four
chances in 10 million that the number of customers differs from five. For smallerδ (or for higher
probabilities that consumers choose the lower price),ε must be evenlower. If δ = 0∙05 (or the
customer chooses the lower price with probability 0∙95), equilibrium requiresε < 4× 10−9,
or there must be less than four chances in a billion that the number of customers differs from
five.

The reasonε must be so small (and small relative toδ) again comes from a player’s off path
Bayesian updating. For instance, supposeε andε/δ are both positive but infinitesimal. Then,
regardless of a player’s action and regardless of his beliefs regarding his opponent’s state (and
thus his action) if he receives 0 or 5 customers, he concludes his opponent also received 0 or 5
customers, and if he receives one through 4 customers, he concludes his opponent did as well.
This guarantees that regardless of starting states and actions taken, within two periods, each
player is convinced the other player is in the same state he is. (More formally, in the limit as
ε → 0 for a givenδ > 0, Mi (R)= {(1,0,0)}, Mi (P1)= {(0,1,0)}, andMi (P2)= {(0,0,1)}.)
On the other hand, ifε andδ/ε are both positive and not infinitesimal, very different Bayesian
updating occurs.

Supposeδ= 0∙1 andε = 10−8 (which is too high for this strategy to be an equilibrium). What
goes wrong? Again, one feature of our computation method is that it points out at exactly which
state,ωi , and which extreme beliefin Mi (ωi ) incentives fail to hold. For these parameters,
incentives fail to hold for an extreme pointin Mi (P2) when playeri believes his opponent
is in stateR with (approximately) 50% probability and stateP2 with (approximately) 50%
probability. Here, with this level of doubt, playeri is unwilling to play ai = 0, preferring a
higher price.

Further, as in the previous example, our methods allow one to trace how an extreme belief
can be supported. This particular extreme belief (playeri is in stateP2 but believes his opponent
is 50/50 in R or P2) is generated as follows: suppose playeri is in stateR, believes his opponent
is also in stateR (with certainty), deviates and playsai = 0, and receives 0 customers, putting
him in stateP1 tomorrow. One possibility is that the number of customers was 5, but each
of them chose the higher price firm. This happens with probabilityδ5 ∗ (1− ε) which is about
3∙1× 10−7, or one in 3∙1 million. In this scenario, playeri ’s opponent had 5 customers and
is in stateP1 tomorrow. A second possibility is that the number of customers was 1 and this
single customer chose the higher price firm. This happens with probabilityδ ∗ (ε/10), which
is 1∙25× 10−6, or one in eight hundred thousand. In this second scenario, player 1’s opponent
had one customer and is in stateR tomorrow. The ratio of these events is 0∙00016 (or one in
625), which closely matches the actual posterior of playeri given this scenario. And given he is
in stateP1 and believes his opponent is in stateP1 with probability 0∙99984 and stateR with
probability 0∙00016, he wishes to follow the strategy and playai = 0.

But from this state and belief, suppose playeri then chooses an intermediate priceai ∈
{0∙01, . . . ,3∙99} and receives three customers, putting playeri in stateP2 the following period.
How does he account for this event? One possibility is that his opponent was in stateP1 (and
thus playeda−i = 0) and four out of five customers chose the higher price firm, putting player
−i in stateP2 tomorrow. This happens with probability 0∙999984∗ 5∗ δ4 ∗ (1− δ) ∗ (1− ε),
which is about 0∙00003. Another possibility is that his opponent was in stateR (and thus played
a−i = 4) and only one out of five customers chose the higher price firm, putting player−i in
stateR tomorrow. This happens with probability 0∙00016∗5∗ (1−δ)4∗δ∗ (1−ε), which is also
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about 0∙00003. Since the ratio of these two events is near 1, from stateP2, playeri now believes
player−i is in stateRwith (about) 50% probability and stateP2 with 50% probability.

5. CONCLUDING REMARKS

Beyond using our methods directly to compute equilibria, one can extend and apply these meth-
ods in several ways.

