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For a general class of games with private monitoring we show for any finite state strategy 
(or automaton strategy) with Di states for players i ∈ {1, . . . , N}, if there exists a number 
of periods t such that it is possible on-path to reach any joint state from any joint state in 
t periods, the strategy is a strict correlated equilibrium only if each player’s strategy is a 
function only of what the player observes in the last Di − 1 periods.
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1. Introduction

This paper considers a general class of games with private monitoring and considers to what extent strategies which 
depend on outcomes or actions long in the past can be equilibria. The general character of our main results is that strategies 
which depend on long-ago outcomes or actions are either not equilibria, or “fragile” equilibria which depend on indifference. 
Examples of such strategies commonly used in games with public monitoring include the stick-and-carrot equilibrium in 
Abreu et al. (1986) and the grim trigger strategy in prisoners-dilemma type games.

Our model considers general games of private monitoring where for all actions, all possible private signal profiles occur 
with positive probability. Further, as in Phelan and Skrzypacz (2012), we limit our analysis to strategies that can be rep-
resented by finite automata. For instance, a stick-and-carrot strategy for a quantity setting oligopoly game could have two 
private states: Punish (where the player chooses a high quantity) and Reward (where the player chooses a low quantity), 
and where the player transits between Punish and Reward depending on his privately observed price signal. Our equilibrium 
notion is correlated sequential equilibrium and we ask whether equilibria can be uniformly strict (USCSE), which means that 
the incentive constraints are satisfied by an amount δ > 0 uniformly for all possible histories. We use correlated sequential 
equilibrium, as opposed to simply sequential equilibrium, solely for the sake of generality, since sequential equilibria are a 
special case of the correlated sequential equilibria we consider here.

Our first main result, Proposition 1, states that if the set of possible beliefs a player can have about the state of his 
opponents while being in one state of his automaton “overlaps” with the corresponding set while being in another state 

✩ The authors thank Jeff Ely, Johannes Hörner, Michihiro Kandori, George Mailath, Ichiro Obara, and Ofer Zeitouni for helpful conversations. Financial 
assistance from National Science Foundation Grant # 0721090 is gratefully acknowledged. The views expressed herein are those of the authors and not 
necessarily those of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

* Corresponding author.
E-mail address: skrz@stanford.edu (A. Skrzypacz).
http://dx.doi.org/10.1016/j.geb.2015.02.010
0899-8256/© 2015 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.geb.2015.02.010
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/geb
mailto:skrz@stanford.edu
http://dx.doi.org/10.1016/j.geb.2015.02.010
http://crossmark.crossref.org/dialog/?doi=10.1016/j.geb.2015.02.010&domain=pdf


C. Phelan, A. Skrzypacz / Games and Economic Behavior 90 (2015) 162–170 163
of his automaton, then his strategy cannot be a part of a USCSE. The idea behind this result is that the optimality of a 
player’s continuation strategy depends only on his beliefs regarding the continuation strategy of his opponents. If a player’s 
belief sets associated with two distinct states overlap, then there must be two histories, one which puts the player in the 
first state and another which puts him in the second, which induce (almost) the same beliefs regarding the state of his 
opponents. Given this, his incentives cannot hold strictly (by an amount uniformly bounded away from zero). In the body of 
the paper, we show that this result alone is enough to explain why grim-trigger cannot support cooperation (with uniformly 
strict incentives) in a private monitoring version of the prisoner’s dilemma.

In Lemma 1 we show that a strategy represented by a Di -state automaton has either infinite recall or Di − 1 period (or 
less) period recall (i.e. the action played after any history depends only on what player i observed and has done in the last 
Di − 1 periods). This is a strengthening of a result in Mailath and Morris (2006).

Finally, Proposition 2 states that if the equilibrium path transition matrix over joint private states of the players is regular, 
(there exists a number of periods t such that it is possible on-path to get from any joint state to any joint state in t periods) 
then every player i’s Di state automaton must have at most Di − 1 period recall, or the profile of strategies does not form 
a USCSE, regardless of starting conditions. That theorem applies for example to the stick and carrot type of strategies which 
describe the best (and worst) equilibria in the public monitoring game of Abreu et al. (1986).

This requirement that the transition matrix of the joint automaton is regular is not necessarily crucial. Many strategy 
profiles which do not induce regular transition matrices nevertheless share the property that beliefs after long histories 
converge at least for the relevant priors, as evidenced by the grim trigger example in Section 3.2. The grim trigger automaton 
does not yield a regular transition matrix since the punish state is absorbing. Yet, if a player starts with an interior belief 
about his opponent’s state, always cooperates and observes a long history of good outcomes, his beliefs will converge to the 
same interior point no matter what he observed early in the game. As a result, we can find two histories after which player 
this player has arbitrarily close beliefs about the state of his opponent and yet his strategy calls for different actions. This 
more general observation is captured by Proposition 1, implying that grim trigger is not a USCSE.

1.1. Relation to previous literature

This paper contributes to the literature studying strategies instead of payoffs in repeated games with private monitoring. 
The most closely related paper to ours is Mailath and Morris (2006). In that paper they show that an infinite recall strategy 
that is a strict perfect public equilibrium of a public monitoring game is no longer a Nash equilibrium if the monitoring is 
perturbed to be almost-public and rich. There are several differences between our results and theirs. Our results are more 
limited because we consider uniformly strict sequential equilibria rather than Nash equilibria. On the other hand our results 
are stronger since, other than full support, we put no conditions on the structure of the monitoring technology (it does not, 
for instance, need to be almost-public) and we do not require that the profile be an equilibrium (strict or not) of any public 
monitoring game.

