
MARCUSBRIAN: “CHAP04” — 2011/1/18 — 11:28 — PAGE 117 — #1

4

Bounds on the entropy rate of binary hidden
Markov processes

erik ordentlich
Hewlett-Packard Laboratories, 1501 Page Mill Rd., MS 1181,

Palo Atto, CA 94304, USA
E-mail address: erik.ordentlich@hp.com

tsachy weissman
Information Systems Laboratory, Department of Electrical Engineering,

Stanford University, Packard 256, Stanford, CA 94305, USA
E-mail address: tsachy@stanford.edu

Abstract. Let {Xi} be a stationary finite-alphabet Markov chain and {Zi} denote
its noisy version when corrupted by a discrete memoryless channel. Let P(Xi ∈
·|Zi

−∞) denote the conditional distribution of Xi given all past and present noisy
observations, a simplex-valued random variable. We present an approach to
bounding the entropy rate of {Zi} by approximating the distribution of this
simplex-valued random variable. This approximation is facilitated by the con-
struction and study of aMarkov process whose stationary distribution determines
the distribution of P(Xi ∈ ·|Zi

−∞), while being more tractable than the lat-
ter. The bounds are particularly meaningful in situations where the support of
P(Xi ∈·|Zi

−∞) is significantly smaller than the whole simplex. To illustrate its effi-
cacy, we specialize this approach to the case of a BSC-corrupted binary Markov
chain. The bounds obtained are sufficiently tight to characterize the behavior of
the entropy rate in asymptotic regimes that exhibit a “concentration of the sup-
port”. Examples include the “high SNR”, “low SNR”, “rare spikes”, and “weak
dependence” regimes. Our analysis also gives rise to a deterministic algorithm for
approximating the entropy rate, achieving the best known precision–complexity
tradeoff for certain subsets of the process parameter space.

1 Introduction

1.1 The problem

Let {Xi} be a stationary Markov chain and {Zi} denote its noisy version when
corrupted by a discrete memoryless channel (DMC). The components of these
processes take values, respectively, in the finite alphabets X and Z . We let K
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denote the transition kernel of the Markov chain, i.e., the |X |×|X | matrix with
entries

K(x,x′)=P(Xi+1 = x′|Xi = x). (1)

Let C denote the channel transitionmatrix, i.e., the |X |×|Z|matrix with entries

C(x,z)=P(Zi = z|Xi = x). (2)

The process {Zi} is known as a hidden Markov process (HMP). Its distribution
and, a fortiori, its entropy rate which we denote byH (Z), are completely deter-
mined by the pair (K,C). However, the explicit form of H (Z) as a function of
this pair is unknown, and is our interest in this work.

1.2 Motivation

Hidden Markov processes (HMPs) arise naturally in many contexts, both as
information sources and as noise (cf. [9] and references therein). Their entropy
rate naturally arises in data compression and communications:

• Lossless compression: how many bits per source symbol are required to
losslessly encode an HMP?

• Lossy compression: assume that X = Z and that addition and subtraction
of elements in this alphabet are well-defined. Assume further that the DMC
relating {Xi} to {Zi} is an additive noise channel with a distribution which
is maximum entropy [5, Chapter 12] with respect to the per-letter additive
distortion criterion d(x,y)=ρ(x−y) for some nonnegative, real-valued func-
tion ρ. For example, if the DMC is symmetric, leaving the input symbol
unchanged with a certain probability p>1/|X |, and flipping equiprobably to
each of the remaining symbols, the corresponding distortionmeasure is Ham-
ming loss. For this setting, the rate distortion function satisfies the Shannon
lower bound [14, 13, 2, 34, 35], so is explicitly given by

R(D)=H (Z)−φ(D), (3)

where φ(D) is the “single-letter” maximum-entropy function defined by

φ(D)=max{H (X ) :Eρ(X )≤D},

with ρ as above and the maximum being over allX -valued random variables
X . Since φ(D) is readily obtainable in closed form, evaluation of the rate
distortion function for the HMP reduces, by (3), to evaluation of its entropy
rate.
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• Channel coding: consider an additive noise channel of the form

Yi =Ui +Zi, (4)

where {Ui} is the transmitted channel input, {Yi} is the received channel
output, the noise process {Zi} is the above-described HMP, and all process
components are |Z|-valued, with addition in (4) being in the finite-field mod-
|Z| sense. For example, in the binary case this is the “Gilbert–Elliot” or
“burst-noise” channel [10, 8, 25]. It is easy to show that the capacity of the
channel in (4), for the case of no input constraints, is achieved by an i.i.d.
uniform distribution on the input, implying that its capacity is given by

C = log2 |Z|−H (Z). (5)

Evidently, key questions in lossless compression, lossy compression (3), and
channel coding (5) reduce to finding the entropy rate H (Z).

1.3 On the hardness of determining H (Z)

LetM(X ) denote the simplex of distributions onX andβi be theM(X )-valued
random variable defined by

βi(x)=P(Xi = x|Zi
−∞),

where βi(x) denotes the xth component of βi. We denote this by

βi =P(Xi ∈ ·|Zi
−∞).

We refer to {βi} as the “belief process”, as it represents the “belief” of an
observer of the HMP regarding the value of the underlying state. Conditional
independence of Xi+1 and Zi−∞ given Xi implies that P(Xi+1 ∈ ·|Zi−∞)=βi ·K,
in turn implying, by the memorylessness of the noise, that

P(Zi+1 ∈ ·|Zi
−∞)=βi ·K ·C, (6)

where K and C are, respectively, the Markov and channel transition matrices
defined in (1) and (2) (viewing elements of M(X ) as row vectors). WithH (Q)

denoting the entropy of a distribution Q on Z ,

H (Q)=
∑
z∈Z

Q(z) log2
1

Q(z)
,
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we obtain

H (Z)=H (Zi+1|Zi
−∞)=EH

(
P(Zi+1 ∈ ·|Zi

−∞)
)=EH (βi ·K ·C) . (7)

Evidently, the distribution of βi holds the key to the value of the entropy rate.
This distribution, however, shown by Blackwell in [4] (cf. also [29, Claim 1])
to satisfy an integral equation, remains elusive to date even for the simplest
HMPs.

Another perspective bywhich the hardness of the problem can be appreciated
is that developed in [21, 20] of Lyapunov exponents. Standard recursion for
HMPs yields [9]

P(Zn = zn)=µT
s

[
n∏

i=1

[K�C(·,zi)T
]]

1,

where µs is the stationary distribution of the underlying Markov chain (repre-
sented as a column vector), K�C(·,zi)T denotes the |X |× |X | matrix whose
xth row is given by the componentwise multiplication of the xth row ofK by the
row vector whose x′th component is C(x′,zi), and 1 denotes the “all-ones” col-
umn vector. The Shannon–McMillan–Breiman theorem [5] implies then that,
with probability one,

H (Z) = lim
n→∞−1

n
log2µT

s

[
n∏

i=1

[
K �C(·,Zi)T

]]
1

= lim
n→∞−1

n
log2

∥∥∥∥∥
n∏

i=1

[
K �C(·,Zi)T

]∥∥∥∥∥ , (8)

where ‖·‖ denotes anymatrix norm. In other words, up to sign,H (Z) is the (top)
Lyapunov exponent (cf., e.g., [30]) associated with the square-matrix-valued
process {K �C(·,Zi)T}i≥1. Characterization of the Lyapunov exponent is an
open question, even in the simplest cases of finite-valued i.i.d. matrices [30, 1].
In our case, {K �C(·,Zi)T}i≥1 is not even a Markov process.

Yet another perspective on the problem is that of statistical physics. For
simplicity, consider the HMP given by a binary symmetric channel (BSC) cor-
rupted symmetric binary Markov source. The distribution of Zn can be put in
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the form [36, 24]

P(Zn) =
∑
xn

P(xn)P(Zn|xn)=
∑
xn

P(x1)
n−1∏
i=1

K(xi,xi+1)

n∏
i=1

C(xi,Zi)

= c1c
n
2

∑
τn

exp

(
J

n−1∑
i=1

τiτi+1 +K
n∑

i=1

τiσi

)
, (9)

where the last equality is obtained by a change of variables τi = (−1)Xi and
σi = (−1)Zi , and c1,c2,J ,K are explicit functions of the process parameters.
Characterization of the entropy rate reduces then to that of the limit, in n, of

1

n
E log2

∑
τn

exp

(
J

n−1∑
i=1

τiτi+1 +K
n∑

i=1

τiσi

)
, (10)

which is the expected density of the logarithm of the partition function
associated with the Gibbs measure for (random) energy levels E(τ n) =
−∑n−1

i=1 τiτi+1 −K/J
∑n

i=1 τiσi at temperature 1/J . The asymptotic value, for
large n, of this expected density is an open problem in statistical physics even
for the case where the energy levels are i.i.d. [33].