First, as shown in a recent paper byKandori and Obara(2010), one can use set-based methods
similar to ours to study strategies that can be represented by finite automata on the equilibrium
path but can be much more complicated off the equilibrium path. For example, they allow the
strategy off the equilibrium path to be a function of beliefs over other players’ states, which
implies an infinite number of the automaton states (since players believe that others are always
on the equilibrium path, the beliefs are still manageable).

Second, one can prove that if incentives hold strictly (uniformly bounded) for all extreme
beliefs of the fixed point operatorTU , then this CSE is robust to small perturbations of the stage
game pay-offs or the discount factor. The reasoning is as follows: first, theTU operator and the
initial belief setsMi,0(x) are independent of the pay-offs. Hence, the fixed point is independent.
Second, the incentive constraints are continuous in the stage-game pay-offs and the discount
factor. Hence, if for the given game the incentives hold strictly for all extreme beliefs of the
fixed point of theTU operator, they also hold weakly for small perturbations of the pay-offs or
the discount factor. Then, Theorem1 implies that for the perturbed game, the same(x,ψ) are a
CSE. Similar arguments can be used for perturbations of the monitoring technology (theP(y|a)
function) to study robustness to changes in monitoring.

APPENDIX A
Proof of Lemma2

Proof. First, recall thatT(Mi )(ωi ) is convex from the definition ofT . Next, from its definition, we can express
T(Mi )(ω

′
i ) as

T(Mi )(ω
′
i )= co(∪ωi ,hi ∈Gi (ωi ,ω

′
i |ψi )

T(Mi )(ωi ,hi )(ω
′
i )),

where T(Mi )(ωi ,hi )(ω
′
i ) = {m′

i | there existsmi ∈ Mi (ωi ) such thatm′
i = Bi (mi ,hi |ψ−i )}. Next, note that

Bi (mi ,hi |ψ−i )(ω
′
i ) is continuous inmi on the whole domainmi ∈1D−i andMi (ωi ) is closed (and bounded). Since

T(Mi )(ωi ,hi )(ω
′
i ) is an image of a closed and bounded set under a continous mapping, it is closed (and bounded) as

well. As a finite union of closed sets,T(Mi )(ω
′
i ) is closed as well. The same reasoning applies to theTU operator. The

observation that ifmi is an extreme point ofTU (Mi )(ωi ) but notT(Mi )(ωi ), thenmi is an extreme point ofMi (ωi )

follows directly from the definition ofTU .
For the last part of the lemma, we use an important property of the non-linear functionBi (mi ,hi |ψ−i )(ω−i ). For

all ω′
−i , m1

i , m2
i , hi andα ∈ (0,1),

Bi (αm1
i + (1−α)m2

i ,hi |ψ−i )(ω
′
−i )= α′Bi (m

1
i ,hi |ψ−i )(ω

′
−i )+ (1−α′)Bi (m

2
i ,hi |ψ−i )(ω

′
−i )

for someα′ ∈ (0,1). That is, the posterior of a convex combination of beliefsm1
i andm2

i is a convex combination of
their posteriors, albeit with different weights. To see this, algebraic manipulation delivers

Bi (αm1
i + (1−α)m2

i ,hi |ψ−i )(ω
′
−i )

=
α
∑
ω−i

m1
i (ω−i )Fi (ω−i ,hi |ψ−i )

∑
ω−i

(αm1
i (ω−i )+ (1−α)m2

i (ω−i ))Fi (ω−i ,hi |ψ−i )
Bi (m

1
i ,hi |ψ−i )(ω

′
−i )

+
(1−α)

∑
ω−i

m2
i (ω−i )Fi (ω−i ,hi |ψ−i )

∑
ω−i

(αm1
i (ω−i )+ (1−α)m2

i (ω−i ))Fi (ω−i ,hi |ψ−i )
Bi (m

2
i ,hi |ψ−i )(ω

′
−i ).
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Note

α
∑
ω−i

m1
i (ω−i )Fi (ω−i ,hi |ψ−i )

∑
ω−i

(αm1
i (ω−i )+ (1−α)m2

i (ω−i ))Fi (ω−i ,hi |ψ−i )
+

(1−α)
∑
ω−i

m2
i (ω−i )Fi (ω−i ,hi |ψ−i )

∑
ω−i

(αm1
i (ω−i )+ (1−α)m2

i (ω−i ))Fi (ω−i ,hi |ψ−i )
= 1.