The paper is also suggestive of why existing folk theorems for games with private monitoring either use belief-free 
strategies that necessarily involve indifference (see for example Ely and Välimäki, 2002, and Ely et al., 2005) or finite recall 
strategies (see for example Hörner and Olszewski, 2009 or Mailath and Olszewski, 2011). Our results suggest that other 
equilibria either don’t exist, or involve infinite state strategies.1

2. The model

The underlying model is that same as Phelan and Skrzypacz (2012). The game, �∞ , is defined by the infinite repetition 
of a stage game, �, with N players, i = 1, . . . , N , each able to take actions ai ∈ Ai . With probability P (y|a), a vector of 
private outcomes y = (y1, . . . , yN) (each yi ∈ Yi ) is observed conditional on the vector of private actions a = (a1, . . . , aN), 
where for all (a, y), P (y|a) > 0 (full support). The sets A = A1 × . . . × AN and Y = Y1 × . . . × Y N are both assumed to be 
finite sets. Let Hi = Ai × Yi .

The current period payoff to player i is denoted ui : Hi → R . If player i receives payoff stream {ui,t}∞t=0, his lifetime dis-
counted payoff is (1 −β) 

∑∞
t=0 βt ui,t where β ∈ (0, 1). As usual, players care about the expected value of lifetime discounted 

payoffs.
Let hi,t = (ai,t , yi,t) denote player i’s private action and outcome at date t ∈ {0, 1, . . .}, and ht

i = (hi,0, . . . , hi,t−1) denote 
player i’s private history up to, but not including, date t . A pure (behavior) strategy for player i, σi = {σi,t}∞t=0, is then, for 
each date t , a mapping from player i’s private history ht

i , to his action ai ∈ Ai in period t . Let σ denote the joint strategy 
σ = (σ1, . . . , σN ) and σ−i denote the joint strategy of all players other than player i, or σ−i = (σ1, . . . , σi−1, σi+1, . . . , σN ). 
(Throughout the paper we use notation −i to refer to all players but player i.)

2.1. Finite automaton strategies

As in Phelan and Skrzypacz (2012), we describe strategies in terms of finite automata. (Representing strategies as au-
tomata is without loss. The finiteness assumption is restrictive.) Here, since we later restrict discussion to strict equilibria, 

1 See Ely (2002) and Kandori and Obara (2010) for examples of infinite state equilibria.
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we also limit discussion to pure strategies. In this language, a strategy for player i is defined by four objects: 1) a private 
state space �i (with Di < ∞ distinct states ωi ), 2) a function f i(ωi) giving the (pure) action ai for each private state ωi ∈ �i , 
3) a deterministic transition function ω+

i : �i × Hi → �i determining next period’s private state as a function of this period’s 
private state, player i’s private action ai , and his private outcome yi , and 4) an initial state, ωi,0. Two states ω1

i and ω2
i are 

considered distinct if there exists ht
i such that f i(ω

+
i (ω1

i , ht
i )) �= f i(ω

+
i (ω2

i , ht
i )), where function ω+

i (ωi, ht
i ) is defined as the 

state reached from ωi after history ht
i implied by function ω+

i (ωi, hi). In words, even if the two states recommend the same 
action today, there must exist some subsequent history after which the recommended actions differ. Given this setup, the 
induced strategy σi,0 = f i(ωi,0), σi,1(hi,0) = f i(ω

+
i (ωi,0, hi,0)) and so on. Let ψi = (�i, f i, ω+

i ) denote agent i’s automaton. 
The collection of automata over all players ψ ≡ {ψ1, . . . , ψN} is referred to as the joint automaton. Finally, let the number of 
joint states D = 	i≤N Di , and the number of joints states for players other than player i, D−i = 	 j �=i D j .

2.2. Beliefs

Allow player i’s initial beliefs over the initial state of his opponents, ω−i,0, to be possibly nondegenerate. In particular, 
let player i’s beliefs about the initial state of his opponents, μi,0, be a point in the (D−i − 1)-dimensional unit-simplex, 
denoted 
D−i . Taking as given μi,0, the assumption of full support (P (y|a) > 0 for all (a, y)) implies that the beliefs of 
player i regarding his opponents’ private histories, ht

−i , are always pinned down by Bayes’ rule. For a particular initial belief, 
μi,0, and private history, ht

i , player i’s belief over ω−i,t is, like μi,0, simply a point in the (D−i −1)-dimensional unit-simplex. 
Let μi,t(μi,0, ht

i ) denote player i’s belief at the beginning of period t about ω−i,t after private history ht
i given initial beliefs 

μi,0. Let μi,t(μi,0, ht
i )(ω−i) denote the probability assigned to the particular state ω−i . Finally, let μi,0(x, ωi,0) denote player 

i’s beliefs at date t = 0 when the initial joint state ω0 is determined by correlation device x and player i’s initial state is 
ωi,0.

Beliefs μi,t(μi,0, ht
i ) can be defined recursively using Bayes’ rule. Let Bi(mi, hi |ψ−i) ∈ 
D−i denote the belief of 

player i over the state of his opponents at the beginning of period t , if his beliefs over his opponents’ state at pe-
riod t − 1 were mi ∈ 
D−i and he subsequently observed hi = (ai, yi). To define beliefs recursively, let Bs

i (mi, hs
i |ψ−i) =

Bi(Bs−1
i (mi, hs−1

i |ψ−i), hi,s−1|ψ−i) where B1
i (mi, hi |ψ−i) = Bi(mi, hi |ψ−i). Then, μi,t(μi,0, ht

i ) = Bt
i (μi,0, ht

i |ψ−i).