1.4 Existing results

Given the hardness of the problem, the predominant approach to the study of
the entropy rate, until relatively recently, has been one of approximation (cf.
[25, 21, 7] and references therein). Indeed, what we refer to as the “Cover and
Thomas” bounds

H (Z0|Z−1
−n ,X−n−1)≤H (Z)≤H (Z0|Z−1

−n ) (11)

hold for every n, becoming arbitrarily tight with increasing n [5, Section 4.5].
We shall discuss these bounds in more detail in Section 5, where we sug-
gest an alternative deterministic scheme for approximating the entropy rate.
Another approach for approximating the entropy rate is via (8), which implies
that simulating the HMP and evaluating − 1

n log2
∥∥∏n

i=1

[
K �C(·,Zi)T

]∥∥ gives
an estimate, which, for large n, becomes arbitrarily precise with probability
arbitrarily close to one (cf. [21] and references therein).

Useful as these techniques may be from a numerical standpoint, they lack
the capacity to resolve basic questions regarding the dependence of the entropy
rate on the Markov transition kernel and the channel parameters. First steps
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towards the resolution of such questions were taken in [21], where continuity
of the entropy rate in the parameters was established. Significant progress in
this direction was made by Han and Marcus in a recent series of papers [15,
16, 17, 18], which not only established smoothness, but also characterized
conditions for differentiability and analyticity of the entropy rate in the transition
parameters.

Expansions of the entropy rate for the BSC-corrupted binary Markov chain
in the “high SNR” regime, where the channel cross-over probability is small,
have been obtained initially in [22, 29, 36, 27]. Initial results on the behavior
in various additional asymptotic regimes such as “rare spikes”, “rare bursts”,
“low SNR”, and “almost memoryless” were obtained in [29]. We expand on
and strengthen this line of results in subsequent sections by incorporating into
the approach of [29] finer properties of the distribution of the belief process βi,
as summarized in the next subsection. More recent refinements and extensions
were obtained in [15, 16, 17].

1.5 Our approach

An immediate consequence of (7) is

Observation 4.1.

min
β∈S

H (β ·K ·C)≤H (Z)≤max
β∈S

H (β ·K ·C) ,

where S denotes the support of βi.

Trivial as this observation may seem, it was shown in [29] to lead to useful
bounds in cases where bounds on the support set S are obtainable, and these
bounds are significantly smaller than the whole simplex M(X ).

The bounds of Observation (4.1), which depend on the distribution of βi

through its support only, can be refined by covering S using several disjoint
sets and considering also the probabilities of these sets.

Observation 4.2. For any countable collection {Ik} of pairwise-disjoint sets
Ik ⊆M(X ) covering S (i.e., for which S ⊆⋃k Ik ),∑

k

P(βi ∈ Ik) inf
β∈Ik

H (β ·K ·C)≤H (Z)≤
∑
k

P(βi ∈ Ik) sup
β∈Ik

H (β ·K ·C) . (12)

Since the distribution of βi is unknown, P(βi ∈ Ik)will also be unknown in gen-
eral. However, for certain choices of {Ik}, and in certain regions of the space
of parameters governing the HMP, the bounds in (12) can be either explicitly
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evaluated or closely bounded. This is done by constructing a Markov process
which is more tractable than the {βi} process. The stationary distribution of
this process is directly and simply related to the distribution of βi. The fraction
of times that the process visits the set Ik , for appropriately chosen Ik , is com-
putable, a computation that can then be directly translated to give the value of
P(βi ∈ Ik).

For concreteness and simplicity in illustrating the idea, we concentrate on the
casewhere {Zi} is aBSC-corrupted binaryMarkov chain. In this context, the two
new ingredients of our approach relative to [29] involve covering the support
of the belief process by multiple disjoint intervals Ik (as opposed to only two
intervals in [29]) and the construction of an alternative, more tractable, Markov
process as a tool for analyzing the probabilities P(βi ∈ Ik) of the belief process
falling into these intervals. The incorporation of these finer properties of βi

is shown to lead to tighter characterizations of H (Z), in various asymptotic
regimes, than were obtained in [29]. The alternative Markov process is also
leveraged to obtain and analyze the aforementioned deterministic algorithm for
numerically approximating H (Z). Several of the above results have appeared
in preliminary form in our previous conference papers [27, 28].

We remark that while our approach is based, in part, on finite coverings of
the support S of the belief process, little is known about S, as a whole, beyond
the observations in [4]. It is shown therein, via examples, that S, in general, can
be a finite set, a countable set, or an uncountable set with Lebesgue measure 0
(in a strong sense made precise in [4]). It is in fact conjectured in [4] that if the
distribution of βi is continuous (e.g., no point masses), it will be singular with
respect to Lebesgue measure (again, in a strong sense made precise in [4]).

1.6 Remaining content

In Section 2, we start with a concrete description of the problem setting, and
the evolution of the log-likelihood process (equivalent to the belief process but
in a more convenient form) for the case of the BSC-corrupted Markov chain.
We then detail the construction of an alternative Markov process, and its rela-
tionship to the original log-likelihood (and, therefore, belief) process. Section 3
focuses on the case of a symmetric Markov chain, and details the form the
bounds in (12) assume for this case, in terms of the alternative Markov pro-
cess. Using these bounds, we then derive the behavior of the entropy rate in
various asymptotic regimes. Section 4 follows a similar development for the
case where the underlying binary Markov chain is not necessarily symmetric.
In Section 5 we describe a deterministic algorithm, inspired by the alternative
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Markov process, for approximating the entropy rate. We show that its guaran-
teed precision–complexity tradeoff is the best among all known deterministic
schemes for approximation of the entropy rate, for certain subsets of the param-
eter space. This algorithmwas preliminarily presented in [28] for the symmetric
Markov chain case. More recently, a similar approach was taken in [23], again
for the symmetric Markov chain case, but the details of the resulting algorithm
and its analysis are different. Section 6 contains a summary of the paper, along
with a discussion of some related directions.

2 The BSC-corrupted Binary Markov Chain

2.1 Setup and some notation

Assume henceforth the caseX =Z ={0,1}, where theMarkov transitionmatrix
and the channel matrix are, respectively,

K =
(
1−π01 π01

π10 1−π10

)
, C =

(
1−δ δ

δ 1−δ

)
. (13)

Without loss of generality, we assume that δ ≤ 1/2 and π01 ≤ π10. To avoid
trivialities, we also assume below that

1. π01 +π10 �=1 (otherwise the state process is i.i.d.).
2. Either π01 ∈ (0,1) or π10 ∈ (0,1) (otherwise the state process is essentially

(up to its initial state) deterministic and H (Z)=hb(δ)).