Further, examination of the first quotient has the numerator strictly positive and strictly less than the denominator. So
indeed

α′(α,m1
i ,m

2
i )=

α
∑
ω−i

m1
i (ω−i )Fi (ω−i ,hi |ψ−i )

∑
ω−i

(αm1
i (ω−i )+ (1−α)m2

i (ω−i ))Fi (ω−i ,hi |ψ−i )
∈ (0,1).

Now take anymi which is an extreme point ofT(Mi )(ωi ) and suppose that for all collections(m′
i ,ω

′
i ,h

′
i ) such that

mi = Bi (m
′
i ,h

′
i |ψ−i ),m′

i ∈ Mi (ω
′
i ) andh′

i ∈ Gi (ω
′
i ,ωi ), the beliefm′

i is not an extreme point ofMi (ω
′
i ). That implies

that there exist two priors(m0
i ,m

1
i ) that are extreme points ofMi (ωi ) such thatm′

i is a strict convex combination of
them. There are three possibilities: (1)Bi (m

′
i ,h

′
i |ψ−i ) = Bi (m

0
i ,h

′
i |ψ−i ) or (2) Bi (m

′
i ,h

′
i |ψ−i ) = Bi (m

1
i ,h

′
i |ψ−i ) or

(3) Bi (m
′
i ,h

′
i |ψ−i ) is a strict convex combination ofBi (m

0
i ,h

′
i |ψ−i ) and Bi (m

1
i ,h

′
i |ψ−i ). In the first two cases, we

have then found the priors that lead to the posteriormi , a contradiction. In the third case,mi is not an extreme point of
T(Mi )(ωi ), again a contradiction. ‖

Proof of Lemma3

Proof. Forωi such that
∑
ω−i

π(ωi ,ω−i ) > 0, letm0
i (ωi )(ω−i )=

π(ωi ,ω−i )∑
ω−i

π(ωi ,ω−i )
. That is,m0

i (ωi ) is the single

point in the setMi,0(π,ωi ). Sinceπ is an invariant distribution, for allω = (ωi ,ω−i )

m0
i (ωi )(ω−i ) =

∑
ω0 π(ω

0)
∑

hi ∈Gi (ω
0
i ,ωi |ψi )

∑
h−i ∈Gi (ω

0
−i ,ω−i |ψ−i )

pi (ai |ω
0
i )p−i (a−i |ω

0
−i )P(y|a)

∑
ω0 π(ω0)

∑
hi ∈Gi (ω

0
i ,ωi |ψi )

∑
h−i

pi (ai |ω
0
i )p−i (a−i |ω

0
−i )P(y|a)

=

∑
ω0

i

∑
hi ∈Gi (ω

0
i ,ωi |ψi )

pi (ai |ω
0
i )
∑
ω0

−i
π(ω0)Hi (ω

0
−i ,ω−i ,hi |ψ−i )

∑
ω0

i

∑
hi ∈Gi (ω

0
i ,ωi |ψi )

pi (ai |ω
0
i )
∑
ω0

−i
π(ω0)Fi (ω

0
−i ,hi |ψ−i )

.

Next, note that

Bi (m
0
i (ω

0
i ),hi |ψ−i )(ω−i ) =

∑
ω0

−i
π(ω0

i ,ω
0
−i )Hi (ω

0
−i ,ω−i ,hi |ψ−i )

∑
ω0

−i
π(ω0

i ,ω
0
−i )Fi (ω

0
−i ,hi |ψ−i )

.