2.3. Equilibrium

When σi is expressed as an initial state-automaton pair (ωi,0, ψi), we can write player i’s lifetime payoff, conditional on 
ω−i , as a function of his current private state ωi (as opposed to depending directly on his private history, ht

i ). That is,

vi(ωi,ω−i |ψi,ψ−i) =
∑

y

P (y| f i(ωi), f−i(ω−i))[(1 − β)ui( f i(ωi), yi)

+ βvi(ω
+
i (ωi, f i(ωi), yi),ω

+
−i(ω−i, f−i(ω−i), y−i)|ψi,ψ−i)].

Then we denote player i’s expected payoff, now a function of his current state, ωi , and his beliefs over his opponents’ state, 
ω−i , as

E vi(ωi,mi|ψi,ψ−i) =
∑

ω−i

mi(ω−i)vi(ωi,ω−i |ψi,ψ−i).

Definition 1. A probability distribution over initial states, x ∈ 
D , and joint automaton, ψ , form a Uniformly Strict Correlated 
Sequential Equilibrium (USCSE) of �∞ if there exists δ > 0 such that for all i, ht

i , ωi,0 such that 
∑

ω−i,0
x(ωi,0, ω−i,0) > 0, and 

âi �= f i(ω
+
i (ωi,0, ht

i )),

E vi(ω
+
i (ωi,0,ht

i ),μi,t(μi,0(x,ωi,0),ht
i )|ψi,ψ−i) − δ

≥
∑

ω−i

μi,t(μi,0(x,ωi,0),ht
i )(ω−i)[

∑

y

P (y|âi, f−i(ω−i))

[(1 − β)ui(âi, yi) + βvi(ω
+
i (ωi,0, (h

t
i , âi, yi)),ω

+
−i(ω−i, f−i(ω−i), y−i)|ψi,ψ−i)]].

3. Analysis of equilibria

In this section we first provide necessary conditions for a correlation device over initial states-joint automaton pair, 
(x, ψ), to be a Uniformly Strict Correlated Sequential Equilibrium (Proposition 1). We next provide necessary conditions on 
the joint automaton, ψ , alone regarding whether there exists any correlation device, (x, ψ) such that (x, ψ) form a USCSE 
(Proposition 2).
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3.1. Belief sets

In Phelan and Skrzypacz (2012), rather than considering separately the beliefs player i could have about the state of his 
opponents after each particular history, we showed it useful to consider sets of beliefs associated with each state of player 
i’s automaton ψi . In particular, let Mi(ωi) ⊂ 
D−i denote a closed, convex, set of beliefs, and Mi be a collection of Di sets 
Mi(ωi), one for each ωi . Let the one-step operator T (Mi) be defined as

T (Mi) = {T (Mi)(ω
′
i)|ω′

i ∈ �i}
where

T (Mi)(ω
′
i) = co({m′

i| there exists ωi ∈ �i,mi ∈ Mi(ωi) and hi ∈ Hi such that ω+
i (ωi,hi) = ω′

i

and m′
i = Bi(mi,hi |ψ−i)}),

where co( ) denotes the convex hull.
Next, let the operator T U (Mi) (U for union) be:

T U (Mi) = {T U (Mi)(ωi)|ωi ∈ �i} where T U (Mi)(ωi) = co(T (Mi)(ωi) ∪ Mi(ωi)).

In words, the T operator calculates for every state ω′
i , the convex hull of all the posterior beliefs player i can hold in this 

state if his prior beliefs, state by state, are required to belong to Mi . The T U operator is the convex hull of the union, state 
by state, of the original set of priors, Mi(ωi) and T (Mi)(ωi).

Our results rely on properties of the fixed points of T and T U . We write M0
i ⊂ M1

i if M0
i (ωi) ⊂ M1

i (ωi) for all ωi . 
Furthermore, Mi is non-empty if there exists a private state ωi such that Mi(ωi) is non-empty.

Both T and T U are monotonic operators (that is, if M0
i ⊂ M1

i , then T (M0
i ) ⊂ T (M1

i ) and T U (M0
i ) ⊂ T U (M1

i )). By con-
struction, Mi ⊂ T U (Mi). Since Mi ⊂ T U (Mi), belief sets are bounded, and T U (Mi) ⊂ T U (T U (Mi)) (from monotonicity), the 
sequence {Mi, T U (Mi), T U (T U (Mi)), . . .} converges. The continuity of Bi implies that T U is continuous and thus the closure 
of this limit is a fixed point of T U . Call this fixed point M∗U

i (Mi). Next note that if Mi ⊂ T (Mi), then T (Mi) = T U (Mi). 
This implies that if Mi ⊂ T (Mi), the sequence {Mi, T (Mi), T (T (Mi)), . . .} also converges and the closure of its limit equals 
M∗U

i (Mi).
For an arbitrary correlation device, x, let the belief sets Mi,0(x) be defined such that

Mi,0(x)(ωi) = {μi,0(x,ωi)}
for all ωi such that 

∑
ω−i

x(ωi, ω−i) > 0. Otherwise, let Mi,0(x)(ωi) = ∅. That is, for all ωi , if ωi occurs with positive 
probability under distribution x, Mi,0(x)(ωi) is the single point belief set consisting of what player i believes about ω−i
when his initial state is ωi . With some abuse of notation, we define M∗U

i (x) ≡ M∗U
i (Mi,0(x)).