For positive-valued functions f and g, f (ε)∼g(ε) will stand for limε↓0 f (ε)
g(ε)

=1

and f (ε)
∼
< g(ε) will stand for limsupε↓0

f (ε)
g(ε)

≤ 1. f (ε) = O(g(ε)) will stand

for limsupε↓0
f (ε)
g(ε)

< ∞ and f (ε) = �(g(ε)) will stand for lim inf ε↓0 f (ε)
g(ε)

> 0.
f (ε) � g(ε) will stand for the statement that both f (ε) =O(g(ε)) and f (ε) =
�(g(ε)) hold. If R is a random variable, L(R) will denote its law. Similarly,
if A is an event, L(R|A) will denote the law of R conditioned on A. Also, for
R,S random variables and 0≤α ≤1, αL(R)+(1−α)L(S) will denote the law
of BR+ (1−B)S, for B ∼ Bernoulli(α) that is independent of R and S. We
extend this interpretation to the combination of more than two laws, namely to∑

i αiL(Ri) for αi ≥ 0 summing to 1 and Ri random variables, in the obvious
way. Throughout the article, log2 and log will denote the base-2 and natural
logarithms, respectively, and all entropies and entropy rates are expressed in
bits (underlying log2).
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2.2 Evolution of the log-likelihood

The standard forward recursions [9] are readily shown (cf., e.g., [29]) to assume
the form

βi(0)

1−βi(0)
=
[
1−δ

δ

]1−2Zi

g

(
βi−1(0)

1−βi−1(0)

)
, (14)

where

g(x)= x(1−π01)+π10

xπ01 +(1−π10)
. (15)

Equivalently, this can be expressed as

li = (2Zi −1) log

[
1−δ

δ

]
+ f (li−1) , (16)

where li = log βi(1)
1−βi(1)

and

f (x)= log
π01 +ex(1−π10)

(1−π01)+exπ10
. (17)

It follows from (7) that, in terms of the log-likelihood process, the entropy rate
is given by

H (Z) = Ehb ([βi(1)(1−π10)+(1−βi(1))π01]∗δ)

= Ehb

([
eli

1+eli
(1−π10)+ 1

1+eli
π01

]
∗δ

)
, (18)

where ∗ denotes binary convolution defined by p∗q= (1−p)q+(1−q)p and

hb(x)= −x log2 x−(1−x) log2(1−x)

is the binary entropy function.
In the sequel, we shall make use of the following properties of the function

f in (17). First, note that

f ′(x)= ex(1−π01 −π10)

(1−π01)π01 +e2x(1−π10)π10 +ex(1−π01 −π10 +2π01π10)
, (19)

which has the sign of the numerator, so f is either strictly increasing or
strictly decreasing according to whether π01+π10<1 or π01+π10>1.Another
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important property of f is its contractiveness. To be sure, note that

sup
x

|f ′(x)| = |1−π01 −π10|
miny>0

[
(1−π01)π01y−1+(1−π10)π10y+(1−π01−π10+2π01π10)

]
= |1−π01 −π10|

2
√

(1−π01)π01(1−π10)π10 +(1−π01 −π10 +2π01π10)

�= c(π01,π10), (20)

where for the second equality we have used the elementary fact that for
nonnegative a,b,c

min
y>0

[
ay−1 +by+c

]=2
√
ab+c.

This implies that f is contractive since c(π01,π10) < 1 (the denominator is
obviously greater than the numerator if π01+π10 <1 and is invariant under the
transformation (π01,π10)→ (1−π01,1−π10)).

When specialized to the symmetric case π10 = π01 = π , we obtain the
evolution

li = (2Zi −1) log

[
1−δ

δ

]
+ f (li−1) , (21)

where f (x)= log ex(1−π)+π

exπ+(1−π)
. Specializing (18) for this case gives

H (Z)=Ehb

(
eli

1+eli
∗π ∗δ

)
. (22)

In this symmetric case, (20) becomes

sup
x

|f ′(x)| = 1−2π . (23)

Thus, as discussed in the introduction, the distribution of βi (or, equivalently,
of li) is key to the evaluation of the entropy rate. Although {βi} was shown to
be a Markov process by Blackwell [4], its analysis turns out to be quite elusive.
In what follows, we construct another, more tractable, Markov process, whose
stationary distribution is closely related to (and determines) the distribution
of βi.

2.3 An alternative Markov process

In this subsection, we construct a Markov process, which, as a process, is more
tractable than the log-likelihood process {li}, butwhose stationary distribution is
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closely and simply related to that of li. The benefit is that the entropy rate, which
was expressed as the expectation in (18), or (22) in the symmetric case, will be
expressible as a similar expectation involving the new process. Our alternative
process is closely related to the joint state/belief process (Xi,βi) studied in [11]
and [32]. The former reference derived conditions for the geometric ergodicity
(exponential convergence to the stationary distribution) of the joint process and
the latter reference applied these conditions to give a simple proof of Birch’s
result [3] on the exponential decay (in n) of the difference between the upper
and lower bounds on the entropy rate in (11) above.

2.3.1 The symmetric case
To illustrate the idea behind the construction of the alternative Markov process
in its simplest form,we startwith the symmetric casewhereπ10=π01=π <1/2.
There is no loss of generality in assuming that π < 1/2 since the argument in
[29, Subsection 4-C] implies that the entropy rate when the Markov chain is
symmetric with transition probability 1−π is the same as when it is π .

Theorem 4.3. Consider the first-order Markov process {Yi}i≥0 formed by
letting Y0 =Y and {Yi}i≥1 evolve according to

Yi = ri log
1−δ

δ
+sif (Yi−1), (24)

where {ri} and {si} are independent i.i.d. sequences, independent of Y , with

ri =
{−1 w.p. δ,

1 w.p. 1−δ,
si =

{−1 w.p. π ,
1 w.p. 1−π .

(25)

In this theorem, “w.p.” stands for “with probability”.

1. [ThenExistence and uniqueness of the stationary distribution:]There exists a
unique (in distribution) random variable Y underwhich {Yi}i≥0 is stationary.

2. [Connection to the original process] L(Y )=L(li|Xi =1).

Proof. It is evident from (24) and (25) that a distribution on Y is a stationary
distribution for the process {Yi} if and only if it satisfies

L(Y ) = πδ ·L
(

− log
1−δ

δ
− f (Y )

)
+(1−π)δ ·L

(
− log

1−δ

δ
+ f (Y )

)

+π(1−δ) ·L
(
log

1−δ

δ
− f (Y )

)
+(1−π)(1−δ)

·L
(
log

1−δ

δ
+ f (Y )

)
. (26)
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To prove uniqueness, assume first that there exists a distribution on Y satisfying
(26), and let {Ỹi} denote the stationary process evolving according to (24),
initiated at time 0with an arbitrary stationary distribution (and arbitrarily jointly
distributed with Y ). Then, due to (23),

|Ỹi −Yi| = |f (Ỹi−1)− f (Yi−1)| ≤ (1−2π)|Ỹi−1 −Yi−1|,

so
|Ỹi −Yi| ≤ (1−2π)i|Ỹ0 −Y1|

and, in particular,
|Ỹi −Yi| −→0

as i → ∞ (for all sample paths). This implies, when combined with the sta-

tionarity of both processes, that Ỹ0
d= Y0. To prove existence, as well as the

second assertion of the theorem, it will suffice to establish the fact that taking
L(Y )=L(li|Xi =1) satisfies (26). To see this, note first that for all α ∈R,

P(f (li−1)≤α|Xi =1) =
∑
j

P( f (li−1)≤α,Xi−1 = j|Xi =1)

=
∑
j

P(Xi−1 = j|Xi =1)P( f (li−1)≤α|Xi−1 = j)

= πP(f (li−1)≤α|Xi−1 =0)+(1−π)P( f (li−1)

≤ α|Xi−1 =1)

= πP( f (−li−1)≤α|Xi−1 =1)+(1−π)P( f (li−1)

≤ α|Xi−1 =1),

the last equality following since, by symmetry, L(li−1|Xi−1 = 0) =
L(−li−1|Xi−1 =1). The strict increasing monotonicity of f (·) implies then that

L(li−1|Xi =1)=πL(−li|Xi =1)+(1−π)L(li|Xi =1). (27)

Now, conditioned on the event Xi =1, the two summands on the right-hand side
of (16) are independent, with the first being distributed as

(2Zi −1) log

[
1−δ

δ

]
=
{

log 1−δ
δ

w.p. 1−δ,
− log 1−δ

δ
w.p. δ.

(28)

Combined with (27), this implies that the distribution L(li|Xi = 1) satisfies
(26). �
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Henceforth, when referring to the process defined in Theorem 4.3, we assume
that it was initiated by the stationary distribution.

