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The Relationship Between Causal and Noncausal
Mismatched Estimation in Continuous-Time
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Abstract—A continuous-time finite-power process with distribu-
tion � is observed through an AWGN channel, at a given signal-to-
noise ratio (SNR), and is estimated by an estimator that would
have minimized the mean-square error if the process had distribu-
tion�. We show that the causal filtering mean-square error (MSE)
achieved at SNR level is equal to the average value of the non-
causal (smoothing) MSE achieved with a channel whose SNR is
chosen uniformly distributed between 0 and . Emerging as the
bridge for equating these two quantities are mutual information
and relative entropy. Our result generalizes that of Guo, Shamai,
and Verdú (2005) from the nonmismatched case, where � � �,
to general � and �. Among our intermediate results is an exten-
sion of Duncan’s theorem, that relates mutual information and
causal MMSE, to the case of mismatched estimation. Some further
extensions and implications are discussed. Key to our findings is
the recent result of Verdú on mismatched estimation and relative
entropy.

Index Terms—AWGN channels, Brownian motion, contin-
uous-time, I-MMSE formula, minimax estimation, minimum
mean-square error estimation, mismatched estimation, mutual
information, nonlinear filtering, relative entropy, Shannon theory.

I. INTRODUCTION AND MAIN RESULT

A. The Bottom Line

I N [16], a remarkable relationship between the MMSEs in
causal (filtering) and noncausal (smoothing) estimation of

an arbitrarily distributed signal corrupted by Additive White
Gaussian Noise (AWGN) was discovered: the filtering MMSE
at SNR level is equal to the mean value of the smoothing
MMSE with SNR uniformly distributed between 0 and . In
the present paper, we show that this equality holds also in the
mismatched case, where the filters are optimized for an under-
lying signal distribution that differs from the true one. Bridging
the two sides of this equality, up to a multiplicative constant in-
versely proportional to , is the sum of the input-output mutual
information and the relative entropy between the true and mis-
matched output distributions. This relative entropy thus quanti-
fies the penalty due to mismatch in continuous-time estimation
over AWGN channels.
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B. A Bit of Literature Context

The line of work on which we draw—developing and ex-
ploiting connections between information and estimation theo-
retic quantities in the presence of added Gaussian random vari-
ables—dates back to “de Bruijn’s identity” in Stam’s paper [35],
which exhibits the derivative of a differential entropy as a Fisher
information, the mean square score. The integral form of such a
relationship, along with a demonstration of the required conti-
nuity properties at the zero Gaussian and fully Gaussian limits,
was presented by Barron in [2] which also exhibits the relative
entropy from a normal by integration of the mean squared dif-
ference between the score and a normal score. Among other re-
cent uses, such results were key for the resolution of Shannon’s
conjecture on the monotonicity in the CLT [1], cf. also [36] and
[28]. In Gaussian noise settings, the representation of the min-
imal mean square error via score functions is a central part of
statistical decision theory, cf. [24], [28] and references therein.

In [16], Guo, Shamai and Verdú discovered the “I-MMSE”
relationship and established its equivalence to the de Bruijn
identity. In turn, the “I-MMSE” relationship allowed them to
discover the remarkable—purely estimation theoretic—re-
lationship between the causal (filtering) and noncausal
(smoothing) MMSEs, by combining the continuous-time
version of their “I-MMSE” relationship with Duncan’s theorem
[9]. It is this relationship that we extend in the present work to
the case of mismatched estimation.

Our results rely heavily on the recent [37], where an intimate
connection between relative entropy and mismatched estima-
tion in additive Gaussian noise was revealed. Our main result
is established by both extending the setting and results of [37]
to continuous-time estimation, and extending the main result of
[9] to the case of mismatch. One of our proofs of the latter result,
the one relying on the Girsanov theorem, provides an alternative
proof of the main result of [37], when specializing our result to
DC processes.

Our work thus joins [16], and the recent body of work that
it has spawned (cf., e.g., [3], [15], [17], [26], [28], [29], [31],
[32], [36], [38], [40], and references therein), in illuminating
and exploiting intimate connections between information and
estimation theory. Whether and what counterparts of our results
hold in the continuous-time Poisson channel setting of [17], and
the generalized settings of [10], [11], remains for future work.

C. Problem Setting, Motivation, and Main Result

Let be a process of finite average power
, distributed according to , independent of

the standard Brownian motion , and let be its AWGN-
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corrupted observation process at signal-to-noise ratio (SNR) ,
i.e.,

(1)

Define the mismatched causal and noncausal mean-square error,
at any time , by

(2)

and

(3)

where the subscript denotes expectation assuming that
is distributed according to (and we append to the condi-
tioning argument when we want to make the dependence on
it explicit). Here and throughout we follow the convention of
[37] that an unsubscripted expectation is with respect to dis-
tributed according to , independent of the standard Brownian
motion , when is given by (1). Denote the mismatched
causal and noncausal mean-square error by

(4)

and

(5)

respectively. In other words, and are the cu-
mulative mean-square error incurred by, respectively, the causal
and noncausal nonlinear filters that are optimal for , when
the true distribution is . In practice, filters are often designed
under that differs from because the latter is not exactly
known and, even when it is, a filter under may be simpler to
implement.1 It is, therefore, of interest to study and

.
Similarly as in [16], [37], we use and to

denote the minimum mean-square error (MMSE) in the corre-
sponding problems, thus

and

(6)

Recall Theorem 8 of [16], which states that the causal and non-
causal MMSEs satisfy, for

(7)

Remarkably, this fundamental relationship holds regardless of
the distribution .

