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Abstract—Within this work we explore the topic of large scale,
automated recommendation systems. We focus on collaborative
filtering approaches, wherein a system suggests new products
to users based on their viewing history as well as other known
demographics. There are several approaches to this in current
literature, the simplest of which treat it as a matrix completion
problem. We explore the setting from a reinforcement learning
perspective by applying traditional algorithms for reinforcement
learning to the problem.

I. PROBLEM FORMULATION

Numerous online services such as Netflix, Amazon, Yelp,
Pandora, online advertisings, etc. provide automated recom-
mendations to help users to navigate through a large collection
of items. Every time a user queries the system for a new item,
a suggestion is made on the basis of the user’s past history and
(when available) their demographic profile. Two typical ways
of producing these recommendations are collaborative filtering
and content-based filtering. There are two simultaneous goals
to be satisfied: helping the user to explore the available items
and probing the user’s preferences.

One of the models that captures this setting well is the multi-
arm bandit, an important model for decision making under
uncertainty. In this model a set of arms with unknown reward
profiles is given and, at each time slot, the decision maker
must choose an arm to maximize his expected reward. Clearly,
the decision at each time slot should depend on previous
observations. Thus, there is a trade-off between exploration,
trying arms with more uncertain reward in order to gather more
information, and exploitation, pulling arms with relatively high
reward expectations.

For our purposes the arms have a very specific structure
and this setting has previously been referred to as the “linear-
bandits” model (see [3]). Here, it is assumed that the under-
lying matrix of preferences (which contains the rating user
i gives to item j at entry (i, j)) has a low-rank structure.
Hence, ratings made by user i to item j can be approximated
by a scaler product of two feature vectors ai, bj ∈ Rp,
characterizing user and item respectively. In other words our
observations, rij can be viewed as

rij = aTi bj + zij

where zij represents the unexplained factors.
In the general setting, both the user and item feature vectors

are treated as unknown, and our recommendation algorithms

must estimate them over time. However, some works (like
[1]) make a simplifying assumption that the item feature
vectors are known. We explore both settings, but find more
meaningful results in the case where the item feature vectors
are known. In this case, the item feature vectors can be either
constructed explicitly, or derived from users’ feedback using
matrix factorization methods. With the item latent vectors in
hand, we can treat each user independently and throughout the
explore-exploit trade-off, we can try to estimate and exploit
the users latent vectors. These feature vectors can depend
on users’ demographic information and their past behavior in
rating items.

The goal of our system is to develop a recommendation
policy, which suggests items to users. This policy will, at
each time slot, output a recommendation based on the previous
observations. This policy must properly adjust for the explore-
exploit trade-off, and classically there are two types of policies,
which differ in the way they perform exploration: optimistic
policies, e.g. upper confidence bound (UCB), and probabilistic
policies, e.g. posterior sampling. UCB algorithms have been
applied to this problem in the past, but posterior sampling is
less common. Posterior sampling (also known as Thompson
sampling) was introduced in 1933 and offers significant ad-
vantages over UCB methods (as shown in [2]), however until
recently it has not been very popular or feasible.

Our primary objective is to explore the feasibility of col-
laborative filtering through posterior sampling. We analyze
its performance on real world data, specifically the freely
available MovieLens datasets, and compare it to existing
methods such as UCB and the work done in [1]

II. SYSTEM MODELS AND ALGORITHMS

In this section we will introduce some notation used
throughout the rest of this work, as well as the algorithms
that we seek to implement.

A. Notation

We have a set of users, i = 1, 2, . . . ,m, with corresponding
feature vectors ai ∈ Rp; and items, j = 1, 2, . . . , n, with
corresponding feature vectors bj ∈ Rp. We refer to these
feature vectors collectively as A ∈ Rp×m and B ∈ Rp×n,
thus the “true” ratings can be captured in the matrix ATB.
At each time t ∈ Z+, a user i(t) will enter the system and



be recommended an item j(t), after which they will give it a
rating r(t) according to

r(t) = aTi(t)bj(t) + z(t)

Where z(t) captures the unexplainable deviation of the obser-
vation from our model. We refer to the viewing history at time
t as the sequence H(t) =

{(
i(τ), j(τ), r(τ)

)}t−1
τ=1

, i.e. all the
viewings in the system before time t. Thus on a high-level, at
time t our program seeks to use its knowledge of user ai(t) to
make the best possible recommendation.