Corollary 4.4. For the process constructed in Theorem 4.3,

H (Z)=Ehb

(
eYi

1+eYi
∗π ∗δ

)
. (29)

Proof. We have

H (Z) = 1

2
E

[
hb

(
eli

1+eli
∗π ∗δ

)
|Xi =1

]
+ 1

2
E

[
hb

(
eli

1+eli
∗π ∗δ

)
|Xi =0

]

= Ehb

(
eYi

1+eYi
∗π ∗δ

)
, (30)

the first equality following from (22) and the second from the second item
of Theorem 4.3 and the facts that L(li|Xi = 1) = L(−li|Xi = 0) and that

hb
(

ey

1+ey ∗π ∗δ
)

=hb
(
1
2 − ey

1+ey ∗π ∗δ
)

=hb
(

e−y

1+e−y ∗π ∗δ
)
for all y. �

The bottom line is that we have transformed the calculation of the entropy
rate into an expectation of a simple function of the variable Yi. It will be seen
that the benefit in doing so is that information on the distribution of Yi, which
translates via Corollary 4.4 to bounds on the entropy rate, can be inferred by
studying the dynamics of the process {Yi}.

2.3.2 The non-symmetric case
In the symmetric case, it sufficed to construct one process with real-valued
componentswhose stationary distribution isL(li|Xi =1), since this immediately
conveyed also L(li|Xi = 0) as, by symmetry, L(li|Xi = 1) = L(−li|Xi = 0). In
the nonsymmetric case, we have the following theorem.

Theorem 4.5. Define {(Yi,Ui)}i≥0, a Markov process with state space R
2, by

letting (Y0,U0)= (Y ,U ) and, for i≥1,

Yi = ri log
1−δ

δ
+sif (Ui−1)+(1−si)f (Yi−1) (31)

and

Ui =qi log
1−δ

δ
+(1− ti)f (Ui−1)+ tif (Yi−1), (32)

where {qi}, {ri}, {si}, {ti}are independent i.i.d. sequences, independent of (Y ,U ),
with

qi =
{

1 w.p. δ,
−1w.p. 1−δ,

ri =
{−1 w.p. δ,

1 w.p. 1−δ,
(33)



MARCUSBRIAN: “CHAP04” — 2011/1/18 — 11:28 — PAGE 130 — #14

130 E. Ordentlich & T. Weissman

and si ∼Bernoulli(π10), ti ∼Bernoulli(π01). Then

1. [Existence of amarginally stationary distribution] There exists a distribution
on the pair (Y ,U ) under which {(Yi,Ui)}i≥0 is marginally stationary in the
sense that, for all i≥0, L(Yi)=L(Y ) and L(Ui)=L(U ).

2. [Uniqueness of marginals and connection to the original process] Any
distribution on (Y ,U ) giving rise to a process which is marginally sta-
tionary in the sense of the previous item satisfies L(Y ) = L(li|Xi = 1) and
L(U )=L(li|Xi =0).

Remark. We will refer to a distribution on (Y ,U ) that gives rise to a process
{(Yi,Ui)} which is marginally stationary in the above sense as a “marginally
stationary distribution”. It is evident from the evolution equations (31) and (32)
that L(Yi) and L(Ui) depend on L(Yi−1,Ui−1) only through the marginal dis-
tributions L(Yi−1) and L(Ui−1). Thus, if a distribution on the pair (Y ,U ) gives
rise to amarginally stationary process, then any other distribution with the same
marginal distributions of U and Y has the same property. Conversely, the sec-
ond item of the theorem implies that all distributions on (Y ,U ) giving rise to
a marginally stationary process will share the same marginals, which, respec-
tively, are given by L(li|Xi = 1) and L(li|Xi = 0). In particular, the marginal
stationary distributions are unique.

Proof of Theorem 4.5. Conditioned on the event Xi =1, the two summands on
the right-hand side of (16) are independent with

(2Zi −1) log

[
1−δ

δ

]
=
{

log 1−δ
δ

w.p. 1−δ,
− log 1−δ

δ
w.p. δ.

(34)

Furthermore, for any α ∈R,

P(f (li−1)≤α|Xi =1) =
∑
j

P( f (li−1)≤α,Xi−1 = j|Xi =1)

=
∑
j

P(Xi−1 = j|Xi =1)P( f (li−1)≤α|Xi−1 = j)

= π10P( f (li−1)≤α|Xi−1 =0)+(1−π10)P( f (li−1)

≤α|Xi−1 =1),

implying with the strict monotonicity of f that

L(li−1|Xi =1)=π10L(li−1|Xi−1 =0)+(1−π10)L(li−1|Xi−1 =1). (35)
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Similarly, conditioned on the event Xi =0, the two summands on the right-hand
side of (16) are independent with

(2Zi −1) log

[
1−δ

δ

]
=
{

log 1−δ
δ

w.p. δ,
− log 1−δ

δ
w.p. 1−δ,

(36)

and a computation similar to that leading to (35) gives

L(li−1|Xi =0)=π01L(li−1|Xi−1 =1)+(1−π01)L(li−1|Xi−1 =0). (37)

It follows from (16), (34)–(37), and the mentioned conditional independence
that any distribution on (Y ,U )whereL(Y )=L(li|Xi =1) andL(U )=L(li|Xi =
0) gives a marginally stationary process, establishing the first item.

For the second item, let {(Yi,Ui)} be the process initiated by a distribution
on (Y ,U ) with L(Y ) = L(li|Xi = 1) and L(U ) = L(li|Xi = 0). Let {(Ỹi, Ũi)} be
the same process started at any other point. Then

|Ỹi −Yi| ≤ si|f (Ũi−1)− f (Ui−1)|+(1−si)|f (Ỹi−1)− f (Yi−1)|
≤ sic(π01,π10)|Ũi−1 −Ui−1|+(1−si)c(π01,π10)|Ỹi−1 −Yi−1|
≤ c(π01,π10)max{|Ũi−1 −Ui−1|, |Ỹi−1 −Yi−1|}, (38)

where the inequality before last follows from (20) (with c(π01,π10) < 1). We
similarly obtain

|Ũi −Ui| ≤ c(π01,π10)max{|Ũi−1 −Ui−1|, |Ỹi−1 −Yi−1|}

which, combined with (38), yields

max{|Ũi −Ui|, |Ỹi −Yi|} ≤ c(π01,π10)max{|Ũi−1 −Ui−1|, |Ỹi−1 −Yi−1|}. (39)

Iterating gives

‖(Ũi, Ỹi)−(Ui,Yi)‖∞ ≤ c(π01,π10)
i‖(Ũ0, Ỹ0)−(U0,Y0)‖∞, (40)

implying

|Ũi −Ui| −→0, |Ỹi −Yi| −→0. (41)

But L(Yi) = L(Y ) and L(Ui) = L(U ) for all i thus, if the ‘tilded’ process is
marginally stationary, the only way this could be consolidated with (41) is if
L(Ỹi)=L(Y ) and L(Ũi)=L(U ) for all i. �
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Henceforth, when referring to the process constructed in Theorem 4.5, it
will be implied that it was initiated with a marginally stationary distribution on
(U ,Y ). When combined with (18), Theorem 4.5 implies

Corollary 4.6. For the process constructed in Theorem 4.5

H (Z) = π01

π01+π10
Ehb

([
eYi

1+eYi
(1−π10)+ 1

1+eYi
π01

]
∗δ

)

+ π10

π01+π10
Ehb

([
eUi

1+eUi
(1−π10)+ 1

1+eUi
π01

]
∗δ

)
. (42)

3 Bounds on the Entropy Rate for the Symmetric Chain

In this section we use Corollary 4.4 to bound the entropy rate in the symmetric
case, by bounding the expectation on the right side of (29). Assume throughout
this section the case of a BSC-corrupted symmetric Markov chain with 0<

π10 =π01 =π ≤1/2. The following gives the general form of our bounds, and
the condition under which they are valid.

Observation 4.7. Let {Yi} be the stationaryMarkov process whose evolution is
givenby (24). Let {ai}Mi=1,{bi}Mi=1 be strictly increasing sequences of nonnegative
reals such that bk ≤ak and bk+1>ak (i.e., the intervals [bk ,ak ] do not intersect).
Assume further that

⋃M
k=1[bk ,ak ]∪⋃M

k=1[−ak ,−bk ] contains the support of Yi.
Then

M∑
k=1

P (Yi ∈ [−ak ,−bk ]∪[bk ,ak ])hb
(

eak

1+eak
∗π ∗δ

)
≤H (Z)

≤
M∑
k=1

P (Yi ∈ [−ak ,−bk ]∪[bk ,ak ])hb
(

ebk

1+ebk
∗π ∗δ

)
.

