
Preconditioning via Diagonal Scaling

Reza Takapoui Hamid Javadi

June 4, 2014

1 Introduction

Interior point methods solve small to medium sized problems to high accuracy in a reasonable
amount of time. However, for larger problems as well as stochastic problems, one needs to
use first-order methods such as stochastic gradient descent (SGD), the alternating direction
method of multipliers (ADMM), and conjugate gradient (CG) in order to attain a modest
accuracy in a reasonable number of iterations.

The condition number of a matrix A, denoted by κ(A), is defined as the ratio of its
maximum singular value to its minimum singular value. Both theoretical analysis and prac-
tical evidence suggest that the precision and convergence rate of the first-order methods can
depend significantly on the condition number of the matrices involved in the problems. As
an example, the CG algorithm for solving the linear system Ax = b achieves a faster rate of
convergence when the condition number of A is smaller. Hence, it is desirable to decrease
the condition number of matrix A by applying a transformation to it; this process is called
preconditioning.

A special case of preconditioning is called diagonal scaling. Here, we are interested
in finding diagonal matrices D and E to minimize the condition number of the matrix
A′ = DAE, in order to accelerate first-order methods. For example, in applying CG to solve
Ax = b, we can solve A′x̃ = Db instead, and recover x = E−1x̃, while taking advantage of
the small condition number of A′.

In our numerical experiments and from theoretical analysis, we have concluded that
preconditioning can improve the performance of the first-order methods in two different
ways. First, it can significantly accelerate the linear algebra operations. For example in
[OCPB13], each step of the algorithm involves running CG which can be done remarkably
faster if the appropriate preconditioning is applied. The second effect of the preconditioning,
which should be distinguished from the first one, is decreasing the number of iterations for
achieving desired accuracy by following different intermediate points in ADMM.

In this report, we first discuss heuristics for diagonal scaling. Next, we motivate precon-
ditioning by an example, and then we study preconditioning for a specific splitting form in
ADMM called graph projection splitting. Finally we examine the performance of our methods
by some numerical examples.

1

2 Matrix equilibration

Let A ∈ Rm×n be given. Matrix equilibration is a heuristic method to find diagonal matrices
D ∈ Rm×m and E ∈ Rn×n to decrease the condition number of DAE. The basic idea in
equilibration is to find D and E such that all columns of DAE have equal ℓp norms and all
rows of DAE have equal ℓp norms. (The parameter p ≥ 1 can be selected in our algorithm.)
We show that this can be formulated as a convex optimization problem. Consider the
problem

minimize
∑

i,j |Aij|pexieyj

subject to
∑

i xi = 0
∑

j yj = 0,

with variables x ∈ Rm and y ∈ Rn. The optimality conditions for this problem can be shown
to be equivalent to equilibration of DAE for D = diag(ex) and E = diag(ey). Although
matrix equilibration is a convex problem, it is computationally favorable to solve this problem
with heuristic iterative methods, rather than using interior point methods. There are several
methods for matrix equilibration, here we mention a few famous ones. We refer interested
readers to [Bra10] for a thorough discussion on matrix equilibration.

• Sinkhorn-Knopp equilibration algorithm was originally designed to convert matrices
with nonnegative entries to doubly stochastic matrices [Sin64]. However, with a slight
modification, it can be used to perform equilibration in any ℓp norm.

• Ruiz equilibration algorithm was originally proposed to equilibrate square matrices
[Rui01]. Here, we made a small modification to it so that A can be rectangular.

• Matrix free algorithms are the methods that obtain information about a matrix only
through matrix-vector products. Matrix-free methods are useful when a matrix is
represented as an operator with no access to the matrix entries [Bra10].

Algorithm 1 Sinkhorn-Knopp

Initialize d1 = 1m, d2 = 1n.
while r1 > ǫ1 or r2 > ǫ2 do

(d1)i := (Ad2)
−1
i .

(d2)j := (ATd1)
−1
j .

B := diag(d1)Adiag(d2).

r1 =
maxi ‖Bi:‖
mini ‖Bi:‖

, r2 =
maxi ‖B:j‖

mini ‖B:j‖
.

end while
return D = diag(d1), E = diag(d2).

Algorithm 2 Ruiz

Initialize d1 = 1m, d2 = 1n, B = A.
while r1 > ǫ1 or r2 > ǫ2 do

(d1)i := (d1)i(‖Bi:‖p)−1/2.
(d2)j := (d2)j(m/n)1/2p(‖B:j‖p)−1/2.
B := diag(d1)Adiag(d2).

r1 =
maxi ‖Bi:‖
mini ‖Bi:‖

, r2 =
maxi ‖B:j‖

mini ‖B:j‖
.

end while
return D = diag(d1), E = diag(d2).