We wish to show for allωi , m0
i (ωi ) is a convex combination ofBi (m

0
i ,hi |ψ−i ) over all (ω0

i ,hi ) such thathi ∈
Gi (ω

0
i ,ωi |ψi ). For all(ω0

i ,hi ) such thathi ∈ Gi (ω
0
i ,ωi |ψi ), let

α(ω0
i ,hi |ωi )=

pi (ai |ω
0
i )
∑
ω0

−i
π(ω0

i ,ω
0
−i )Fi (ω

0
−i ,hi |ψ−i )

∑
ω0

i

∑
hi ∈Gi (ω

0
i ,ωi |ψi )

pi (ai |ω
0
i )
∑
ω0

−i
π(ω0

i ,ω
0
−i )Fi (ω

0
−i ,hi |ψ−i )

.

Since the denominator ofα(ω0
i ,hi |ωi ) is the sum of the numerators over all(ω0

i ,hi ) such thathi ∈ Gi (ω
0
i ,ωi |ψi ), it is

clear that
∑
ωi

∑
hi ∈Gi (ω

0
i ,ωi |ψi )

α(ω0
i ,hi |ωi )= 1.

Next, for a givenωi andω−i , consider
∑

ω0
i

∑

hi ∈Gi (ω
0
i ,ωi |ψi )

α(ω0
i ,hi |ωi )Bi (m

0
i (ωi ),hi |ψ−i )(ω−i )

=
∑

ω0
i

∑

hi ∈Gi (ω
0
i ,ωi |ψi )

pi (ai |ω
0
i )
∑
ω0

−i
π(ω0

i ,ω
0
−i )Fi (ω

0
−i ,hi |ψ−i )Bi (m

0
i (ωi ),hi |ψ−i )(ω−i )

∑
ω0

i

∑
hi ∈Gi (ω

0
i ,ωi |ψi )

pi (ai |ω
0
i )
∑
ω0

−i
π(ω0

i ,ω
0
−i )Fi (ω

0
−i ,hi |ψ−i )

=

∑
ω0

i

∑
hi ∈Gi (ω

0
i ,ωi |ψi )

pi (ai |ω
0
i )
∑
ω0

−i
π(ω0)Hi (ω

0
−i ,ω−i ,hi |ψ−i )

∑
ω0

i

∑
hi ∈Gi (ω

0
i ,ωi |ψi )

pi (ai |ω
0
i )
∑
ω0

−i
π(ω0)Fi (ω

0
−i ,hi |ψ−i )

= m0
i (ωi )(ω−i ).

‖
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Proof of Lemma4

Proof. First, that the limit exists andπ is a stationary distribution ofτ is a standard result on Markov chains (see,
e.g.Theorem 11.1 in Stokey and Lucas).

Next, define

πt =
1

t +1

t∑

n=0

xτn.

Note thatπt is a probability distribution over joint states for anyt (it is the distribution over joint states given
starting correlation devicex and the transition matrixτ, averaged over periods{0, . . . , t}).

We prove by induction that for allt, Mi,0(πt )⊂ (TU )t (Mi,0(x)) andMi,0(xτ
t )⊂ (TU )t (Mi,0(x)) (where(TU )0

(M)= M).
For t = 0, all these collections of sets are equal, so the claim is true. Now, suppose the claim is true fort −1.
Let mt

i (ωi )(ω−i )=
πt (ωi ,ω−i )∑
ω−i

πt (ωi ,ω−i )
be the belief playeri assigns to players−i being in stateω−i conditional on

observing that the correlation deviceπt puts him in stateωi . Also let m̂t
i (ωi )(ω−i ) =

(xτ t )(ωi ,ω−i )∑
ω−i

(xτ t )(ωi ,ω−i )
(analogous

belief for correlation devicexτ t ). Note that

πt =

∑t
n=0 xτn

t +1
=

tπt−1 + xτ t

t +1
,

that is,πt is a weighted average of distributionsπt−1 andxτ t .