Proof. Immediate from Corollary 4.4 and the decreasing monotonicity of

hb
(

ey

1+ey ∗π ∗δ
)
in the absolute value of y. �

Evidently, a bound of the type in Observation 4.7 would be applica-
ble only in situations where: 1) the support of Yi is, in fact, contained in
a set of the form

⋃M
k=1[bk ,ak ] ∪⋃M

k=1[−ak ,−bk ] and 2) the probabilities
P (Yi ∈ [−ak ,−bk ]∪[bk ,ak ]) can be computed (or bounded from above and
below). To get an appreciation for when this can happen, it is instructive to
consider first the case M =1, for which Observation 4.7 yields
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Corollary 4.8. Let {Yi} be the process in (24). Let 0 ≤ b ≤ A be such that
[−A,−b]∪[b,A] contains the support of Yi. Then

hb

(
eA

1+eA
∗π ∗δ

)
≤H (Z)≤hb

(
eb

1+eb
∗π ∗δ

)
. (43)

The lower bound ofCorollary 4.8 is clearly optimizedwhen takingA to be the
upper end point of the support of Yi. This point is readily seen, by observation
of the dynamics of the process {Yi} in (24), to be the solution to the equation

A= f (A)+ log
1−δ

δ
, (44)

namely

A= log
α−1+(1−α)π +√4απ2 +(1−α−(1−α)π)2

2π
, (45)

where α = 1−δ
δ

(cf. Section 4 of [29]). The obvious symmetry of the support
of Yi around 0 implies that −A is the lower end point of the support of Yi.
In particular, this establishes that the support of Yi is contained in the interval
[−A,A], cf. Figure 1. Similarly, to optimize the upper bound, b should be taken
as the lower end point of this support in the positive half of the real line. For
the case where δ is small enough so that the first term on the right-hand side
of (24) uniquely determines the sign of Yi (“small enough”, as will be made
explicit below, is any value in the shaded region of Figure 4), the value of this
lower end point can be read from the dynamics of the process in (24) (see also
the proof of Lemma 4.9 below) to be given by

b= −f (A)+ log
1−δ

δ
. (46)

Similarly, by symmetry, −b is the upper end point of the support of Yi in the
negative half. This implies then that the support of Yi is contained in [−A,−b]∪
[b,A] (cf. Figure 2) and that A and b of (45) and (46) are, respectively, the
smallest and largest values with this property. Crude as the bounds of Corollary
4.8 may seem, they were shown in [29] (obtained therein directly from the
likelihood process (21)) to convey nontrivial information when optimized by
substituting the values of A and b from (45) and (46). In particular, this led
to varying degrees of precision in characterizing the entropy rate in various
asymptotic regimes. Examples include (lettingH (π ,δ) stand forH (Z) when π

and δ are, respectively, the chain and channel transition probabilities):
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−A A

Figure 1 Smallest interval containing the support of Yi . A is given by (45).

−A A−b b

Figure 2 Smallest set of the form [−A,−b]∪ [b,A] containing the support of Yi .
A and b are given, respectively, in (45) and (46).

−A A−b−B −a ab B

Figure 3 Smallest set of the form [−A,−B]∪[−a,−b]∪[b,a]∪[B,A] containing
the support of Yi . A,b,a, and B are given, respectively, in (45), (46), (52), and (53).
Probabilities of the four intervals are stated in Lemma 4.9.

“High SNR”: for 0≤π ≤1/2, as δ →0,

H (π ,δ)−hb(π)� δ. (47)

“Almost memoryless”: for 0≤ δ ≤1/2, as ε →0,

1−H
(
1
2 −ε,δ

)
ε2

∼ 2

log2
(1−2δ)4. (48)

“Low SNR”: for 1/4≤π <1/2, as ε →0,

1−H

(
π ,

1

2
−ε

)
� ε4. (49)

It is instructive to compare with the implications of the bounds of Cover and
Thomas [5, Section 4.5] for these regimes. In our setting, a simple calculation
shows that H (Z0|X−1) = hb(π ∗ δ) and H (Z0|Z−1) = hb(π ∗ δ ∗ δ), so the first-
order (n=1) bounds are

hb(π ∗δ)≤H (π ,δ)≤hb(π ∗δ∗δ), (50)

which implies (47) (but no more), recovers the ε2 behavior in (48) but without
the constant, and does not recover the ε4 behavior in (49). In fact, as was
mentioned in [29], there are regimes in which the bounds of [5, Section 4.5],
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of any order, will not capture the behavior of the entropy rate. For a simple
example note that, in our binary symmetric setting, for any n,

H (Z0|Z−1
−n+1,X−n)≤H (Z0|X−n)=hb(π

∗n ∗δ), (51)

where π∗n denotes binary convolution of π with itself n times. Thus, for
example, in the “low SNR” regime where π is fixed and δ = 1/2 − ε,
H (Z0|Z−1

−n+1,X−n) ≤ hb(π∗n ∗ δ)) = hb(1/2− ε(1− 2π∗n)) and, in particular,
1−H (Z0|Z−1

−n+1,X−n)=�(ε2). In otherwords, usingH (Z0|Z−1
−n+1,X−n) to lower

bound the entropy rate will give an upper bound on the left-hand side of (49)
of order ε2, failing to provide the true ε4 order in (49) (and, a fortiori, its
refinements we derive below).

Let us now take one step of refinement beyond Corollary 4.8, to study the
form of the bounds of Observation 4.7 in the caseM =2, and their implications
in some asymptotic regimes. Define, in addition to A and b in (44) and (46),

a= −f (b)+ log
1−δ

δ
(52)

and

B= f (b)+ log
1−δ

δ
. (53)

Lemma 4.9. Assume that either π ≥ 1/4 and δ ≤ 1/2, or π < 1/4 and δ <
1
2 (1−√

1−4π). More compactly, assume that δ≤ 1
2

(
1−√

max{1−4π ,0}) (cf.
Figure 4). Then A,b,a, and B (defined in (45), (46), (52), and (53)) satisfy 0≤
b≤a<B≤A, aswell as P(Yi ∈[B,A])=(1−δ)[π ∗(1−δ)], P(Yi ∈[b,a])=(1−
δ)[π ∗δ], P(Yi ∈[−a,−b])=δ[π ∗(1−δ)], and P(Yi ∈[−A,−B])=δ[π ∗δ]. In
particular, the support of Yi is contained in [−A,−B]∪[−a,−b]∪[b,a]∪[B,A].
Proof. That the A solving (44) is the upper end point of the support of Yi and,
by symmetry, −A its lower end point, is evident from (24). It was shown in [29,
Corollary 3] that in this region of the π−δ plane Yi ≥0 if and only if ri =1, in
which case the smallest value Yi can take is b= log 1−δ

δ
− f (A). This implies, by

symmetry of the support of Yi, that this support is contained in [−A,−b]∪[b,A].
Furthermore, whenYi>0 (i.e., ri =1), there are two possibilities. The first is that
the second term on the right-hand side of (24) is negative, inwhich case themost
(least negative) it can be is−f (b), implying that in this caseYi ≤ log 1−δ

δ
−f (b)=

a. The second possibility is that this second term is positive, in which case the
least it can be is f (b), implying that Yi ≥ log 1−δ

δ
+ f (b)=B. It follows that when

Yi >0 either Yi ∈[b,a] or Yi ∈[B,A]. Symmetry of the support of Yi implies that
this support is contained in [−A,−B]∪[−a,−b]∪[b,a]∪[B,A]. It also follows
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that Yi falls in the interval, say [b,a], if and only if both ri =1 and sif (Yi−1)<0,
i.e.,

P(Yi ∈ [b,a]) = P(ri =1,sif (Yi−1)<0)

= P(ri =1)P({si =1, f (Yi−1)<0}∪{si = −1, f (Yi−1)>0})
= (1−δ)[(1−π)δ+π(1−δ)]
= (1−δ)[π ∗δ].