The set M∗U
i (x)(ωi) is the convex hull of all the beliefs player i can have regarding the state of his opponents, for all 

dates and on and off path histories, where his current state is ωi . Our first main result, Proposition 1, states that if these 
sets for two different states “overlap”, then the implied strategy for player i is not strictly optimal and thus (x, ψ) is not a 
USCSE.

Proposition 1. For an arbitrary correlation device over initial states x and joint automaton ψ , suppose there exist a player i and two 
distinct states (ω1

i , ω2
i ) ∈ �2

i such that M∗U
i (x)(ω1

i ) ∩ M∗U
i (x)(ω2

i ) �= ∅. Then (x, ψ) does not constitute a Uniformly Strict Correlated 
Sequential Equilibrium.

Proof. Suppose for a particular correlation device x, (x, ψ) is a Correlated Sequential Equilibrium (but not necessarily 
uniformly strict). In Phelan and Skrzypacz (2012) (Theorem 1) we showed that a necessary condition for (x, ψ) to be a 
Correlated Sequential Equilibrium is that for all ωi ∈ �i , for all âi ∈ Ai and all mi such that mi is an extreme point of 
M∗U

i (x)(ωi)

E vi(ωi,mi|ψi,ψ−i) ≥
∑

ω−i

mi(ω−i)
∑

y

P (y|âi, f−i(ω−i))

[(1 − β)ui(âi, yi) + βvi(ω
+
i (ωi, âi, yi),ω

+
−i(ω−i, f−i(ω−i), y−i)|ψi,ψ−i)]. (1)

Since this is true for all extreme points of M∗U
i (x)(ωi), it is true of all interior points as well. Thus (1) holds for both 

ω1
i and ω2

i for mi equal to any element of M∗U
i (x)(ω1

i ) ∩ M∗U
i (x)(ω2

i ). This implies that given belief mi in the non-empty 
intersection, action f i(ω

1
i ) is weakly preferred to action f i(ω

2
i ) and vice-versa, or that player i is indifferent at each state 

between playing f i(ω
1
i ) and f i(ω

2
i ) for any beliefs in M∗U

i (x)(ω1
i ) ∩ M∗U

i (x)(ω2
i ).

Next, that (1) holds for all extreme points of M∗U
i (x)(ω1

i ) implies player i weakly prefers playing action f i(ω
1
i ) over 

action f i(ω
2) at these extreme points. But since payoffs for a given action are linear in beliefs, that player i is indifferent 
i
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between action f i(ω
1
i ) and action f i(ω

2
i ) for an interior belief in the non-empty intersection M∗U

i (x)(ω1
i ) ∩ M∗U

i (x)(ω2
i ), 

he must also be indifferent for at least two extreme points of M∗U
i (x)(ω1

i ). (The same argument implies player i must be 
indifferent between f i(ω

1
i ) and f i(ω

2
i ) for at least two extreme points of M∗U

i (x)(ω2
i ) as well.)

In Phelan and Skrzypacz (2012) we also showed that for each extreme point of M∗U
i (x)(ω1

i ) and M∗U
i (x)(ω2

i ), there exists 
a private history for player i such that his beliefs are arbitrarily close to the extreme point. Since payoffs are continuous in 
beliefs, if f i(ω

1
i ) �= f i(ω

2
i ), the result is proved. (If player i is indifferent at the extreme point, there cannot exist a δ > 0

such that player i’s payoff from following action f i(ω
1
i ) exceeds his payoff from following action f i(ω

2
i ) �= f i(ω

1
i ) by at least 

δ for all histories.)
If f i(ω

1
i ) = f i(ω

2
i ), then there must exist ht

i such that f i(ω
+
i (ω1

i , ht
i )) �= f i(ω

+
i (ω2

i , ht
i )) (or else ω1

i and ω2
i are not 

distinct states) which itself implies ω+
i (ω1

i , ht
i ) �= ω+

i (ω2
i , ht

i ). For this new posterior belief (m′
i = Bt(mi, ht

i |ψ−i) for any 
mi ∈ M∗U

i (x)(ω1
i ) ∩ M∗U

i (x)(ω2
i )), Eq. (1) must hold for both distinct states ω+

i (ω1
i , ht

i ) and ω+
i (ω2

i , ht
i ). The same argument 

can then be applied. �
The intuition behind Proposition 1 is that if, for a given player, his belief sets over the state of his opponents overlap, 

then there must exist two histories which induce (almost) the same beliefs and yet different continuation strategies (because 
each state is associated with a distinct continuation strategy). However, since the set of best replies depends only on the 
player’s beliefs, and payoffs are continuous in beliefs, incentives cannot be uniformly strict. The example in the next section 
illustrates the need for uniform strictness.

3.2. An application of Proposition 1

Proposition 1 can be used to show that it is impossible for a grim-trigger strategy, as a uniformly strict correlated 
sequential equilibrium, to sustain cooperation in any period in a two action, two outcome private signal prisoner’s dilemma 
game. Further, in this section we show that cooperation can be sustained as part of a strict (but not uniformly strict) 
correlated sequential equilibrium for this game, although in a non-generic example.

To be more specific, consider the partnership game from Phelan and Skrzypacz (2012) (itself from Mailath and Morris, 
2002). Each player i ∈ {1, 2} can take action ai ∈ {C, D} (cooperate or defect) and each can realize a private outcome yi ∈
{G, B} (good or bad). The P (y|a) function and stage game payoffs {ui(C, G), ui(C, B), ui(D, G), ui(D, B)} are chosen so that in 
terms of expected payoffs, the stage game is a prisoner’s dilemma. We assume P (G, G|C, C) + P (G, B|C, C) > P (G, G|C, D) +
P (G, B|C, D) (or that given that player 1 cooperates, he has a higher probability of a good outcome if player 2 cooperates 
as well).