Although these algorithms work extremely well in practice, there is no theoretical guar-
antee that they decrease the condition number. In fact, in our numerical experiments, we
observed that in some cases they might slightly increase the condition number.

2

3 Example

In this section, we study one simple example to motivate diagonal scaling for ADMM. Con-
sider the consensus problem

minimize f(x) + g(z)
subject to x = z,

(1)

with variables x, z ∈ Rn, where f(x) = (1/2)‖Ax − b‖22, with A ∈ Rm×n, b ∈ Rm, and
g : Rn → R∪ {+∞} is a convex, closed, and proper function. This includes several popular
problems such as lasso, support vector machine, and non-negative least squares. Instead of
solving (1) directly, we can use ADMM to solve the equivalent problem

minimize f(x) + g(z)
subject to Fx = Fz,

(2)

where F ∈ Rn×n is invertible. The augmented Lagrangian for this problem will be

LF (x, z, y) = f(x) + g(z) + (Fy)T (x− z) + (1/2)‖x− z‖2F 2. (3)

Defining Fy as the new dual variable, we see that (3) is identical to the augmented Lagrangian
for (1) except that a different norm is used to augment the Lagrangian. Notice that taking
F =

√
ρI is equivalent to scaling the step size in ADMM by ρ. Hence, choosing the best

matrix F (that results in the fastest convergence) is at least as difficult as finding the optimal
step size ρ in [BPC+10]. Now, a question of our interest here is the following: by expanding
the class of matrices F from multiples of identity to diagonal matrices, how much can we
accelerate the ADMM? To answer this question we note that it can be shown that ADMM
achieves linear convergence in this case and (an upper bound for) the rate of convergence
is κ(F (ATA)−1F T). Hence choosing F such that κ(F (ATA)−1F T) is smaller can hopefully
result in faster convergence for ADMM.

To illustrate this effect, we used ADMM to solve the lasso problem with and without
presence of matrix F . We generated a random matrix A with size m = 7500 and n = 2500,
and used ADMM to solve (2) in three different cases with the stopping tolerance set to
10−4. First, we performed ADMM directly on (1) without presence of F . It took 7416
iterations for the algorithm to converge. For the second case, we took D =

√
ρ∗I, where

ρ∗ =
√

λmin(A)λmax(A) which maximizes the upper bound on the convergence rate of the
algorithm (ρ∗ = 7.2 in this example). In this case, it took 1019 iterations until the algorithm
converged. Finally we used D which equilibrates (ATA)−1. In the last case it took only 8
iterations for the algorithm to converge. This shows the important effect of preconditioning
on the convergence rate of the ADMM for solving the lasso problem.

3

4 Graph projection splitting

Consider the following problem which is in canonical graph form [PB13]

minimize f(y) + g(x)
subject to Ax = y. (4)

Graph projection splitting [PB13] is a form of ADMM to solve this problem serially. The
essential idea is to define z = (x, y) and φ(z) = f(y) + g(x), and solve

minimize φ(z) + IAx′=b′(z
′)

subject to z = z′

instead. Here we notice that (4) is equivalent to

minimize f(D−1ỹ) + g(Ex̃)
subject to ỹ = DAEx̃,

where x̃ = E−1x and ỹ = Dy for diagonal D ∈ Rm×m and E ∈ Rn×n with positive diagonal
entires. Using graph projection splitting for this problem is equivalent to running ADMM
on

minimize φ(z) + IAx′=y′(z
′)

subject to

[

E−1 0
0 D

]

z =

[

E−1 0
0 D

]

z′.

The second step of ADMM is to project onto the graph subspace G = {(x̃, ỹ)|DAEx̃ = ỹ}
which is a linear transformation defined by

ΠG(x̃, ỹ) =

[

I (DAE)T

DAE −I

]−1 [
I (DAE)T

0 0

] [

x̃
ỹ

]

.

In the next section, we will discuss how we can choose D and E to accelerate ADMM in graph
projection splitting form. Notice that for fixed DAE (even when D and E are changing in
each step), the projection matrix remains the same, and hence no additional factorization
caching is required in evaluating the projection operator. We will return to this fact in the
next section.

5 Parameter selection

In this section we propose methods for choosing matrices D, E to speed up the graph
projection splitting algorithm. We argue that following the steps below can help us to
achieve a desired accuracy in smaller number of iterations.