The job of a recommendation system is to define a function
µH(·), which given a user will output a recommendation for
that user. Unknown to the system, there is some optimal policy
which at each time t would output recommendation j

(t)
∗ . To

measure the performance of our system, we will compare
the system’s recommendations to the best recommendation.
Specifically define the regret of the system, at time t, to be

R(t) =

t∑
τ=1

(
aTi(τ)bj(τ)∗

− E
[
r(τ)

])
That is, at each time-step we increase our regret by how far the
expected rating of our recommendation differs from the best
possible rating. Ultimately we seek to derive a policy which
achieves minimal regret.

B. Posterior Sampling

Algorithm 1 Posterior Sampling
Start with prior distribution on (A,B), f(A,B)
for t = 1, 2, . . . do

observe arrival of user i(t)

sample Â, B̂ ∼ f(A,B|H(t))
compute and output recommendation j(t) where

j(t) = arg max
j

E
[
âTi b̂j

]
.

observe the user’s rating r(t)

end for

The idea behind posterior sampling algorithm is to force
optimism through probabilistic action. Specifically at each
time step, t, we will make a recommendation j(t) based on
the probability that it is the best possible recommendation,
P
(
j(t) = j

(t)
∗

)
. However, this probability is inaccessible, so

instead the algorithm samples a model for the unknown feature
vectors based on the probability that they are the true feature
vectors (given the viewing history), and finds the optimal
recommendation should this be the true model. It can be
shown that this sampling technique is equivalent to sampling
a recommendation based on the probability it is optimal, and a
more detailed description of the algorithm and its motivations
can be seen in [2]. Thus the algorithm proceeds to keep track
of the distribution of model parameters at each time step, and
updates them accordingly.

To implement this algorithm all that remains is to choose
a prior on the model parameters, and compute their posterior
distribution given a viewing history. As in [3], and other prior
literature, we assume ai, bj ∼ N (0, Ip/p) i.i.d.. Furthermore
we assume that unexplained deviations of the observations are
Gaussian, i.e. z(t) ∼ N (0, σ2

z). Now we are ready to compute
the posterior distribution.

Using Bayes’ rule observe (for compactness we use f(·) to
denote the distribution of the argument):

f
(
A,B

∣∣∣H(t)
)

=
f
(
H(t)

∣∣A,B) f (A) f (B)

f
(
H(t)

)
=

f(A)f(B)
∏t−1
τ=1 f

(
z(τ)

)∫
A,B

f(A)f(B)
∏t−1
τ=1 f

(
z(τ)

)
dAdB

In the above z(τ) = r(τ) − aT
i(τ)

bj(τ) , and the integral of the
denominator is over the entire space of Rp×m × Rp×n.

For the rest of this report, we consider the simpler case
where the vectors bj are given and we treat each user inde-
pendently. This problem is extensively studied in literature, but
as far as we can tell has never been solved or analyzed through
posterior sampling. We explore it more concretely below.

For compactness we will consider only the feature vector
of a single user, a ∈ Rp, a priori we assume it comes from
N (0, Ip/p) as above, and we now consider the viewing history
H(t) to be the history of the active user (as opposed to all
users). We can now compute the posterior distribution as
follows:

fa|H

(
a
∣∣∣H(t)

)
=

fH|a
(
H(t)

∣∣ a) fa (a)

fH
(
H(t)

)
=

fa(a)
∏t−1
τ=1 fz

(
z(τ)

)∫
Rp fa(a)

∏t−1
τ=1 fz

(
z(τ)

)
da

=
fa(a)

∏t−1
τ=1 fz

(
r(τ) − aT bj(τ)

)∫
Rp fa(a)

∏t−1
τ=1 fz

(
r(τ) − aT bj(τ)