Using similar reasoning gives

P(Yi ∈ [B,A])=P(ri =1,sif (Yi−1)>0)= (1−δ)[π ∗(1−δ)],

P(Yi ∈ [−a,−b])=P(ri = −1,sif (Yi−1)>0)= δ[π ∗(1−δ)],
and

P(Yi ∈ [−A,−B])=P(ri = −1,sif (Yi−1)<0)= δ[π ∗δ].
�

Specializing Observation 4.7 to the caseM =2 and combining with Lemma
4.9 gives the following lemma.

Lemma 4.10. For all δ ≤ 1
2

(
1−√

max{1−4π ,0}),
{(1−δ)[π ∗(1−δ)]+δ[π ∗δ]}hb

(
eA

1+eA
∗π ∗δ

)

+ {(1−δ)[π ∗δ]+δ[π ∗(1−δ)]}hb
(

ea

1+ea
∗π ∗δ

)

≤H (Z)

≤ {(1−δ)[π ∗(1−δ)]+δ[π ∗δ]}hb
(

eB

1+eB
∗π ∗δ

)

+{(1−δ)[π ∗δ]+δ[π ∗(1−δ)]}hb
(

eb

1+eb
∗π ∗δ

)
, (54)

where A,B,a, and b are as specified in (45), (46), (52), and (53).

As can be expected, the bounds in Lemma 4.10, which are based on the support
bound depicted in Figure 3, are considerably tighter, in various asymptotic
regimes, than those based on Corollary 4.8, which use the coarser support
bound of Figure 2. As a first example, recall that in the “high SNR” regime the
analysis in [29, Section 5], which was based on Corollary 4.8, established that
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Figure 4 Shaded area below the curve 1
2

(
1−√

max {1−4π ,0}) is the region in
the π−δ plane where the sign of ri determines the sign of Yi in (24).

H (Z)−hb(π)� δ (recall (47)), while, as we now show, the bounds of Lemma
4.10 recover the constant.

Theorem 4.11. For π ≤1/2 and δ ↓0,

H (Z)=hb(π)+
[
2(1−2π) log2

1−π

π

]
·δ+o(δ).

The result of Theorem 4.11 was first established in [22], and subsequently
derived in [27] and [36]. We give a simple proof of this result in Appendix A,
via the bounds of Lemma 4.10.

For the “almost memoryless” regime, the bounds of Lemma 4.10 are tight
enough to imply that the term following that characterized in (48) is o(ε3).
More specifically, by evaluating the bounds of Lemma 4.10 for this regime, the
following theorem is proved in Appendix B.

Theorem 4.12. For 0≤ δ ≤1/2 and π =1/2−ε, as ε ↓0,

1−H (Z)= 2

log2
ε2(1−2δ)4 +o(ε3).
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For the “low SNR” regime, the bounds of Lemma 4.10 are shown in
Appendix C to imply the following theorem.

Theorem 4.13. For 1/4≤π ≤1/2 and δ = 1
2 −ε,

2(1−2π)2(1−12π +48π2 −64π3 +32π4)

π2 log2
≤ lim inf

ε→0

1−H (Z)

ε4

≤ limsup
ε→0

1−H (Z)

ε4

≤ 2(1−2π)2(1−4π +16π2 −32π3 +32π4)

π2 log2
. (55)

To see why Theorem 4.13 covers only the range 1/4≤ π ≤ 1/2, note that
Lemma 4.10, on which it relies, applies only in the shaded region of Figure 4.
Clearly, for π <1/4 and δ =1/2−ε, the point (π ,δ) will be outside the shaded
region for ε small enough.

Theorem 4.13 should be compared with Corollary 6 of [29], which gives

2

log2

[
(4π −1)(1−2π)

π

]2
≤ lim inf

ε→0

1−H (Z)

ε4
≤ limsup

ε→0

1−H (Z)

ε4

≤ 2

log2

[
1−2π

π

]2
(56)

(and on the basis ofwhich (49)was stated). Figure 5 plots the bounds of (56) (the
lower and upper curves) and those of Theorem 4.13 (the two internal curves),
as a function of π . The bounds become increasingly tight as π approaches
1/2, all converging to 0. Furthermore, both lower and upper bounds in (56)
(and, a fortiori, in (55)) behave as ∼ 8

log2 (1−2π)2 for π →1/2, implying that

1−H (Z)≈ 32
log2 (1/2−δ)4(1/2−π)2 for π and δ close to 1/2.

Theorems 4.11 through 4.13 were obtained via evaluation of the bounds of
Lemma 4.10 in the respective regimes. In turn, Lemma 4.10 is nothing but a
specialization of Observation 4.7 to the caseM =2, optimizing over the choice
of constants ak and bk . It was seen that these constants define a region of the
form depicted in Figure 3, and optimizing their values amounts to finding the
smallest region of that form containing the support of Yi (the alternativeMarkov
process). This optimization was easy to do (in Lemma 4.9), by observation of
the dynamics of the process {Yi}, as given in Theorem 4.3.

Evidently, moving from the bounds corresponding to M = 1 (which lead
to (47) – (49)) to those of M = 2 results, for various asymptotic regimes, in
characterization of higher order terms, and refinement of constants. The larger
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Figure 5 Upper and lower bounds associated with (49) and Theorem 4.13.

M one takes, the finer will the bounds become, leading, in particular, to finer
characterizations in the respective regimes. The development we have detailed
for the case M = 2 scales to any larger value of M . For example, M = 3 will
correspond to an outer bound on the support of Yi obtained by excluding a
subinterval from each of the four intervals of Figure 3. The choice of these
subintervalswill be optimized analogously as inLemma4.9 quite simply, via the
dynamics of the process {Yi} in (24). Note that it is only the end points of the new
subintervals that need be computed, the remaining end points being identical
to those evaluated forM =2. More generally, moving from the approximation
corresponding to a value of M to the value M +1 corresponds to discarding a
subinterval from each of the intervals constituting the outer bound of the support
obtained at theM th level. Only the end points of the subintervals that are being
discarded need be computed, the remaining ones coinciding with those already
obtained in the previous stage.

4 Non-symmetric case

In this section, we illustrate the use of the process (Ui,Vi) (defined via (31) and
(32)) for obtaining bounds on the entropy rate in the nonsymmetric case. More
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specifically, we use the dynamics of the process (Ui,Vi) detailed in Theorem
4.5 to obtain bounds on the support of (Ui,Vi), which, in turn, we translate
to bounds on the expression for the entropy rate given in Corollary 4.6. In
particular, paralleling the previous section, we develop bounds corresponding
to Observation 4.7 in the case M = 2. As a representative example, we use
this to obtain the first term in the expansion of the entropy rate in the “high
SNR” regime, with the implication that expansions in other regimes, as well as
higher-order terms (by using M >2), are obtained similarly.

Bounds for regimes (“high SNR”, “almost memoryless”, “low SNR”)
mentioned in the previous section that were obtained via an approximation
corresponding to M = 1 in [29] were obtained also for the nonsymmetric
case. Additional regimes arising in the nonsymmetric setting include the “rare-
spikes” and “rare-bursts” regimes. For example, it was shown (see [29,Theorem
5]) that for 0≤ δ ≤1/2 and any function a(·) satisfying 0<a(ε)≤ ε, as ε →0,

H (a(ε),1−ε,δ)−hb(δ)

a(ε)
= H (1−ε,a(ε),δ)−hb(δ)

a(ε)
∼ (1−2δ) log2

1−δ

δ
.

(57)
The bounds we develop below are applicable, e.g., also for refining the
characterization in (57).

4.1 The case π10 =1

The first example we consider is the case where π10 = 1, in the “high SNR”
regime. We will establish the following theorem.

Theorem 4.14. For π10 =1, 0≤π01 <1, and δ tending to 0,

H (Z)=H (X )+ π01(2−π01)

1+π01
δ log2

1

δ
+O(δ). (58)

Interestingly, the first term in the expansion is of order δ log2
1
δ
, in contrast

to that in Theorem 4.11 which is of order δ. As was first shown in [22], and
we show in the next subsection in detail, the order of δ behavior in fact reigns
for all values of the pair (π10,π01), except when one of the two values equals 1
(in which case Theorem 4.14 asserts that the order is δ log2

1
δ
). This case is left

unresolved by the asymptotic expansion of [22], which only hints at the above
behavior in that the constant multiplying the order δ term increases to infinity as
eitherπ01 orπ10 tends to one.Avariation on the (second) proof of Theorem 4.14
appearing below is shown in the next subsection to also recover the expansion
of [22] for the case π10 <1,π01 <1.
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Note that in the case π10 = π01 = 1, H (Z) = hb(δ), while H (X ) = 0, so
H (Z)=H (X )+δ log2

1
δ

+O(δ), where the factor multiplying the δ log2
1
δ
term

in (58) is 1/2 when π01 = 1. The reason for this is that just like there is a
transition from order of δ to order of δ log2 1/δ when going from π10 < 1 to
π10 =1, a similar term that will be order of δ in our analysis below (where we
assume that π01 < 1) becomes order of δ log2 1/δ when going from π01 < 1 to
π01 =1. This accounts for the doubling of the said factor from 1/2 to 1.