4

• Using the algorithms discussed in §2, we choose D̂, Ê such that D̂AÊ is equilibrated.
This will usually result in reducing the condition number of A. As a result, the singular
values of D̂AÊ will be closer to each other and intuitively matrix A becomes more
isotropic. We notice that defining D = αD̂ and E = βÊ for any α, β ∈ R++, the
matrix DAE is equilibrated. We have two degrees of freedom left: αβ can be chosen
to scale DAE and β/α can play the role of step size in ADMM.

• The product αβ is chosen to set ‖DAE‖. Let γ = ‖D̂AÊ‖, then we will have ‖DAE‖ =
αβγ. Since DAE is likely to have a small condition number, this means that the
norms of y and x are related with a factor close to ‖DAE‖. This should be chosen
appropriately for every problem. In most examples, setting ‖DAE‖ = 1 gives us
reasonably good results. Of course, this depends on the functions f and g. We have
inspected this effect in the next section.

• Note that we can change β/α at each step while DAE is constant. Doing this pro-
cedure can help us to change ρ adaptively to balance the norms of dual and primal
residuals. More importantly, this procedure is costless and does not require additional
factorization caching in direct methods, also in indirect methods warm start can be
used.

6 Numerical results

In this section we inspect the effect of parameters explained in §5 on the speed of graph
projection splitting algorithm for two different problems.

6.1 Lasso

Consider the lasso problem

minimize (1/2)‖Ax− b‖22 + λ‖x‖1,

where A ∈ Rm×n and b ∈ Rm and λ ∈ R are the problem data and x ∈ Rn is the decision
variable. We can write this problem in form (4) with f(y) = ‖y − b‖22 and g(x) = λ‖x‖1.
We generate instances of the lasso problem with m = 750 and n = 250. We plot the average
number of iterations required versus values of βα (scaling) and β/α (step size ρ) in Figure
1. The relative tolerance was set to 10−4 as the stopping criterion.

6.2 Linear program (LP)

Consider the problem
minimize cTx
subject to Ax � b

5

200

400

600

800

1000

1200

1400

1600

1800

2000

βα

β
/α

1/(100γ) 1/γ 100/γ
γ/100

γ

100γ

Figure 1: Average number of iterations for graph projection splitting on the lasso problem

where c ∈ Rn and b ∈ Rm and A ∈ Rm×n are the problem data and x ∈ Rn is the decision
variable. This can be written in form (4) by f(y) = I{y≤b}(y) and g(x) = cTx. We generate
several instances of the problem with m = 750 and n = 250. We plot the number of iterations
required, relative objective suboptimality and relative constraint error versus values of βα
(scaling) and β/α (step size ρ). The relative tolerance was set to 10−4 as the stopping
criterion.

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

βα

β
/α

50/γ 1/γ 50/γ
1/(50γ)

1/γ

50/γ

(a) Average number of iterations

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

βα

β
/
α

50/γ 1/γ 50/γ
1/(50γ)

1/γ

50/γ

(b) Relative suboptimality

10

20

30

40

50

60

70

80

90

100

βα

β
/
α

50/γ 1/γ 50/γ
1/(50γ)

1/γ

50/γ

(c) Relative constraint error

Figure 2: Graph projection splitting on LP with inequality constraint

We see that after matrix equilibration, the remaining two degrees of freedom need to be
set appropriately to achieve a desired accuracy in smaller number of iterations. Setting α
and β such that ‖DAE‖ = 1 and choosing appropriate step size afterwards usually results
in a fast convergence.

6

References

[BPC+10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3:1–122, 2010.

[Bra10] A. M. Bradley. Algorithms for the equilibration of matrices and their application
to limited-memory quasi-newton methods. Ph.D. thesis, Institute for Computa-

tional and Mathematical Engineering, Stanford University, 2010.

[OCPB13] B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. Operator splitting for conic opti-
mization via homogeneous self-dual embedding. arXiv preprint arXiv:1312.3039,
2013.

[PB13] N. Parikh and S. Boyd. Graph projection block splitting for distributed opti-
mization. Mathematical Programming Computation, 2013.

[Rui01] D. Ruiz. A scaling algorithm to equilibrate both rows and columns norms in
matrices. Rutherford Appleton Lab., Oxon, UK, Tech. Rep. RAL-TR-2001-034,
2001.

[Sin64] R. Sinkhorn. A relationship between arbitrary positive matrices and doubly
stochastic matrices. The annals of mathematical statistics, 35(2):876–879, 1964.

7

	Introduction
	Matrix equilibration
	Example
	Graph projection splitting
	Parameter selection
	Numerical results
	Lasso
	Linear program (LP)