Let grim trigger denote a two state (ωi ∈ {R, P }) automaton where each player plays C in state R , D in state P , state 
P is absorbing, and a necessary condition to staying in state R is observing outcome G . We say that grim trigger supports 
cooperation if the initial correlation device, x, puts positive probability on the initial joint state ω = (R, R). (It is immediate 
that if x puts positive probability on (R, P ) or (P , R) but not (R, R), then the strategy cannot be an equilibrium).

To see that cooperation is impossible as part of a USCSE, consider the particular action/outcome pair for player 1, h1 =
(C, G). The Bayes updating function given (C, G) is

B1(m1, (C, G) |ψ2)

= m1 P (G, G|C, C)

m1 (P (G, G|C, C) + P (G, B|C, C)) + (1 − m1) (P (G, G|C, D) + P (G, B|C, D))
, (2)

where m1 is player 1’s belief that player 2 is in state R . Since B1(0, (C, G) |ψ2) = 0, there is clearly a fixed point at 
zero. Next, d2 B1(m1,(C,G)|ψ2)

dm2
1

< 0 as long as P (G, G|C, C) + P (G, B|C, C) > P (G, G|C, D) + P (G, G|C, D) as is assumed. Thus 
B1(m1, (C, G) |ψ2) is a continuous, increasing, concave function of m1. Further, B1(1, (C, G) |ψ2) < 1. Thus the function has 
at least one fixed point (at zero) and at most two fixed points, depending on whether its first derivative at m1 = 0 is greater 
than one.

If B1(m1, (C, G) |ψ2) has only a single fixed point at zero, then B1(m1, (C, G) |ψ2) < m1 and cooperation is never possible. 
In this case, if the correlation device, x, puts any probability for player 1 starting in state R , then M∗U

1 (x)(R) is non-empty 
and contains the point m1 = 0 (since one possible private history for player 1 is (C, G) repeated indefinitely). Thus a 
necessary condition for the strategy to be a USCSE is that player 1 prefers to cooperate when he is certain that player 2 is 
in state P , which is not compatible with the stage game being a prisoner’s dilemma.

If B1(m1, (C, G) |ψ2) has another fixed point at, say, m∗ > 0, then if 0 < m1 < m∗ , B1(m1, (C, G) |ψ2) > m1, and if 
m1 > m∗ , B1(m1, (C, G) |ψ2) < m1. Thus if x puts positive probability on the joint state (R, R), M∗U

1 (x)(R) must contain m∗ . 
(Again since one possible private history for player 1 is (C, G) repeated indefinitely.) But M∗U

1 (x)(P ) must also contain m∗ , 
since another possible history is player 1 sees (C, B) in the first period and then (C, G) in each subsequent period. Proposi-
tion 1 then applies.

This example can also be used to illustrate our need for incentives to hold uniformly strictly (as opposed to simply 
strictly). We have constructed an example (for details see Appendix A) where parameters are chosen (non-generically) 
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such that player 1 is indifferent between actions C and D at the non-zero fixed point of B1(m1, (C, G) |ψ2), m∗ . Further, 
in our example, the initial correlation device x is chosen such that if player 1 starts in state R and repeatedly observes 
(C, G), his belief m1 approaches this fixed point from above. Thus at each date he strictly prefers to play his path action 
C (but not uniformly so since he is indifferent at m∗). However, if he ever observes outcome B , and is thus in state P
and he subsequently forever observes (C, G), his beliefs approach this fixed point from below. Thus M∗U

1 (x)(P ) = [0, m∗]
and M∗U

1 (x)(R) = [m∗, M1,0(x)(R)]. Incentives hold at the extreme points of each set (but with indifference at m∗) and thus 
(x, ψ) is a Correlated Sequential Equilibrium.

4. Recall

In this section we ask to what extent recall determines whether for a given joint automaton, ψ , there exists an initial 
correlation device, x, such that (x, ψ) is a USCSE. First we prove that if an automaton ψi has Di states, it must either recall 
only the last Di − 1 outcomes of hi , or depend on the entire history of hi ’s as well as the initial state ωi (Lemma 1). 
Next, we prove two further lemmas which together with Lemma 1 imply our second main result: if the on-path transition 
matrix over joint states is regular, then (x, ψ) is a USCSE only if for all players i, ψi “looks back” at most Di − 1 periods. 
(A transition matrix τ is regular if there exists an s such that τ s has all non-zero elements. This implies there is a positive 
probability of transitioning from every state to every state in exactly s periods.)

Definition 2. An automaton ψi is said to have t period recall if t is the smallest non-negative integer such that for all private 
state pairs (ω1

i , ω2
i ) ∈ �2

i and all t length private histories, ht
i = (hi,0, . . . , hi,t−1), ω+

i (ω1
i , ht

i ) = ω+
i (ω2

i , ht
i ). (After t periods, 

the original state is “forgotten”, so the automaton has t period recall.)

Definition 3. An automaton ψi is said to have infinite recall if it does not exhibit t period recall for any finite t .

Lemma 1. Suppose automaton ψi has Di < ∞ states. Then ψi either exhibits Di − 1 or less period recall, or exhibits infinite recall. (It 
cannot exhibit finite t ≥ Di period recall.)