As it turns out, Theorem 4.14 is provable via the Cover and Thomas bounds
[5, Section 4.5] of order n=2.Wedetail this proof inAppendixD. In this subsec-
tion, we give an alternative proof via our support bounds approach. Throughout
the remainder of this subsection, we assume that π10 =1 and π01 <1, in which
case f (x) simplifies to

f (x)= log
π01

π01 +ex
,

where x denotes 1−x. Note that f (x) is decreasing in x and is upper bounded
by f (−∞)= logπ01/π01. Defining

r(x)= log
1−x

x
, (59)

the upper bound on f (x) just stated is −r(π01).
In the spirit of the developments in the previous section for bounding the

support in the case M = 2, considering the alternative process constructed in
Theorem 4.5, we will show that the support ofL(U )=L(li|Xi =0) (andL(Y )=
L(li|Xi = 1), as they have identical supports) is contained in the union of four
disjoint intervals on the real linewhose boundary points and probabilities (under
PU and PY ) we characterize explicitly. We will then obtain upper and lower
bounds on the entropy rate of {Zi} in terms of the interval boundary points and
probabilities, similarly as was done in the derivation of Theorem 4.10. The
bounds thus obtained will be shown to lead to the asymptotic behavior of the
entropy rate stated in Theorem 4.14.

The following lemma, which follows from elementary calculus, will be used
throughout our analysis.

Lemma 4.15. Suppose that p = p0 + δp1 +O(δ2). If 0< p0π10 +p0π01 < 1,
then

hb([pπ10+pπ01]∗δ)=hb(p0π10+p0π01)

−δ

[
(p0(1−2π01)+p0(2π10−1)+p1(1−π01−π10)) log2

p0π10+p0π01

p0π10+p0π01

]

+O(δ2).
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If π10 =p0 =1 and π01 <1, then

hb([pπ10 +pπ01]∗δ) = (1−p1π01)δ log2
1

δ
+O(δ). (60)

Define now the following four intervals on the real line, where an interval
[a,b] is taken to be empty if a>b.

I0 = [−r(δ)+ f (r(δ)−r(π01)),−r(δ)+ f (r(δ)+ f (r(δ)−r(π01)))],
I1 = [−r(δ)+ f (−r(δ)−r(π01)),−r(δ)−r(π01)],
I2 = [r(δ)+ f (r(δ)−r(π01)),r(δ)+ f (r(δ)+ f (r(δ)−r(π01)))],
I3 = [r(δ)+ f (−r(δ)−r(π01)),r(δ)−r(π01)]. (61)

We shall also rely on the following three lemmas. Their proofs, which we
defer to Appendix E, are based on ideas similar to those used in the proof of
Lemma 4.9.

Lemma4.16. The intervals Ij, j=0,1,2,3, are nonempty (i.e. the left end points
as specified above are smaller than the right end points).

Given two intervals I and J , let I <J express the fact that the right end point
of I is (strictly) less than the left end point of J .

Lemma 4.17. For all sufficiently small δ > 0, the intervals Ij, j = 0,1,2,3,
satisfy I0 < I1 < I2 < I3.

Lemma 4.18. The supports of both PU and PY are contained in I0∪I1∪I2∪I3.
For all sufficently small δ > 0, the probabilities of the intervals under PU and
PY are given by

I PY (I) PU (I)
I0 δ2 δ(π01 ∗δ)

I1 δδ δ(π01 ∗δ)

I2 δδ δ(π01 ∗δ)

I3 δ
2

δ(π01 ∗δ)

(62)

For any closed interval I on the real line, let �(I) denote the smallest value
in I (left end point) and u(I) denote the largest value (right end point). Define

β(x)= ex

1+ex
,
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which maps x = logPr(1)/Pr(0) to Pr(1) (e.g., log-likelihood ratios to
probabilities).

Lemma 4.19. For all sufficiently small δ > 0, the entropy rate H (Z) of the
process {Zi} satisfies

H (Z)≤
3∑

j=0

[
1

1+π01
PU (Ij)+ π01

1+π01
PY (Ij)

]
max
x∈Ij

hb([β(x)π01]∗δ) (63)

and

H (Z)≥
3∑

j=0

[
1

1+π01
PU (Ij)+ π01

1+π01
PY (Ij)

]
min
x∈Ij

hb([β(x)π01]∗δ). (64)

Proof.

H (Z) ≥
3∑

j=0

[
1

1+π01
Pr(li ∈ Ij|Xi =0)

+ π01

1+π01
Pr(li ∈ Ij|Xi =1)

]
min
x∈Ij

hb([β(x)π01]∗δ)

follows from (42) and Lemma 4.18, once δ is sufficiently small for Lemma 4.17
to imply that the Ij are disjoint. The upper bound follows similarly. �

Proof of Theorem 4.14. Lemma 4.18 shows that all but PY (I3), PU (I0), and
PU (I1) are O(δ). Therefore, since hb(·) is bounded, the only terms in (63)
and (64) that might be greater thanO(δ) are those involvingPY (I3),PU (I0), and
PU (I1). Firstwe consider the terms involvingPU (I0) andPU (I1). It follows from
elementary calculus that hb([pπ01]∗δ) is maximized atmax{0,(π01−1/2)/(δ+
π01)}. This fact togetherwith the concavity of hb([pπ01]∗δ) in p, and the fact that
both end points of both I0 and I1 are tending to−∞, imply that for all sufficiently
small δ>0, minx∈Ij hb([β(x)π01]∗δ) andmaxx∈Ij hb([β(x)π01]∗δ) are achieved
at either �(Ij) or u(Ij) for j= 0,1. It is not difficult to see that for j= 0,1 both
β(�(Ij)) and β(u(Ij)) are ratios of polynomials in δ. In particular, they will be of
the form p0+δp1+O(δ2)with p0 =0. Therefore, using Lemmas 4.15 and 4.18,

1∑
j=0

1

1+π01
PU (Ij)max

x∈Ij
hb([β(x)π01]∗δ)

= π01

1+π01
hb(π01)+ π01

1+π01
hb(π01)+O(δ)

= H (X )+O(δ). (65)
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Similarly,

1∑
j=0

1

1+π01
PU (Ij)min

x∈Ij
hb([β(x)π01]∗δ)=H (X )+O(δ). (66)

Next, we focus on the terms involving PY (I3). In these cases, the above prop-
erties (concavity and extremal) of hb([pπ01]∗δ) viewed as a function of p, and
the fact that the left end point of I3 is greater than the maximizing p, imply that

min
x∈I3

hb([β(x)π01]∗δ)=hb([β(u(I3))π01]∗δ)

and
max
x∈I3

hb([β(x)π01]∗δ)=hb([β(�(I3))π01]∗δ).