What happens in the case of mismatched estimation? To note
one mismatched estimation scenario to which the relationship
in (7) carries over immediately, let denote the Gaussian dis-
tribution with the same first and second order moments as .
The relationship

(8)

1E.g., when � is Gaussian the associated filter is linear.

is immediate upon noting that and co-
incide with and when in the latter two
quantities the true distribution is taken as , and applying (7).
This observation was implicit in [3].

To note another mismatched estimation scenario where (7)
carries over, let denote the distribution governing the process
formed by concatenating with , both gov-
erned by , but independent of each other. We then obviously
get the relationship

(9)

by applying (7) separately on the time intervals and
.

To note yet another mismatched estimation scenario where
(7) carries over, we recall a fundamental relationship from [37].
Consider a scalar observation given by

(10)

where is independent of . Suppose and
let denote the mean square error in estimating on
the basis of , using the estimator that would have been optimal
if . Let stand for . Assuming
that both and have finite second moments, (14) of [37]
presents the following relationship, which is key to our results:

(11)

Consider now the case where is a DC signal, i.e.,

(12)

for a random variable , whereas the mismatched filter
assumes . Letting and denote

and of (5) and (6) for the case where
is the DC signal of (12), since the duration of the observation
interval is proportional to in the setting of (10), we have the
obvious relationship

and a fortiori

(13)

Consequently

(14)

(15)

(16)

where the first equality follows from (13) and the third equality
is an application of (11). On the other hand, letting
and denote and of (4) and
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(6) for the case where is the DC signal of (12); see (17)–(21),
shown at the bottom of the page, where the last equality is
another application of (11). Putting (16) and (21) together yields

(22)

implying in turn

(23)

upon noting that

(24)

where (24) is nothing but (7) applied to this special case of a DC
process.

To recap, we have found three mismatched estimation sce-
narios where the relationship

(25)

holds: In the first case, (8), . In the second case, (9),
governs the process formed by concatenating independent

copies of and , each . In the third case,
(23), is a DC process under both and . Is this relation-
ship a peculiarity of these special cases?

Our main result is that the relationship (25) holds for arbi-
trary and . Further, mutual information and relative entropy
emerge as the bridge for equating the two sides of (25). Specif-
ically, let denote the mutual information between and

under the channel in (1).2 Let further and denote
the distribution of [the output of the channel described in
(1)] when is distributed according to and , respectively,
and denote the relative entropy (divergence) between and

by

(26)

2Similarly as with expectation, in the notation ���� we suppress the depen-
dence on the (true) channel input process � .

where the subscript is to make the dependence on the SNR
value explicit.3 Our main result can now be stated as follows:

Theorem 1: For any pair of distributions and of finite
average power, and for any

(27)

It is evident from our proof of Theorem 2 that it carries over
verbatim to the case where , is a -dimensional
standard Brownian motion, and the square of the error (in (2),
(3), etc.) is replaced by the square of the Euclidean norm of the
error.

D. Remaining Content

Some of the interpretations and implications of Theorem 1
are discussed in Section II. In Section III, we consider an ex-
ample involving a Gaussian DC process, for which we compute
the quantities that appear in Theorem 1, verify (27) directly,
and present plots illustrating how some of the generic observa-
tions made in Section II play themselves out in a concrete case.
Section IV is dedicated to a proof of our main result and to a
discussion of the intuition behind it, alternative approaches to
the proof, and how our results carry over to accommodate the
presence of feedback.

II. DISCUSSION, INTERPRETATION, AND IMPLICATIONS

A. Relation to Known Results and a Pictorial Representation

Theorem 1 can be viewed as an extension, from the case of
optimal to that of mismatched estimation, of the relationship

(28)

3���� and� � � , induced by measures on function spaces per-
taining to the continuous-time AWGN channel, are well defined objects, as made
explicit in Section IV-A.