Proof. First consider a two state automaton ψi with �i = {ω1
i , ω2

i }. If for any one-period private realization hi , ω+
i (ω1

i , hi) =
ω1

i and ω+
i (ω2

i , hi) = ω2
i , or ω+

i (ω1
i , hi) = ω2

i and ω+
i (ω2

i , hi) = ω1
i , then the automaton has infinite recall. Thus if ψi has 

finite recall, for all hi , ω+
i (ω1

i , hi) = ω+
i (ω2

i , hi), which implies the two state automaton has at most t = 1 recall.
Next assume the result is proved for all Di state automata and consider a Di + 1 state automaton with states �i with, 

at first, finite recall. That the Di + 1 state automaton has finite recall implies there must exist a pair of states (ω1
i , ω2

i ) ∈ �2
i

such that for all hi , ω+
i (ω1

i , hi) = ω+
i (ω2

i , hi). (If for all (ω1
i , ω2

i ) ∈ �2
i there exists an hi such that ω+

i (ω1
i , hi) �= ω+

i (ω2
i , hi), 

then from any two initial states, one could choose an infinite sequence h∞
i = (hi, hi,1, . . .) such that ω+

i (ω1
i , ht

i ) �= ω+
i (ω2

i , ht
i )

for all t , and thus the automaton would have infinite recall.) Consider a new automaton that has Di states �̂i by combining 
states ω1

i ∈ �i and ω2
i ∈ �i into state ω̂i ∈ �̂i . That is, in the new automaton, ω+

i (ω̂i, hi) = ω+
i (ω1

i , hi) = ω+
i (ω2

i , hi) for all 
hi , and for all ωi ∈ �i ∩ �̂i and all hi , if ω+

i (ωi, hi) = ω1
i or ω+

i (ωi, hi) = ω2
i then ω+

i (ωi, hi) = ω̂i .
Since this new automaton has Di states, it must have t ≤ Di − 1 recall. (Since the original had finite recall, the new 

automaton cannot have infinite recall.) Thus for all hDi
i = (hi, . . . , hi,Di−1) and all (ω1

i , ω2
i ) ∈ �̂2

i , ω+
i (ω1

i , hDi
i ) = ω+

i (ω2
i , hDi

i )

for the new Di state automaton. Thus for all (ω1
i , ω2

i , hDi
i ) combinations such that ω+

i (ω1
i , hDi

i ) = ω+
i (ω2

i , hDi ) �= ω̂i , after 
Di periods, both the original Di + 1 state automaton and the new Di state automaton have “forgotten” the original state. 
If under the new Di state automaton ω+

i (ω1
i , hDi

i ) = ω+
i (ω2

i , hDi
i ) = ω̂i for a particular (ω1

i , ω2
i , hDi

i ) combination, then the 
original Di + 1 state automaton forgets the original state one period later by construction. Thus the original Di + 1 state 
automaton, if it has finite recall, must forget the original state after at most Di + 1 periods, or has at most Di period 
recall.2 �

Next we prove a lemma characterizing two properties of automata ψi with infinite recall. The second of these properties 
concerns the sets of possible “long run” beliefs an agent i can have about the state of his opponents, Mi .

Define Mi to be the limit of the sequence {T s(
i)}∞s=0, where 
i is a collection of Di unit-simplexes. Since T is a 
monotonic operator, the sequence {T s(
i)}∞t=0 is decreasing in terms of set inclusion. The continuity of Bi implies the 
continuity of T and thus this limit is a fixed point of T . In words, the collection of sets Mi is a convex hull of all possible 
posteriors a player can have after all possible (infinitely) long histories if he starts with an arbitrary prior over the initial 
state of his opponents. In contrast, sets M∗U

i (x) take a convex hull over histories of all lengths but only for priors induced 
by x.

Lemma 2. Suppose finite Di state automaton ψi has infinite recall.

2 We thank Ofer Zeitouni for helpful suggestions regarding this proof.
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1. Then (and only then) there exist two distinct states (ω1
i , ω

2
i ) and a finite s ≤ Di(Di − 1) length history hs

i = (hi, . . . , hi,s−1) such 
that ω+

i (ω1
i , hs

i ) = ω1
i and ω+

i (ω2
i , hs

i ) = ω2
i .

2. Then, for all mi ∈ 

D−i
i , all accumulation points of the sequence {Bst

i (mi, (hs
i )

t |ψ−i)}∞t=1 (of which there is at least one) are 
elements of Mi(ω

1
i ) ∩ Mi(ω

2
i ) (where (hs

i )
t denotes the sequence hs

i from part 1 of this lemma repeated t times).

Proof. 1. (Then) If ψi has infinite recall, there exists a pair of distinct states (ω1
i,0, ω

2
i,0) and an infinite sequence 

h∞
i = (hi,0, hi,1, . . .) such that for all t ≥ 1, ω1

i,t ≡ ω+(ω1
i,0, h

t
i ) �= ω+(ω2

i,0, h
t
i ) ≡ ω2

i,t . Consider the sequence of ordered pairs 
{(ω1

i,t, ω
2
i,t)}Di(Di−1)

t=1 . Since this sequence has Di(Di − 1) elements, and there are Di(Di − 1) pairs of distinct states, at least 
one element of the sequence must equal (ω1

i,0, ω2
i,0) or one ordered pair must occur in the sequence more than once. (Only 

then) If there exist two distinct states (ω1
i , ω2

i ) and a finite s ≤ Di(Di − 1) length history hs
i = (hi, . . . , hi,s−1) such that 

ω+
i (ω1

i , hs
i ) = ω1

i and ω+
i (ω2

i , hs
i ) = ω2

i , then, if one starts in ω1
i and repeats history hs

i , the path of states for player i will 
never coincide with the path of states for this same history starting from state ω2

i .