By the same calculation as in Lemma3, m̂t
i (ωi )(ω−i ) is a convex combination of posterior beliefsBi (m̂

t−1
i ,hi |ψ−i )

over all (ωt−1
i ,hi ) such thathi ∈ Gi (ω

t−1
i ,ωi |ψ−i ). The intuition is thatm̂t

i (ωi )(ω−i ) can be thought of as beliefs
playeri has after learning that at timet he is in stateωi but not knowing his history of the game so far. If he knew that
his belief last period waŝmt−1

i he could then compute his posterior using that prior and averaging over all one-period
histories that according to the equilibrium path could have brought him to the current stateωi .

Since by the inductive hypothesis all priorŝmt−1
i (ωi ) ∈ (TU )t−1(Mi,0(x))(ωi ), all such posteriorsm̂t

i (ωi ) ∈
T((TU )t−1(Mi,0(x)))(ωi )⊂ (TU )t (Mi,0(x))(ωi ).

Finally, since the correlation deviceπt draws joint states either according toπt−1
(
with probability t

t+1

)
or xτ t

(
with probability 1

t+1

)
, the posterior satisfies

mt
i (ωi )(ω−i ) =

πt (ωi ,ω−i )∑
ω−i

πt (ωi ,ω−i )

=
t

t+1πt−1(ωi ,ω−i )+
1

t+1(xτ
t )(ωi ,ω−i )

∑
ω−i

πt (ωi ,ω−i )

=
t

t +1

∑
ω−i

πt−1(ωi ,ω−i )
∑
ω−i

πt (ωi ,ω−i )
mt−1

i (ωi )(ω−i )

+
1

t +1

∑
ω−i

(xτ t )(ωi ,ω−i )
∑
ω−i

πt (ωi ,ω−i )
m̂t

i (ωi )(ω−i ).

Since the coefficients on the two beliefs are positive and add up to one,mt
i (ωi )(ω−i ) is a convex combination of the

beliefsmt−1
i (ωi )(ω−i ) andm̂t

i (ωi )(ω−i ).Since we have shown thatm̂t
i (ωi )∈ (T

U )t (Mi,0(x))(ωi ) and by the inductive
hypothesis,

mt−1
i (ωi ) ∈ (TU )t−1(Mi,0(x))(ωi )⊂ (TU )t (Mi,0(x))(ωi ),

we conclude thatmt
i (ωi )⊂ (TU )t (Mi,0(x))(ωi ), which finishes the proof of induction.

As Mi,0(πt )⊂ (TU )t (Mi,0(x)) for all t, it also holds in the limit, so indeedMi,0(π)⊂ M∗U
i (Mi,0(x)). ‖

Proof of Lemma5

Proof. That τ(ψ) is a regular matrix implies that there exists anL such that for any joint statesω andω′, the
players on equilibrium path move with a positive probability from stateω to ω′ in exactlyL periods. That implies that
for any non-emptyMi (i.e. that there exists at least oneωi such thatMi (ωi ) is non-empty), the setTn(Mi )(ωi ) is
non-empty for allωi ∈�i for anyn ≥ L .

Next, letH(hi ) denote theD−i × D−i matrix Hi (ω−i ,ω
′
−i ,hi |ψ−i ) where rows correspond toω−i and the

columns toω′
−i . We note that the matrixH(hi ) has all entries between 0 and 1 and that the rows add up to at most 1, so

that if some element is positive, all other elements are strictly bounded away from 1.

1656

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article-abstract/79/4/1637/1574329 by Stanford U

niversity Libraries user on 01 July 2020



“rds009” — 2012/4/18 — 8:01 — page 21 — #21

PHELAN & SKRZYPACZ BELIEFS AND PRIVATE MONITORING

Sinceτ(ψ) is a regular matrix and we have assumed that the set of signals players−i observe with positive
probability does not depend on playeri actions (full support) for allhi,1, . . . ,hi,L all elements of the matrixH(hi,L )∗
∙ ∙ ∙ ∗H(hi,1) contain no zeros (since playeri assigns positive probability to the other players moving from any state to
any state inL periods on the equilibrium path). Letε > 0 be the lower bound on the elements of that matrix (it exists
sinceL and the set ofhi are finite).