)
da

But observe in this simple case computing the posterior is
much simpler. The numerator is clearly a Gaussian, and the
denominator is just a normalizing term, thus we determine
a
∣∣H(t) ∼ N

(
µ
(t)
a ,Σ

(t)
a

)
. We can formulate a recursive

update rule for the parameters µ
(t)
a ,Σ

(t)
a by massaging the

numerator into an appropriate form (this is done in the
appendix). We find the following update equations for the
posterior:

Σ(t)
a =

(
Σ(t−1)
a +

b(t−1)b(t−1)
T

σ2
z

)−1
µ(t)
a = Σ(t)

a

(
Σ(t−1)
a

−1
µ(t−1)
a +

r(t−1)

σ2
z

b(t−1)
)

These recursive update equations are convenient for implemen-
tation, and can be used efficiently by storing Σ−1, however
some intuition as to their operation can be seen by applying



the matrix inversion lemma. Through it, we find:

Σ(t)
a = Σ(t−1)

a −
Σ

(t−1)
a bj(t−1)bTj(t−1)Σ

(t−1)
a

σ2
z + bT

j(t−1)Σ
(t−1)
a bj(t−1)

µ(t)
a = µ(t−1)

a +
r(t−1)Σ

(t−1)
a − Σ

(t−1)
a bj(t−1)µ

(t−1)
a

T

σ2
z + bT

j(t−1)Σ
(t−1)
a bj(t−1)

bj(t−1)

Thus, essentially, at each step the posterior mean shifts towards
(or away) the feature vector of the recommended item. Simi-
larly the covariance Σ thins out to select for single direction.

The rest of our work revolves mostly around analyzing
the simplified problem setting, however this simplification is
extremely useful for the general case as well. Observe,

f
(
A,B

∣∣∣H(t)
)

= f
(
A
∣∣∣B, H(t)

)
f
(
B
∣∣∣H(t)

)
Thus we can perform posterior sampling in the general case
by first sampling item features B̂, according to f

(
B
∣∣H(t)

)
,

and then sampling A from a gaussian distribution with mean
and variance determined by the previously derived update
equations given the selected features B̂. Unfortunately the
distribution of B

∣∣H(t) is quite complicated; after vectorizing
the matrix B into a vector

−→
B ∈ Rnp we find:

f
(−→
B
∣∣∣H(t)

)
∝
(
p
(−→
B
))−1/2

exp
(
k
−→
B T−→B + cT

−→
B
)

In the above p is a polynomial function in the entries of
−→
B ,

k is some scalar, and c is a vector in Rnp. Unfortunately,
even in this form, it is still unclear how to sample from this
distribution.

C. A UCB Approach

Algorithm 2 UCB
Start with prior distribution on (A,B), f(A,B), and an
optimism parameter p ∈ (0, 1)
for t = 1, 2, . . . do

Observe arrival of user i(t)

Compute the distribution on the reward of each item
For all items, compute Uj , the p-th percentile of
the reward of item j
Compute and output recommendation j(t) where

j(t) = arg max
j

Uj

Observe the user’s rating r(t)

end for

UCB is a completely different approach from posterior
sampling. At each timestep the algorithm computes an upper
confidence bound on the reward of each of the items. The
algorithm will then suggest the algorithm with the highest
UCB. For our purposes, we will use a specific percentile of
the reward as the UCB of each item. This is generally hard
to do and other literature uses various heuristics to determine

a UCB. In the general problem setting, it is unclear how to
implement UCB in any meaningful way, however it is rather
elegant in the simplified case of given item feature vectors.

In the simplified case, (using the priors described in the
previous section) we observe that the posterior of a given
H(t) is Gaussian, thus the distribution on the reward of
recommending item j is also Gaussian. We compute the mean
and variance as follows:

σ2
j = bTj Σabj + σ2

z

µj = bTj µa

Thus computing the p-th percentile of the reward can be done,
simply by inverting the cdf of the normal distribution.

D. Mixed Approaches

From evaluation we observe that UCB and posterior sam-
pling each have unique advantages. Thus we propose various
schemes that allow you to achieve the various performance
trade-offs of both. First we propose an ε-greedy approach and
second we propose a two-phase approach. These were both
studied in the simplified case, but could potentially be applied
to the general setting as well.