(17)

(18)

(19)

(20)

(21)
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Fig. 1. Picture implied by Theorem 1.

where the first equality in (28) is Theorem 8 of [16] and the
second one is Duncan’s theorem [9, Theorem 3]. We illustrate
the picture implied by Theorem 1, and how it relates to the
one implied by (28), in Fig. 1. That the areas of Region B and
Region C (in the figure) are equal follows from Theorem 8 of
[16]. Duncan’s theorem [9] implies that the area of the rectangle
consisting of Region B and the lower black region is equal to

. Theorem 1 implies that the areas of Region E and
Region F are equal, and that the area of the rectangle consisting
of Region C, Region E, and the black region separating them is
equal to . Consistent with an observation
made in Section II-D below, the ratio of the slopes of the non-
causal and causal quantities at 0, in both the mismatched and
the nonmismatched case, is seen to be 2. Notwithstanding the
curves plotted in that figure, and need not
be monotone in in general, nor need
hold. Confer Section II-B for discussion, and Figs. 5 and 6 for
examples.

Theorem 1 is an immediate consequence of (28) and the
following:

Theorem 2: For any pair of distributions and of finite
average power, and for any

(29)

(30)

It can be noted that Theorem 2, when specialized to the case
discussed in the Introduction, recovers the main result

of [3]. Section IV is dedicated to the proof of Theorem 2.
To be explicit about how our results extend those of [9] and

[16], consider the equality between the leftmost and rightmost
terms in (27)

(31)

Equality (31) extends Duncan’s theorem [9] to the case of mis-
matched estimation. It is a direct consequence of combining that
original theorem with (30). On the other hand, multiplying by

and differentiating, the second equality in (27) yields

(32)

extending the continuous-time I-MMSE relationship, [16, The-
orem 6], to the mismatched case.

Finally, we recall from the Introduction, (20), that the left
hand side of (30) coincides with

(33)

in the special case where is a DC process (with amplitude
distributed under and , respectively) and . On the
other hand, in this special case, the right hand side of (30) is
nothing but

(34)

Evidently (30) yields (11) when applied in the special case of a
DC process (taking and ). Our first proof of
(30), given in Section IV-C, relies on (11) as a building block.
In Section IV-D, we give a direct proof of (30) that uses the
Girsanov theorem (cf., e.g., Section 3.5 of [21]) and does not
rely on (11). Thus, when specialized to the case of a DC process,
this latter proof yields a new proof of (11) and, in particular, of
the main result of [37] (Theorem 1 therein).

B. Nonmonotonicity of and

The obvious low and high SNR behavior of and
is given by

(35)

and, under benign conditions on ,4

(36)

In the nonmismatched case, two things are clear from a data
processing consideration:

• “The less noise the better”: both and
decrease monotonically to 0 with increasing .

• “More observations cannot hurt”:
for all .

In the mismatched case, neither of these properties need hold
and, in fact, Theorem 1 implies that the two are intimately re-
lated: Differentiating the relationship

(37)

4E.g., that � , under �, is supported on the whole real line for all � � ��� � �
is readily seen to be a sufficient condition.
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we obtain

(38)

i.e., the price of causality is (assuming
this derivative exists). In the mismatched case this price can be
positive or negative: (38) implies that
if and only if , and that [see (39), shown at
the bottom of the page]. In other words: an increase in SNR
deteriorates the mismatched causal mean square error perfor-
mance if and only if the latter is better than the noncausal mean
square error performance.

When might an increase in SNR deteriorate performance or,
conversely, when might more noise help? Qualitatively, when
is very mismatched, more noise might serve to weaken its (erro-
neous) conviction on the underlying signal and, hence, to “tone
down” its output in a desirable direction. This phenomenon is
loosely referred to in some parts of the literature as “stochastic
resonance”, cf., e.g., [13].

For an extreme example, consider the case where is deter-
ministically the 0 signal, i.e., for all and . Let be an
arbitrary, nondegenerate, zero mean (i.e., ) dis-
tribution. Then and are both positive for all

, while clearly .
Figs. 5 and 6 exhibit less extreme examples.

C. Causal Versus Anticausal Mismatched MSE

That the causal and anticausal MMSEs are equal is an im-
mediate consequence of Duncan’s theorem and the invariance
of to the direction of the flow of time. This equality be-
tween the causal and noncausal MMSE is remarkable consid-
ering that is arbitrary, with no stationarity, reversibility, or any
other type of restriction assumed. Even more remarkable is that
this equality carries over to the case of mismatched estimation,
regardless of any assumptions on , on , or on the relation-
ship between them. Indeed, let denote the anticausal
mismatched mse, i.e., let

(40)

and

(41)

The obvious invariance of the middle and the right terms in (27)
to the direction of the flow of time implies that

(42)

Indeed, the middle and the right terms in (27) are invariant not
only to the direction of the flow of time but to any “reordering”

of time. More precisely, if is a one-to-one,
onto, Lebesgue-measure-preserving transformation,5 let and

denote the distributions of the process when
is and , respectively. The middle and the right

terms in (27), and consequently also the left term, remain un-
changed when and are replaced by and . The impli-
cations that this fact might have on the question of the sensitivity
of mismatched filtering performance to the ordering of the data
are analogous to those developed in [5, Subsection III-B] for the
nonmismatched case.