The rest of the proof has two steps. Let beliefsmE0
i andmE1

i be such thatmE0
i (ω0

−i )= 1 andmE1
i (ω1

−i )= 1. That

is, mE0
i puts all probability on stateω0

−i andmE1
i puts all weight on stateω1

−i . First, we show that for all{hi,n}∞n=0,

limn→∞ |Bn
i (m

E0
i ,hn

i |ψ−i ),B
n
i (m

E1
i ,hn

i |ψ−i )| = 0. Next, we show that this implies limn→∞ Tn(Mi ) = Mi for all
non-emptyMi ∈M.

Step 1:
Recall from Lemma1 that

Bi (mi ,hi |ψ−i )(ω
′
−i )=

∑
ω−i

mi (ω−i )Hi (ω−i ,ω
′
−i ,hi |ψ−i )

∑
ω−i

mi (ω−i )Fi (ω−i ,hi |ψ−i )
.

Let Bi (mi ,hi |ψ−i ) denote the vectorBi (mi ,hi |ψi )(ω
′
−i ) andFi (hi |ψ−i ) denote the vectorFi (ω−i ,hi |ψ−i ).We

can then re-write Bayes’ rule in the matrix form as

Bi (mi ,hi |ψ−i )=
1

mi ∙ Fi (hi |ψ−i )︸ ︷︷ ︸
scalar

miH(hi ), (A.1)

wheremi is a row vector with elementsmi (ω−i ).
If player i starts with priorm0

i and observes(hi,L , . . . ,hi,1) (with hi,1 being the most recent observation), then his
posterior beliefs afterL periods are

BL
i (m

0
i ,hi,L , . . . ,hi,1|ψ−i )

=
1

BL−1
i (m0

i ,hi,L , . . . ,hi,2|ψ−i ) ∙ Fi (hi,1|ψ−i )
BL−1

i (m0
i ,hi,L , . . . ,hi,2|ψ−i )H(hi,1)

=
1

(m0
i H(hi,L ) . . .H(hi,2)) ∙ Fi (hi,1|ψ−i )

m0
i H(hi,L ) . . .H(hi,1).

This implies that forj ∈ {0,1}, BL
i (m

Ej
i ,hi,L , . . . ,hi,1|ψ−i ) is equal to theω j

−i row of matrix

1

(m
Ej
i H(hi,L ), . . . ,H(hi,2)) ∙ Fi (hi,1|ψ−i )

H(hi,L ), . . . ,H(hi,1).

For a matrixQ, let RQ
l =

∑
k qlk be the sum of the elements of rowl of this matrix. Denote byR(Q) a matrix

obtained by dividing each element of matrixQ by the correspondingRQ
l , that is, if B = R(Q), thenblk = qlk

RQ
l

. By

definition, the rows ofR(Q) add up to 1.Hence,R(H(hi,L ), . . . ,H(hi,1)) is a probability matrix and the posterior belief
BL

i (m
E0
i ,hi,L , . . . ,hi,1|ψ−i ) is equal to theω0

−i row of R(H(hi,L ), . . . ,H(hi,1)).

Let dk(Q) be the difference between the largest and smallest elements ofQ′s columnk: dk(Q) = maxl , j (qlk −
qjk )). Let d(Q) be the vector of these differences. Then maxω′

−i
d(R(H(hi,L ), . . . ,H(hi,1)))(ω

′
−i ) is the maximum

distance of the posterior beliefsBL
i (m

E0
i ,hi,L , . . . ,hi,1|ψ−i ) andBL

i (m
E1
i ,hi,L , . . . ,hi,1|ψ−i ) over all extreme priors,

mE0
i andmE1

i . To continue, we invoke the following technical lemma (proven below):

Technical Lemma:
Suppose that{Qn}∞n=1 is a sequence of square matrices with all elements qni j ∈ (ε,1− ε) for someε > 0. Then

there exists aδ ∈ (0,1) such that for every n

d(R(Qn, . . . ,Q1))≤ δd(R(Qn−1, . . . ,Q1))≤ δn−1d(R(Q1)),

i.e. the distance between the normalized rows of Qn, . . . ,Q1 contracts by a factor of at leastδ as we left-multiply it by
another matrix from the sequence.