The ε-UCB algorithm will flip a weighted coin at each
timestep to decide weather to obtain a recommendation
through posterior sampling or through UCB. Specifically the
algorithm will elect to perform UCB ε percent of the time.

The two phased approach will begin by learning through
posterior sampling until some time T , after which it proceeds
to output recommendations through the UCB approach.

In the next section, we will thoroughly study the perfor-
mance of all of the algorithms presented in this section.

E. The Case of No-repeat Recommendations

Throughout this work we assumed that it is relevant to
recommend the same item several times. However, in some
settings this is not very natural. For instance, if the system
provides recommendations for viewing movies, all of the
above algorithms would eventually chose to show the same
movie over and over. Clearly this is not very useful, and
this can be resolved in several ways. We could lower the
reward of successive viewings, but this adds a complicated
time dependence to our model. More simply we can prohibit
the algorithm from suggesting the same item multiple times.
In the case of suggesting movies this is natural since users
would rarely view the same production multiple times.

III. IMPLEMENTATION AND EVALUATION

In this section, we present our implementation results for
the aforementioned algorithms. For the purpose of numerical
simulations, we used MATLAB. We have carried out algo-
rithms both on synthetic data and freely available MovieLens
dataset.

For the purpose of synthetic data, we generate a random
943 × 1682 matrix (the same size as MovieLens data) with
rank 30 by generating random Gaussian feature matrices and
multiplying them together. Each of the entries of feature



matrices comes from a N (0, 1/p). Then, we will take item
feature vectors as granted and try to estimate user feature
matrix by considering a Gaussian prior.

Figure 1 shows the cumulative regret versus time, for
posterior sampling and UCB with four different parameters.
We can see that posterior sampling might work worse at first
by exploring too much, but it pays off later when the better
understanding of the arms comes to help later.
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Fig. 1. Cumulative regret of posterior sampling and UCB algorithms on synthetic data

Notice that the regret observed by each of these algorithms
is very good compared to the total reward they obtain (the
cumulative rewards at t=800 is in the order of 500 while the
difference in rewards is in the order of 1). In order to show
this, we have plotted the cumulative reward versus time for
all of these algorithms in Figure 2 and it can be seen that it
is close to the optimal reward.
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Fig. 2. Cumulative reward of posterior sampling and UCB algorithms on synthetic data

We also tried similar simulations for different ranks of
the underlying matrix. Figure 3 shows the performance of
these algorithms when the rank of the preference matrix is
100. It can be seen that posterior sampling outperforms UCB.
One interesting observation is that unlike posterior sampling,
UCB methods are very sensitive to the parameters used in
algorithms (in our case the percentile parameter), and using
inappropriate parameter may result in non-zero asymptotic
regret. We observe that the optimal tuning is highly sensitive
to the data, specifically to its rank.

As a variation of the introduced algorithms, we have
carried out a combination of posterior sampling and greedy
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Fig. 3. Cumulative regret of posterior sampling and UCB algorithms for synthetic data
with rank = 100

algorithms. Here, the greedy algorithm chooses the arm that
maximized the expected instantaneous reward and can be
considered as UCB with percentile 50%. At each time, the
ε-greedy algorithm makes greedy decision with probability ε,
and performs an iteration of posterior sampling with prob-
ability 1 − ε. By looking at Figure 4, we can see that the
performance of the greedy algorithm improves dramatically
when it’s combined with posterior sampling 50% of the
time. This will result in even more computationally efficient
methods while the regret still remains acceptably low.
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Fig. 4. Cumulative regret for hybrid approach on synthetic data

We also carried out the posterior sampling and UCB algo-
rithms under the assumption that no item can be recommended
to a user more than once. Notice that in this case, we expect
the regret to be decreasing at some point, because the expected
regret at time 1682 is equal to zero. Figure 5 shows the
performance of these algorithms in this case.