D. Low SNR Behavior of and : A
Factor of 2 Relationship

As noted in Fig. 1, in the low SNR regime we have

(43)

We now argue that Theorem 2 implies that, under sufficient reg-
ularity, the following relationship holds between the rates of
convergence associated with the two limits in (43):

(44)

In other words, the noncausal error approaches its low SNR limit
twice as rapidly as the causal error. The relationship (44) was
noted in Corollary 4.2 of [29] for Gaussian processes with non-
mismatched filters, and in [16] for nonmismatched filters and
general processes. To see why it holds, consider

(45)

(46)

(47)

(48)

(49)

where follows from (38). Note we have assumed here dif-
ferentiability of (for to hold), its being continu-
ously differentiable at 0 (for to hold), and that

5Throughout the paper, “transformations”, “functions”, “mappings”, and
random objects, if not explicitly mentioned, are to be understood as measurable
under a measurable space that should be clear from the context.

if and only if (39)
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(for validity of ). Note also that the numerator and the de-
nominator of the expression on the left side of (44) are either
both positive or both negative in a neighborhood of , ac-
cording to the sign of , as is consistent with the find-
ings of Section II-B. Fig. 1 exhibits a case where
while Figs. 5 and 6 exhibit one with . Regardless
of the sign, the factor of 2 relation (43) is apparent in all said
figures.

E. High SNR Behavior of

In the high SNR limit, one has

(50)

regardless of the finiteness of the right side of the equality. On
the other hand, as in (36),

(51)

under benign conditions on , e.g., that , under , is sup-
ported on the whole real line for all suffices. Com-
bining (50) with (30) implies that, when (51) holds

(52)

The conclusion is that, assuming sufficiently regular to imply
(51), exhibits one of the following possible
behaviors in the high SNR regime:

1. for all . This can happen if

and only if , i.e., the nonmismatched setting.

2. which, by (50) and the pre-

vious item, can happen if and only if .

3. but

which, by (50) and

(52), can happen if and only if , i.e., when

, increases without
bound with increasing SNR, but sub-linearly.

F. Special Cases

Mismatched Linear Estimation: Define and
analogously to and , for the case

where the filter used is, respectively, the causal and noncausal
Wiener filter designed for , i.e., the filter that would be
optimal among linear filters if . Since obviously

and , The-
orem 1 implies that

(53)

where denotes the distribution of the Gaussian process
whose first and second order moment statistics coincide with
those of .

The Price of Non-Gaussianity: Apply Theorem 2 for arbi-
trary and to obtain

(54)

Note that (54) is nothing but (53) specialized to . On the
other hand, by applying (28) with playing the role of ,6 we
get

(55)

where by we denote the mutual information when the
input (noise-free) process . In particular, putting (54) and
(55) together yields the relationship

(56)

confirming that a Gaussian process maximizes the mutual infor-
mation between and among all processes of a given cor-
relation function, and quantifying the price of a non-Gaussian
input distribution.

Degenerate : Let , , be a deterministic signal.
Applying Theorem 2, with assigning probability one to the
noise-free signal being , gives

(57)

or, equivalently

(58)
where in this case is the law of Brownian motion with
drift function . Specializing even further by taking we
obtain

(59)

where is the standard Brownian motion. The relationship
(59) is not really new: it follows directly from Duncan’s the-
orem, the relationship

(60)

(cf., e.g., [20]), and the orthogonality principle. Fig. 2 illustrates
the picture implied by (59).

6To see why the left and middle terms in (28) coincide with those in (55) note
that in both cases these quantities involve the mean square error of the same
linear filters, which are the same under both � and � since the second order
moments are the same under both measures.
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Degenerate : The “Semi-Stochastic” Setting: Suppose that
, , is a deterministic signal. Applying The-

orem 2 with degenerate on gives

(61)

where this time is the law of a standard Brownian motion
with drift . Note that the invariance of relative entropy to a
one-to-one transformation (of both arguments) implies that the
right hand side of (61) is equal to

(62)

where denotes that law of the output of the channel when

the input is and .

G. Estimation Theoretic Interpretation of a Chain Rule

Let the input and output of the channel be related as in (1), and
let be some additional information, jointly distributed with

, where the Brownian motion is independent of the
pair . Then

(63)

(64)

(65)

(66)

where the first equality is due to the Markov relation
, the rest are information theoretic identities, and we write

for (a regular version of) the conditional distribution of
given at .7 Writing now for

when we want to make the dependence on explicit, and ap-
plying (31) to the integrand in (66) separately for every , yields

7Cf. Section IV-A for the formalities.

(67), shown at the bottom of the page. On the other hand, from
Duncan’s theorem [9, Theorem 3] [recall right equality in (28)],
we have

(68)

Putting (67) and (68) together yields

(69)

Equality (69) could be deduced directly, from purely estimation
theoretic reasoning, by noting that its right hand side is the per-
formance of the optimum causal filter from the perspective of a
genie with access to the side information. It thus provides, when
coupled with (31), an estimation theoretic interpretation of the
chain rule in (66).