Now, since there existsL ≥ 1 andε > 0 such that for all(hi,L , . . . ,hi,1), all elements ofH(hi,L ), . . . ,H(hi,1) are
bounded between(ε,1− ε), this technical lemma implies that there exists aδ ∈ (0,1) such that for any integern:

d(R(H(hi,nL), . . . ,H(hi,1)))≤ δ d(R(H(hi,(n−1)L ), . . . ,H(hi,1)))≤ δn−11,

1657

D
ow

nloaded from
 https://academ

ic.oup.com
/restud/article-abstract/79/4/1637/1574329 by Stanford U

niversity Libraries user on 01 July 2020



“rds009” — 2012/4/18 — 8:01 — page 22 — #22

REVIEW OF ECONOMIC STUDIES

where1 is a vector of ones (of lengthD−i ). Therefore, for anyε′, we can findn large enough so that for any history of
lengthnL and any two extreme priors,mE0

i andmE1
i , the distance between the posteriors will be less thanε′. So, for

every historyhn
i , asn → ∞, the posteriors converge to the same belief for all extreme priors.

Step 2:
As we have shown in the proof of Lemma3, beliefs Bi (m

0
i ,hi |ψ−i ) are a convex combination of beliefs

Bi (m
E
i ,hi |ψ−i ) of all extreme priorsmE

i . Applying this reasoning iteratively (that if prior beliefmi is a convex
combination of priorsm′

i and m′′
i , then after applyingBi , the posterior ofmi is a convex combination of the pos-

teriors of m′
i and m′′

i ), we get that for any history sequence, the posteriors after all possible beliefs are convex
combinations of posteriorsBL

i (m
E
i ,hi,L , . . . ,hi,1|ψ−i ). Since for any sequence{hL

i }∞L=1, for all mE
i , the posteriors

BL
i (m

E
i ,hi,L , . . . ,hi,1|ψ−i ) converge, the same is true for posteriors after arbitrary priors. In other words, after long

enough histories, the posteriors depend (almost) only on the history and not on the prior.
As we described in the text, by the Tarski’s fixed point theorem,T has at least one fixedpoint, Mi . Now, suppose

that there exists a collection of setsM0
i such that limn→∞ Tn(M0

i ) 6= Mi (either because the sequence{Tn(M0
i )}

∞
n=0

converges to something else or does not converge at all).
By monotonicity ofT, for all n, Tn(M0

i ) ⊂ Tn(1i ). SinceTn(1i ) convergesto Mi , for anyε > 0, we can find
n large enough so that for allωi ∈ �i and allmi ∈ Tn(M0

i )(ωi ), |mi ,Mi (ωi )| < ε. That is, the setsTn(M0
i ) cannot

“stick out” of Mi in the limit.
So the only remaining possibility for limn→∞ Tn(M0

i ) 6= Mi is that there existsε > 0 such that for alln′, we
can have thatn ≥ n′ and a stateωn

i such that maxmi ∈Mi (ω
n
i )

|Tn(M0
i )(ω

n
i ),mi | > ε (in words, that theset Mi (ω

n
i )

strictly “sticks out” of the setTn(M0
i )(ω

n
i ) even for arbitrarily largen). If so, then we can find an extreme belief

mn
i ∈ Mi (ω

n
i ) that satisfies|mn

i ,T
n(M0

i )(ω
n
i )| > 0. Fix n′ such that the distance betweenBn

i (m
E0
i ,hn

i |ψ−i ) and
Bn

i (m
E1
i ,hn

i |ψ−i ) is uniformly bounded byε/2 for all historieshn
i (for all n> n′) and all extreme pointsmE0

i , mE1
i .