We have implemented all these methods for the MovieLens
dataset and got similar results. For example Figure 6 shows
the cumulative regret for the posterior sampling and UCB with
different parameters on MovieLens dataset. As seen in Figure
6, UCB algorithm with parameter 0.95 works better than the
other instances of UCB, which further shows that there is no
rule for finding the best parameters for UCB algorithms.

IV. CONCLUSIONS

All of the algorithms we analyzed perform extremely well.
The difference in regret between them is negligible compared
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Fig. 6. Cumulative regret of posterior sampling and UCB on MovieLens dataset

to the total reward collected. Thus we advocate posterior
sampling as the best general purpose solution for several
reasons. First, it is extremely efficient compare to the UCB
style approach. Second, it does not require any tuning; while
we observed that UCB can outperform posterior sampling it
is extremely reliant on proper tuning (which can be hard to
determine in practice). Furthermore, posterior sampling can
clearly be extended to the general problem setting, whereas our
stated UCB method is not. Lastly we note that using previously
mentioned hybrid approaches it is possible to achieve many
different efficiency/regret trade-offs.

V. FUTURE WORK

It would be interesting to more closely analyze the gen-
eral case. Posterior sampling can be implemented through
Gibb’s sampling, or the Metropolis-Hastings algorithm. UCB
as described in this paper would be much more difficult to
implement, but we could try various heuristics and other UCB
style algorithms.

Alternatively this work could be continued in the practi-
cal direction by building a real-life recommendation system
utilizing these algorithms and studying its performance.

APPENDIX

A. Derivation of Posterior Update Rules

Again consider the simplified case where we know the latent
feature vectors of the items. For compactness we will consider

only the feature vector of a single user, a ∈ Rp. Then:

f
(
a
∣∣∣H(t)

)
=

fa(a)
∏t−1
τ=1 fz

(
r(τ) − aT bj(τ)

)∫
Rp fa(a)

∏t−1
τ=1 fz

(
r(τ) − aT bj(τ)

)
da

= C1fa(a)

t−1∏
τ=1

fz

(
r(τ) − aT bj(τ)

)
= C2fz

(
r(t−1) − aT bj(t−1)

)
f
(
a
∣∣∣H(t−1)

)
= C3 exp−

(
r(t−1) − aT bj(t−1)

)2
2σ2

z

×

exp−1

2
(a− µ(t−1)

a )TΣ(t−1)
a

−1
(a− µ(t−1)

a )

Now it is clear that the distribution remains Gaussian. At this
point simply compute the coefficients of the quadratic and
linear terms to solve for the new mean and covariance. This
yields

Σ(t)
a =

(
Σ(t−1)
a +

b(t−1)b(t−1)
T

σ2
z

)−1
µ(t)
a = Σ(t)

a

(
Σ(t−1)
a

−1
µ(t−1)
a +

r(t−1)

σ2
z

b(t−1)
)

B. Woodury Matrix Identity & Update rules

Recall the Woodury Matrix Identity:

(A+ UCV )−1 = A−1 −A−1U
(
C−1 + V A−1U

)−1
V A−1

For ease of notation in this section we will refer to Σ
(t)
a as

Σt, µ
(t)
a as µt, r(t) as r, and lastly we refer to b(t) simply as

b. Apply the lemma to the previously derived update rules:

Σt =

(
Σt−1 +

bbT

σ2
z

)−1
= Σt−1 −

Σt−1bb
TΣt−1

σ2
z + bTΣt−1b

Now we can plug this into the derivation of µt:

µt = Σt

(
Σt−1

−1µt−1 +
r

σ2
z

b

)
=

(
Σt−1 −

Σt−1bb
TΣt−1

σ2
z + bTΣt−1b

)(
Σt−1

−1µt−1 +
r

σ2
z

b

)
= µt−1 −

Σt−1bµ
T
t−1b

σ2
z + bTΣt−1b

+

r

σ2
z

(
σ2
zΣt−1b+ bTΣt−1bΣt−1b− Σt−1bb

TΣt−1b

σ2
z + bTΣt−1b

)
= µt−1 +

(
rΣt−1 − Σt−1bµ

T
t−1

σ2
z + bTΣt−1b

)
b
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