H. Application to Minimax Causal Estimation

Suppose that the source is known to belong to a class of
possible sources . The goal is to find the causal filter that
would perform best in the sense of minimizing the worst case
difference between its MSE and the MMSE of the active source.
Mathematically, our interest is in the minimax quantity [see
(70), shown at the bottom of the page] and in the form of the
achiever of the minimum on the right hand side of (70). Under
benign regularity assumptions on , can be
characterized as in (71)–(74), shown at the bottom of the next
page, where:

• is due to the fact that the minimum in (70) is achieved
by a Bayes solution [24], namely, by the optimum filter
under a induced by some prior on

• is an application of (30)
• is due to the “redundancy-capacity” theorem [12], [34],

where we use to denote the mutual information
between and when .

To recap:

(75)

where is the capacity of the channel whose input is
and whose output is the AWGN-corrupted version of

(67)

(70)
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Fig. 2. Relationship between energy, mutual information, and divergence, for
a generally distributed � .

the process . Furthermore, the “strong redundancy-
capacity” results of [30] are directly applicable in this context
and imply that for any and any filter

(76)

for all with the possible exception of sources in a subset
where

(77)

being the capacity-achieving prior, i.e., the one achieving the
maximum in (73). Thus, in particular, is negligible for fami-
lies of sources where is increasing with and

assigns non-negligible mass to all regions of , which is
the case with “natural” families of sources, cf. [30] for a discus-
sion. Evidently, the minimax causal filter in this setting is op-
timal in a sense much stronger than the pessimistic “worst-case”
one which it is optimized for.

III. EXAMPLE: A GAUSSIAN DC SIGNAL

In this section, we compute all the quantities that appear in
Theorem 1, and explicitly verify (27), for the case where is a

DC process with a standard normal amplitude whereas, under ,
its amplitude is also Gaussian but with mismatched expectation
and variance.

To this end, consider first the problem of estimating the scalar
Gaussian variable based on

(78)

where is independent of . The optimal
estimator of based on , under the assumption that

, is

(79)

If is, instead, a standard Gaussian, the mean square error of
the estimator in (79) is readily computed to be given by

(80)

Suppose now that is known to be a Gaussian DC signal,
i.e., , where is a standard Gaussian under and

under . In this case

(81)

so, see (82)–(86), shown at the bottom of the next page, and

(87)

Fig. 3 displays plots of and , for a fixed value
of and , as the mismatched values of and vary.

Integrating (87), see (88)–(91), shown at the bottom of the
next page. The expression in (91) coincides with the one in
(86) evaluated at , which checks with the first equality
of (27). To check the second equality of (27), we note that in
this example is the mutual information between and

, where is standard Gaussian and
and independent of , namely

(92)

(71)

(72)

for some prior on (73)

(74)



4264 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 56, NO. 9, SEPTEMBER 2010

Fig. 3. Plots of ��� (blue) and ��� (red), at � � � � �, for the Gaussian DC signal, as computed in (86) and (87), as the mismatched values of
� and � vary. In the left graph, � � � (the true value) and � is varied between 0 and 4. In the right graph, � � � (the true value) and � is varied between 0
and 2. As is expected, the minima of both curves are attained at the true values (� � � and � � � in the respective plots).

while [see (93) and (94), shown at the bottom of the page]. Thus

(95)

which checks with (86) and (91).

Fig. 4 displays plots of , , and
for this example, for time interval , where,

under , is a Gaussian DC signal with amplitude .
The regions are shaded corresponding to the regions of the
generic Fig. 1, for . Note that the curves of
and in Fig. 4 are monotonically decreasing. As dis-
cussed in Section II-B, this need not be the case in general
and, in fact, need not be the case even in the present setting of
a Gaussian DC signal. Figs. 5 and 6 exhibit these curves for
the case where the amplitude under is , a case for

(82)

(83)

(84)

(85)

(86)

(88)

(89)

(90)

(91)

(93)

(94)
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Fig. 4. Plots of ���, ���, ���, and ��� for the
example of Section III. � is a DC signal with a standard normal amplitude
whereas, under �, the amplitude is distributed as� ��� ��. Here we have taken
� � �. The regions are shaded corresponding to the regions of Fig. 1, for

� �.

Fig. 5. Plots of ��� and ��� for the example of Section III.� is
a DC signal with a standard normal amplitude whereas, under �, the amplitude
is distributed as� ����� ��. Theorem 2 implies that the areas of Region A and
Region B are equal.

which and are increasing at low values of
.