2. That {Bst
i (mi, (hs

i )
t |ψ−i)}∞t=1 has at least one accumulation point comes from the compactness of 
D−i

i . Next, since 
ω+

i (ω1
i , hs

i ) = ω1
i and ω+

i (ω2
i , hs

i ) = ω2
i , for all t and mi ∈ 


D−i
i , Bst

i (mi, (hs
i )

t |ψ−i) ∈ T st(
i)(ω
1
i ) and Bst

i (mi, (hs
i )

t |ψ−i) ∈
T st(
i)(ω

2
i ). Further, since {T st(
i)(ω

1
i )}∞t=0 and {T st(
i)(ω

2
i )}∞t=0 are each decreasing sequences (in terms of set inclu-

sion) of nonempty compact sets (with non-empty limits Mi(ω
1
i ) and Mi(ω

2
i )), if Bst

i (mi, (hs
i )

t |ψ−i) ∈ T st(
i)(ω
1
i ) and 

Bst
i (mi, (hs

i )
t |ψ−i) ∈ T st(
i)(ω

2
i ) for all t , then any accumulation point of the sequence {Bst

i (mi, (hs
i )

t |ψ−i)}∞t=0 is an element 
of both Mi(ω

1
i ) and Mi(ω

2
i ). �

The intuition for part 1 of Lemma 2 is that if an automaton has infinite recall, then for at least one infinite history 
and at least two states, the automaton must forever keep separate where the player is if he starts in the first state versus 
where the player is if he starts in the second. Otherwise, the automaton would have finite memory. But if the automaton 
has a finite number of states, then it must also be the case of this history that from each starting point, at last one state is 
visited an infinite number of times. Thus the only way for a finite automaton to have infinite recall is to cycle. Now consider 
infinitely repeating the finite history from part 1 which causes this cycling. Since posterior beliefs depend only on priors 
and histories, if the player starts with the same prior and observes this infinite history, then his beliefs at all dates will be 
the same regardless of his starting state. In particular, this is true of all accumulation points of this belief sequence.

Lemma 3. Suppose for a player i and automaton ψi , there exist two distinct states (ω1
i , ω

2
i ) such that Mi(ω

1
i ) ∩ Mi(ω

2
i ) �= ∅. Further 

suppose the joint automaton ψ is such that its on path Markov transition matrix τ (ψ) is a regular matrix. Then (x,ψ) cannot be a 
USCSE for any correlation device x.

Proof. In Phelan and Skrzypacz (2012) (Lemma 5) we showed that if ψ is such that its on path Markov transition matrix 
τ (ψ) is a regular matrix, then for each player i, the operator T has a unique non-empty fixed point, Mi and for any initial 
belief sets Mi , iterating using the T operator converges to Mi . As a result, the intersection M∗U

i (x)(ω1
i ) ∩ M∗U

i (x)(ω2
i ) �= ∅

since Mi(ωi) ⊂ M∗U
i (x)(ωi) for all x and all ωi . To see this, start with the belief sets induced by any initial correlation 

device x and iterate using the T operator. That T (Mi) ⊂ T U (Mi) then implies Mi ⊂ M∗U
i (x). The result then follows from 

Proposition 1. �

Proposition 1 states that if belief sets over all dates overlap (for given starting conditions) then uniformly strict equi-
librium is impossible. If long run beliefs overlap for all starting conditions, then Proposition 1 also implies uniformly strict 
equilibrium is impossible for all starting conditions. The idea behind Lemma 3 is that if the automaton of a player’s oppo-
nents communicates, then his long run beliefs about the joint state of his opponents are independent of his prior. Therefore, 
the sets of valid long run beliefs from each state are independent of how the game is started and Proposition 1 applies.

The following result follows immediately from Lemmas 1 through 3.

Proposition 2. Suppose finite automaton ψ is such that τ (ψ) is regular. Then for all starting conditions x, (x, ψ) is a USCSE only if for 
all players i, ψi (with Di states) has Di − 1 or less period recall.

Proposition 2 can be applied directly also to a case where the states of automata are partitioned into a set of states that 
are reached on-path and a set of states that are reached only off-path. In that case, τ (ψ) needs to be regular only for the 
on-path subset of states (the recall condition applies to all states).
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5. Applications

5.1. Abreu et al. (1986)

In this section we consider the classic repeated Cournot game and show how to use our methods to prove that the 
stick-and-carrot class of strategies, which are optimal in the public monitoring case, cannot be uniformly strict correlated 
sequential equilibria with any private monitoring.

Consider the repeated oligopoly quantity setting game of Abreu et al. (1986) (APS), where two firms set private quantities 
which affect the probability distribution over a publicly observed price. When prices and quantities have continuous support, 
they show that the best and worst strongly symmetric public equilibria are each implemented by a simple two-state (or 
bang–bang) strategy: In state R (Reward), both firms choose a low quantity (lower than the Cournot–Nash level) and in 
state P (Punish), both firms choose a high quantity (higher than the Cournot–Nash level). In the best equilibrium, both 
firms start out in state R . If the observed price is in some strict subset, Y R , of the set of all prices, they stay in state R , 
otherwise they transit to state P (starting from which is the worst public equilibrium). In state P , they move to state R
if the observed price is in some other strict subset, Y P , otherwise they stay in state P . Further, Y R �= Y P . That is, the set 
of prices this period which causes the players to be in state R next period depends on whether the players are in state R
or P this period. (Generally, reaching state R from state R requires a sufficiently high price, while reaching state R from 
state P requires a sufficiently low price.) When prices and quantities have finite support, as we assume in this paper, such 
a bang–bang strategy can arbitrarily well approximate the best and worst public equilibria as one allows a finer and finer 
finite grid of prices and quantities.