Since limn→∞ Tn(1i )= Mi , we can find a historyhn
i and a priormE0

i such that|Bn
i (m

E0
i ,hn

i |ψ−i ),m
n
i | ≤ ε/2 and a

starting stateω0
i such that after that history, playeri is in the stateωn

i . Now, take any priorm0
i ∈ M0

i (ω
0
i ). It is a convex

combination of the priorsmE
i . Moreover, after the historyhn

i , the posteriorBn
i (m

0
i ,h

n
i |ψ−i ) ∈ Tn(M0

i )(ω
n
i ) and it is

a convex combination of the posteriorsBn
i (m

E
i ,h

n
i |ψ−i ). (The last claim follows from inspection of (A1)—see also

Lemma2.) Therefore,

|Bn
i (m

0
i ,h

n
i |ψ−i ),B

n
i (m

E0
i ,hn

i |ψ−i )| ≤ max
mE1

i ,mE2
i

|Bn
i (m

E1
i ,hn

i |ψ−i ),B
n
i (m

E2
i ,hn

i |ψ−i )| ≤ ε/2.

Using the triangle inequality,|Bn
i (m

0
i ,h

n
i |ψ−i ),m

n
i | ≤ ε but that contradicts that|mn

i ,T
n(M0

i )(ω
n
i )|> ε. ‖

Proof of Technical Lemma

Proof. Consider a general multiplication:Q = Qn, . . . ,Q1. Let C = Qn, F = Qn−1, B = Qn−2, . . . ,Q1. Also,
let G = FB, so thatQ = CG = C FB. By assumption all the elements ofC andF are bounded from below byε > 0,
but we do not know that aboutB or G.

For arbitrary matrixA, let RA
k be the sum of elements in rowk of that matrix. Then

RQ
i =

∑

j

qi j =
∑

j




∑

k

cik gk j



=
∑

k

cik
∑

j

gk j =
∑

k

cik RG
k .

Moreover,
qi j

RQ
i

=
∑

k

0i
k

gkj

RG
k

,

where

0i
k =

cik RG
k∑

l cil RG
l

.

In words, the elements ofR(QnG) are a weighted average of elements ofR(G) (note that
∑

k0
i
k = 1).

We now bound the weights0i
k uniformly away from zero for allG. To this end, bound

0i
k =

cik RG
k∑

l cil RG
l

> cik
RG

k∑
l RG

l

.
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Next,

RG
i∑

l RG
l

=

∑
k fik RB

k∑
l
∑

k flk RB
k

=

∑
k fik RB

k∑
k
∑

l flk RB
k

=

∑
k fik RB

k∑
k RB

k L F
k

=
∑

k

fi k
L F

k

L F
k RB

k∑
k RB

k L F
k

=
∑

k

fi k
L F

k

γk,

whereL F
k is the sum of elements of columnk of matrix F and

γk =
L F

k RB
k∑

k RB
k L F

k

∈ [0,1].

Note that for any matricesF andB,
∑

k γk = 1.
Therefore, we can find a boundεL ∈

(
0, 1

2

)
that depends only onF andC :

0i
k ≥ cik

RG
k∑

l RG
l

≥ εmin
k

fi k
L F

k

> εL ,

whereεL can be chosen independently ofi andk.
To finish the proof, we show how to chooseδ. Consider any columnk. Any element of columnk of matrix

R(Qn, . . . ,Q1) is a weighted average of elements in the same column ofR(Qn−1, . . . ,Q1), with the weights bounded
uniformly away from zero byεL . Suppose that the largest and smallest elements of columnk of R(Qn−1, . . . ,Q1) are
equal toqh andql , respectively. Then

dk(R(Qn, . . . ,Q1))≤ (1− εL )qh + εLql − (εLqh + (1− εL )ql )= (1−2εL )dk(R(Qn−1, . . . ,Q1)).

So we can pickδ = (1−2εL ). ‖
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