IV. PROOF OF MAIN RESULT

A. Some Notation

If are three random objects taking values in
and defined on a common probability space with a probability
measure , we let etc. denote the probability mea-

Fig. 6. Plots of ��� and ��� for the example of Section III.� is
a DC signal with a standard normal amplitude whereas, under �, the amplitude
is distributed as� �������. As is consistent with the finding in Subsection II-B,
the curve of ��� is above that of ��� for as long as the latter is
increasing. The two curves intersect at the value of � where ��� � �.
The regions are shaded corresponding to the regions of Fig. 1, for � �.

sures induced on , the pair etc. while, e.g., de-
notes a regular version of the conditional distribution of given

. is the distribution on obtained by evaluating that reg-
ular version at . If is another probability measure on the same
measurable space we similarly denote , , etc. As usual,
given two measures on the same measurable space, e.g., and

, define their relative entropy (divergence) by

(96)

when their Radon–Nikodym derivative exists, defining
otherwise. The logarithm in (96) is natural.

Following [6], we further use the notation

(97)

where on the right side is a divergence in the
sense of (96) between the measures and . Similarly,
we sometimes write

(98)

to denote when .
Thus is a random variable while

is its expectation under . With this
notation, the chain rule for relative entropy (cf., e.g., [7,
Subsection D.3]) is

(99)

and is valid regardless of the finiteness of both sides of the equa-
tion. The mutual information between and is defined as

(100)
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where denotes the product measure induced by
and . Similarly, the conditional mutual information between

and , given , is defined as

(101)

In what follows, the roles of will primarily be played
either by random variables and vectors, or by AWGN-corrupted
continuous-time stochastic processes. For this case, the condi-
tioned and unconditioned relative entropy and mutual informa-
tion, as defined above, are particularly well investigated and
understood objects, cf. [8], [20], [23], [33], [39], [40] and refer-
ences therein.

B. Intuition

Recall from Section II-A that, given [16, Theorem 8] and [9,
Theorem 3], it will suffice to prove Theorem 2. The first part of
the theorem, (29), is merely an extension of (11) from estimation
of random variables to estimation of random signals. We estab-
lish this part by extending the finite-dimensional vector version
of (11) to random signals via finite-dimensional approximations
of the latter. In the spirit of other constructions, such as that of
the stochastic integral in [21], we do this by proving the result
first for piecewise-constant processes, and then “lifting” to gen-
eral finite-energy processes via standard limit arguments.

One way to gain some intuition as to why (30) should hold is
to consider first the case where the noise-free signal, under both

and , is a “sample and hold” process on which is
constant (in time, not ) on . In other words,
for , for a random variable of finite second
moment, arbitrarily jointly distributed with . We would then
have (102)–(105), shown at the bottom of the page, where the

last equality is simply the definition of conditional divergence
[recall (97)] and the one preceding it follows by applying what
we have already found in the Introduction to hold for DC pro-
cesses, namely Equality (21), this time on a process in the in-
terval whose amplitude is distributed as while
under the mismatched filter it is distributed as . Com-
bining (105) with the chain rule for relative entropy (99) yields
(106), shown at the bottom of the page, and we obtain (107),
shown at the bottom of the page. It is then plausible to expect
(107), which is essentially equivalent to (30) (it is actually the
derivative of (30) with respect to time ), to hold for general
finite-energy processes since, for small , the latter are well ap-
proximated by the “sample and hold” process. As we elaborate
on in Section IV-D, this intuitive path can be made rigorous and
yield a formal proof of (30) via the “time-incremental” channel
approach of [16]. Our formal proof, to which we now turn, fol-
lows a somewhat different path of piecewise constant process
approximations.

C. Proof of Theorem 2

Vector Version of the D-MSE Relationship: Consider an
-dimensional vector observation

given by

(108)

where is independent of . Suppose
and let denote8 the cumulative mean square error

in estimating the components of based on using the

8The superscript “vec”, which stands for “vector”, is added to distinguish
between this notation and the one already defined and used for continuous-time
estimation.

(102)

(103)

(104)

(105)

(106)

(107)
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estimator that would have been mean-square optimal if
. Assume that both and have finite second moments. With

standing for , we have:

Lemma 1:

(109)

where stands for the distribution of the -di-
mensional random vector obtained by sampling from and then
corrupting its components by an independent vector distributed

.
Lemma 1 is nothing but the multivariate version of the

“D-MSE” formula

(110)

which is (14) in [37]. That (110) carries over to the vector case
to yield Lemma 1 was mentioned in [37]. For completeness, in
the Appendix we provide a proof of Lemma 1, relying on its
scalar version (110).

The Gist: Piecewise-Constant Processes: This subsection is
dedicated to the main part of the proof, which is to establish
(29) and (30) under the assumption that is piecewise con-
stant both under and under . Thus, throughout this sub-
section, assume existence of and a random vector

such that

for all and (111)

We use and to denote either the measures governing the
continuous-time piecewise-constant signal satisfying (111),
or those governing the -dimensional random vector , the
distinction being clear from the context. Let

(112)

where , independent of . Letting
and denote the distribution of in (112) when, respec-
tively, and , we have for any

(113)

(114)

(115)

(116)

where:
• Equality is due to the invariance of relative entropy to

scaling (of both arguments by the same factor).
• In (115), and

denote the laws of
, when is distributed

under and , respectively, is given in
(111), and is related to via the channel
in (1) with . Equality follows upon
noting that and

when .