Now instead of assuming that there is a single public price, as in APS, suppose each firm draws a privately observed 
price and the joint distribution of prices is affected by both firms’ quantity decisions. Further, allow this joint distribution 
to be arbitrary except for an assumption of full support. This allows for, but does not require, almost perfect correlation 
between the prices seen by the two firms and makes the above example consistent with the assumptions of this paper. 
With this change from public to private monitoring, is the APS bang–bang strategy a USCSE? Here, we show it is not.

First, note that it is possible to transit from each joint state to each joint state with positive probability. Thus the 
transition matrix on the joint state is regular. Next, note that for each player, the strategy has infinite recall. That is, since 
Y R �= Y P , there must exist a price yi such that yi ∈ Y R and yi /∈ Y P , or vice-versa. If yi ∈ Y R and yi /∈ Y P , then, by definition, 
ω+

i (R, (ai, yi)) = R and ω+
i (P , (ai, yi)) = P for all ai . If yi /∈ Y R and yi ∈ Y P , then ω+

i (R, (ai, yi)) = P and ω+
i (P , (ai, yi)) = R

for all ai . Thus Lemma 2 implies infinite recall. Proposition 2 then implies for all starting conditions x, such a bang–bang 
strategy cannot be a uniformly strict equilibrium.

5.2. On the need for on-path communication between states

In this section we consider an example game and strategy where the transition matrix over joint states is not regular 
and construct a uniformly strict equilibrium with infinite recall by deterministically alternating between two pure strategy 
strict Nash equilibria of the stage game.

Consider a two player coordination game with two locations, say, Ballet and Hockey. If both players choose the same 
location, each player receives an outcome G with (high) probability p < 1 and an outcome B with probability 1 − p < 1. 
If they choose different locations, then each player receives an outcome B with (high) probability p < 1 and an outcome 
G with probability 1 − p < 1. Assume ui(Ballet, G) = ui(Hockey, G) > ui(Ballet, B) = ui(Hockey, B) for i ∈ {1, 2}. With p > 1

2 , 
the stage game has two pure strategy Nash equilibria: Both players playing Ballet, and both players playing Hockey.

Next, consider the following strategy represented by a two-state automaton with �i = {PlayBallet, PlayHockey}. Let the 
probability distribution over initial states, x ∈ 
D , be such that x puts full probability on each player starting in the same 
state, and let ψi be such that each player switches states, regardless of his own action and outcome, with probability one. 
(The action from each state is, of course, implied by the name of the state.)

First, note that this strategy has infinite recall. The state each player is in at each date forever depends on his starting 
state. However, the transition matrix over joint states is not regular. Second, note that it is immediate that if matching 
the action of the other player is strictly preferred in the stage game, it is strictly preferred after all histories, since in this 
example strategy, a player’s history does not affect his beliefs regarding his opponent’s state.

6. Conclusion

Constructing equilibria in games with private monitoring is difficult. We show that one reason for this, when representing 
strategies as automata, is that strategies must be constructed such that each player’s beliefs regarding the state of his 
opponents must be carefully segregated state by state. That is, what a player can believe after any private history that 
puts him in one state of his automaton cannot overlap with what he can believe after any private history that puts him in 
another state of his automaton. We also show that for strategies where every joint state is visited on path, if the strategy for 
any player looks back forever, such segregation of beliefs is impossible, and without this segregation, any resulting equilibria 
will rely on special properties such as indifference.
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Appendix A. Grim trigger example from Section 3.2

The P (y|a) function is such that if n players cooperate, then with probability pn(1 −ε)2 + (1 − pn)ε2, both players realize 
the good private outcome. With probability (1 −ε)ε > 0, player 1 realizes the good outcome while player 2 realizes the bad. 
(Likewise, with this same probability, player 2 realizes the good outcome and player 1 the bad.) Finally, with probability 
pnε

2 + (1 − pn)(1 − ε)2, both players realize the bad outcome. In the example, p0 = .3, p1 = .45, p2 = .9 and ε = .025.
Each player’s automaton ψ is defined as ωi = {R, P }, f i(R) = C , f i(P ) = D , ω+

i (R, (C, G)) = R , and ω+
i (ωi, (ai, yi)) = P

for all (ωi, ai, yi) �= (R, C, G). This strategy under these parameters implies that m∗ = .943. Payoffs are such that u(C, G) =
.75, u(C, B) = −1.0, u(D, G) = 1.4, and u(D, B) = 0. With β = .9116, these payoffs ensure indifference between actions C
and D (and following the strategy from then on) at m∗ .

If x(R, R) = .88, x(R, P ) = .01, x(P , R) = .01, and x(P , P ) = .1, then if a player starts in state R , he believes his opponent 
starts in state R with probability .989 > m∗ . If a player in state R deviates in any period (including period 1) and plays 
action D , then, under these parameters his new posterior is below m∗ regardless of yi ∈ {G, B}. This ensures that if the 
player subsequently observes an indefinite sequence of (C, G) realizations, his posterior approaches m∗ from below, and 
thus, along the sequence, strictly prefers to play D .
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