• Equality is due to the fact that is constant on the
intervals , and thus
are sufficient statistics for (under both and ).

On the other hand, by (111), for any

(117)

Consequently, we have (118)–(121), shown at the bottom of the
page, where the first equality is an integration over (117), the
third equality is an application of (109), and the last equality
follows from (116). We have thus proven (29).

We now progress to the proof of (30). To this end, consider
first the case where is a DC signal, i.e.,

(122)

for a random variable , whereas the mismatched filter
assumes . Define

(123)

(118)

(119)

(120)

(121)
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where we recall from the Introduction that and
denote and of (4) and

(6) for the case where is the DC signal in (122). Thus,
is the price of mismatch in causal estimation

of the DC signal for duration using a filter that assumes
the amplitude is distributed according to when it is actually
distributed according to . We recall from (21) that

(124)

Returning now to the generality of as in (111),
consider (125)–(138), shown at the bottom of the page,
where:

• follows from a switch between time-integration and
expectation, justified in the standard way due to the fact
that the integrand is in .

• is immediate from the definition of [recall (123)].
• follows from the relationship in (124). Note that the

divergence inside the expectation in (133) is of the form
(98), namely it is between the two random measures

and ,

the expectation is then over the randomness in
(distributed according to ).

(125)

(126)

(127)

(128)

(129)

(130)

(131)

(132)

(133)

(134)

(135)

(136)

(137)

(138)
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• is simply a rewriting of the expectation in using the
notation introduced in (97).

• follows similarly as in (116) due to the piecewise
constancy of on the intervals .

• follows since, by construction of and in
(112), for

and

(139)

• follows from the chain rule for relative entropy.
• follows from (116),

proving (30). To recap, we have proven (29) and (30) for arbi-
trary processes of the form displayed in (111).9

Passing to the Limit: For general and of finite average
power, consider the induced stepwise process defined by

for

(140)
The finite energy assumption implies that the integral

exists and is finite and almost
surely, and is also both in and in . Thus, in
particular, is a finite average power process under both

and . Let and be the measures governing
when is distributed under and , respectively. Note
that the process is of the form displayed in (111) (with

), for which we have already proven (29) and (30).
It thus remains only to establish continuity of the functionals

, and , at fixed

, in the sense that, when evaluated at
instead of , they converge to their values on the latter as

.10

To that end, note first that and being of finite average
power guarantees

and in (141)

For any two measures of finite average power, the in-
duced measures are absolutely continuous with re-
spect to one another (cf., e.g., [27]). Thus, in particular, the

Radon–Nykodim derivatives and all exist. Further-

more, due to (121), they satisfy (cf., e.g., [20])

(142)

9This actually proves (29) and (30) for arbitrary stepwise processes (a.k.a.
simple processes [21]), with constancy intervals not necessarily of equal lengths.
The extension to the latter is elementary but not necessary for what follows.

10We also need continuity in this same sense to hold for �����
and � �, but that would follow as a special case of the continuity of

����� and � �.

From reasoning similar to that leading to [9, Equation (20)], we
obtain also

(143)

Consequently

(144)

(145)

(146)

(147)

where (146) is due to the convergence (142), coupled with

the uniform integrability of implied by (143).

As for the functional , (141) guarantees that
converges to in

. Coupled with the existence and boundedness

of the Radon–Nykodim derivative , this implies that

converges to
also in , in turn implying the convergence of

(with true source ) to (with
true source ). The convergence to of
follows a similar line of reasoning implying, by the arbi-
trariness of and the bounded convergence theorem, that

(with true source ) converges to
(with true source ).

D. Alternative Proof Routes and an Extension

Proof Alternatives: The route we have taken in the proof
above is to establish the result for stepwise processes, and then
infer the validity for general processes via the denseness of step-
wise processes in the space of finite energy processes, coupled
with standard continuity arguments. An alternative of a similar
spirit would have been to prove the result for processes express-
ible as finite sums of orthonormal functions (with random co-
efficients), and then pass to the limit for arbitrary finite-energy
processes.

A route to proving (30) of a different spirit is to make
direct use of the Girsanov theorem [4], [14]. Denoting

and , we note that
the innovations processes

(148)

and

(149)
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are standard Brownian motions, respectively, under and .
Applying the Girsanov theorem under and under gives,
respectively

(150)

and

(151)

where denotes the Wiener measure on . Thus, we obtain
(152)–(160), shown at the bottom of the page, where:

• follows from substituting from (150) and (151).
• follows since, by (148), .
• follows since is a standard Brownian motion under

(with respect to which the expectation is taken).
• follows since, by the orthogonality property

(161)

Note that this constitutes a direct proof of (30) that does not rely
on (11). Further, as discussed in Section II-A, when specialized
to DC processes (30) yields (11) and so the proof just given
yields, as a very special case, an independent proof of (11) (and
thus of the main result of [37]).

Yet another alternative to a proof of Theorem 2 is to use the
SNR- and time-incremental channel ideas of [16]. Specifically,
for establishing (29), a line of attack analogous to that in [16,
Subsection III-C] can be taken by considering the SNR-incre-
mental channel

(162)

(163)

where and are independent standard Brownian
motions, jointly independent of . If and are chosen
so that the SNRs of the first channel and the composite channel
are and , then

(164)

where is a standard Brownian motion independent
of and . This now motivates characterizing the
low-SNR asymptotics, analogously as in [16, Lemma 5], to
obtain

(165)

One way of establishing equality (165) that does not pass
through simple process approximations is by considering the
Karhunen-Loève expansion of (with respect to ), getting
arbitrarily precise finite-dimensional approximations of the

(152)

(153)

(154)

(155)

(156)

(157)

(158)

(159)

(160)
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integrals in (165) in the “transform domain”, and invoking
the differential version of Lemma 1, namely (A.3), at .
Equipped with (165), one can now apply it to the Gaussian
channel (164), conditioned on , to obtain (166) and (167),
shown at the bottom of the page. On the other hand

(168)

where the first equality follows from the chain rule for diver-
gence and the second because, as is clear from (163), the con-
ditional distribution of given does not depend on the
distribution of , so . Putting (167) and
(168) together yields

(169)

establishing (the differential version of) (29).
For establishing (30) via the time-incremental channel

approach of [16], one needs to characterize the behavior
of as . To this end,
the “time-SNR” transform of [16, Subection III-D] can be
performed to convert the channel of infinitesimal duration

(in the interval ) to a channel of duration
and infinitesimal SNR. Applying (165) on the latter and
“transforming back” yields (170), shown at the bottom of
the page. By the chain rule, the left side of (170) equals

and thus (170) can
equivalently be stated as (171), shown at the bottom of the

page, which is nothing but the derivative of Equality (30) with
respect to time.

The Presence of Feedback: An examination of our proof
of (30) reveals that it carries over to accommodate the pres-
ence of feedback. Specifically, suppose that and still
satisfy the input-output relationship (1), but that, under ,
evolves according to , where is an
additional source of randomness, independent of the noise .
Under , may evolve according to .
When considering the piecewise constant approximations
of and that, as in (111), are constant on the intervals

, assuming that is large enough that ,
the induced discrete-time channel is again an AWGN channel
similarly as in (112), but with feedback allowed. In other
words, instead of a distribution on , and , combined
with the channel, now induce a set of conditional distributions

and , with a
conditional independence structure ,
and satisfying
and . It is
readily checked that the relationship

carries over to this case (by verifying that
the few steps leading to (116) carry over), along with all the
equalities in the chain of equalities leading to (138).

On the other hand, letting denote the directed
information between and , as defined in [22], under the
channel in (1) when is evolving according to , Theorem 2
of [22] (cf. also [18], [19]) gives

(172)

which, when combined with (30), yields

(173)
Equality (173) can be considered an extension of Duncan’s the-
orem [9] that accommodates both mismatch and the presence of
feedback.

(166)

(167)

(170)

(171)
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As for (29), it does not carry over to the presence of feed-
back, since neither does its finite dimensional origin: Lemma 1
fails to hold in the generality of “feedback distributions” of the
form and , as is easily
seen already for the case . Consequently, neither of the
equalities in (27) carry over to the presence of feedback which,
as pointed out in [16, Subsection V-B], is already the case in the
nonmismatched setting.

APPENDIX

PROOF OF LEMMA 1

Let us introduce the notation to denote the inte-
grand in (110), i.e.,

(A.1)

thus making the dependence also on explicit. Note that by dif-
ferentiating both sides of (110) with respect to we obtain
the differential version

(A.2)
It will suffice to prove

(A.3)

from which (109) would follow since

(A.4)

To this end, for , let

(A.5)
where denotes the diagonal matrix whose th diagonal

term is . Let and denote distributions under an
-dimensional vector observation given by

(A.6)

where is independent of , which is dis-
tributed, respectively, as and . Using the notation

, we note that

(A.7)

(A.8)

where the first equality is immediate from the definition of ,
and , and the second equality follows from the chain

rule for relative entropy. Consider now (A.9)–(A.14), shown at
the bottom of the page, where:

• follows from (A.8) upon noting that and
do not depend on and, hence, neither does the first term
in (A.8).

• follows from the definitions of and

which imply that and

, and from the fact that

does not depend on .
• is an application of (A.2).
• follows from the definition of [recall

(A.1)].
Thus

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

where the equality before last follows by substituting (A.14) for
each of the summands in (A.17). This proves (A.3).

(A.9)

(A.10)

(A.11)

(A.12)

(A.13)

(A.14)
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