From (61), we see (some algebraic manipulations omitted) that

β(u(I3)) = δπ01

δπ01 +δπ01
(67)

= 1− δπ01

δπ01 +δπ01
(68)

= 1−δ
π01

π01
+O(δ2) (69)

and

β(�(I3)) = δ
2
π01π01

π2
01δ

2 +δδπ01
2 +δ

2
π01π01

(70)

= 1− π2
01δ

2 +δδπ01
2

π2
01δ

2 +δδπ01
2 +δ

2
π01π01

(71)

= 1−δ
π01

π01
+O(δ2). (72)

Lemma 4.15, (69) and (72) then imply that

min
x∈I3

hb([β(x)π01]∗δ)= (1+π01)δ log2
1

δ
+O(δ) (73)

and

max
x∈I3

hb([β(x)π01]∗δ)= (1+π01)δ log2
1

δ
+O(δ). (74)
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Equations (65), (66), (73), (74), and the expression forPY (I3) from (62) demon-
strate that the combined contribution of the terms involving PY (I3), PU (I0), and
PU (I1) to (63) and (64) is

H (X )+ π01

1+π01
(1+π01)δ log2

1

δ
+O(δ)

= H (X )+ π01(2−π01)

1+π01
δ log2

1

δ
+O(δ)

in both cases. The theorem is proved since, as noted above, all the other terms
are O(δ). �

4.2 The case 0<π01,π10<1

The analysis of this case is dependent on whether π01+π10 is smaller or greater
than 1. If π01 +π10 ≤ 1, then, as shown in Section 2, f (x) (defined in (17)) is
nondecreasing and is upper bounded by f (∞)= r(π10) and lower bounded by
f (−∞) = −r(π01), where r(x) is defined in (59). If, on the other hand, π01 +
π10 > 1, then f (x) is decreasing and is upper bounded by f (−∞) = −r(π01)

and lower bounded by f (∞)= r(π10).
We define the four intervals Jj, j=0, . . . ,3, as

J0 = [−r(δ)−r(π01),−r(δ)+ f (−r(δ)+r(π10))], (75)

J1 = [−r(δ)+ f (r(δ)−r(π01)),−r(δ)+r(π10)], (76)

J2 = [r(δ)−r(π01),r(δ)+ f (−r(δ)+r(π10))], (77)

J3 = [r(δ)+ f (r(δ)−r(π01)),r(δ)+r(π10)] (78)

and the four intervals Kj as

K0 = [−r(δ)+r(π10),−r(δ)+ f (r(δ)+r(π10))], (79)

K1 = [−r(δ)+ f (−r(δ)−r(π01)),−r(δ)−r(π01)], (80)

K2 = [r(δ)+r(π10),r(δ)+ f (r(δ)+r(π10))], (81)

K3 = [r(δ)+ f (−r(δ)−r(π01)),r(δ)−r(π01)]. (82)

As before, the intervals {Jj} and {Kj} are respectively disjoint for sufficiently
small δ when π01 + π10 ≤ 1 and π01 + π10 ≥ 1. Additionally, the following
analogue of Lemma 4.18 holds.

Lemma 4.20. If π01+π10 ≤1, the supports of both PU and PY are contained in
J0∪J1∪J2∪J3. For all sufficiently small δ>0, the probabilities of the intervals
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{Jj} under PU and PY are given by

I PY (I) PU (I)
J0 δ(π10 ∗δ) δ(π01 ∗δ)

J1 δ(π10 ∗δ) δ(π01 ∗δ)

J2 δ(π10 ∗δ) δ(π01 ∗δ)

J3 δ(π10 ∗δ) δ(π01 ∗δ)

(83)

If π01 +π10 > 1, the supports of both PU and PY are contained in K0 ∪K1 ∪
K2 ∪K3. For all sufficiently small δ > 0, the probabilities of the intervals {Kj}
under PU and PY are given by

I PY (I) PU (I)
K0 δ(π10 ∗δ) δ(π01 ∗δ)

K1 δ(π10 ∗δ) δ(π01 ∗δ)

K2 δ(π10 ∗δ) δ(π01 ∗δ)

K3 δ(π10 ∗δ) δ(π01 ∗δ)

(84)

The proof of Lemma 4.20 is similar to that of Lemma 4.18 with (A.64)
replaced by

I Yi Ui

J0
{(ri,si,ri−1)= (−1,0,−1)}∪
{(ri,si,qi−1)= (−1,1,−1)}

{(qi, ti,qi−1)= (−1,0,−1)}∪
{(qi, ti,ri−1)= (−1,1,−1)}

J1
{(ri,si,ri−1)= (−1,0,1)}∪
{(ri,si,qi−1)= (−1,1,1)}

{(qi, ti,qi−1)= (−1,0,1)}∪
{(qi, ti,ri−1)= (−1,1,1)}

J2
{(ri,si,ri−1)= (1,0,−1)}∪
{(ri,si,qi−1)= (1,1,−1)}

{(qi, ti,qi−1)= (1,0,−1)}∪
{(qi, ti,ri−1)= (1,1,−1)}

J3
{(ri,si,ri−1)= (1,0,1)}∪
{(ri,si,qi−1)= (1,1,1)}

{(qi, ti,qi−1)= (1,0,1)}∪
{(qi, ti,ri−1)= (1,1,1)}

(85)

for the case that π01 +π10 ≤ 1. For the other case, the events for the intervals
K0, K1, K2, and K3 coincide respectively with those for J1, J0, J3, and J2, given
above.

Additionally, we have the following minor variation on Lemma 4.19.
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Lemma 4.21. For π01 +π10 ≤ 1 and all sufficiently small δ > 0, the entropy
rate H (Z) of the process {Zi} satisfies

H (Z) ≤
3∑

j=0

[
π10

π01 +π10
PU (Jj)+ π01

π01 +π10
PY (Jj)

]

× max
x∈Jj

hb([β(x)π01 +β(x)π10]∗δ) (86)

and

H (Z) ≥
3∑

j=0

[
π10

π01 +π10
PU (Jj)+ π01

π01 +π10
PY (Jj)

]

× min
x∈Jj

hb([β(x)π01 +β(x)π10]∗δ). (87)

For π01+π10 >1 and all sufficiently small δ >0, the entropy rate satisfies (86)
and (87) with Jj replaced by Kj.

Theorem 4.22. For 0<π01,π10 <1 and δ tending to 0,

H (Z) = H (X )+δ

(
1

π01 +π10

[
(π01 +π10 −4π01π10) log2

π01π10

π01π10

+(π10 −π01) log2
π01

π10

])
+O(δ2). (88)

Note that (88) applies regardless of the value of π01 + π10 even though
our proof treats the cases when this sum is smaller or greater than one differ-
ently. The expression (88) was first obtained in [22] using a different technique.
The factor multiplying δ can be shown to equal D(PX0,X1,X2‖PX0,X 1,X2

) (where
D(P‖Q) denotes the relative entropy or Kullback–Leibler divergence between
distributions P and Q), which is the form given in [22].

Proof of Theorem 4.22. When 0<π01,π10 <1, straightforward calculus shows
that the maximum of hb([pπ01 +pπ10]∗δ) over p is bounded away from 0 and
1. Note also that both end points of J0, J1, K0, and K1 tend to −∞ while the
end points of J2, J3, K2, and K3 tend to ∞. Therefore, for δ sufficiently small,
the concavity of hb([pπ01 +pπ10] ∗ δ) in p implies that maxx∈I hb([β(x)π01 +
β(x)π10] ∗ δ) is achieved at x = u(I) for I ∈ {J0,J1,K0,K1} and at x = �(I) for
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I ∈ {J2,J3,K2,K3} and that minx∈I hb([β(x)π01 + β(x)π10] ∗ δ) is achieved at
x= �(I) for I ∈ {J0,J1,K0,K1} and at x= u(I) for I ∈ {J2,J3,K2,K3}. Thus, by
Lemma 4.21, for π01 +π10 ≤1,

H (Z) ≤
1∑

j=0

[
π10

π01 +π10
PU (Jj)+ π01

π01 +π10
PY (Jj)

]

×hb([β(u(Jj))π01 +β(u(Jj))π10]∗δ) (89)

+
3∑

j=2

[
π10

π01 +π10
PU (Jj)+ π01

π01 +π10
PY (Jj)

]

×hb([β(�(Jj))π01 +β(�(Jj))π10]∗δ) (90)

and

H (Z) ≥
1∑

j=0

[
π10

π01 +π10
PU (Jj)+ π01

π01 +π10
PY (Jj)

]

×hb([β(�(Jj))π01 +β(�(Jj))π10]∗δ) (91)

+
3∑

j=2

[
π10

π01 +π10
PU (Jj)+ π01

π01 +π10
PY (Jj)

]

×hb([β(u(Jj))π01 +β(u(Jj))π10]∗δ). (92)

Corresponding expressions hold for π01 +π10 >1, with {Kj} replacing {Jj}.
The next step is to show that β(u(I))−β(�(I))=O(δ2) for I equal to each

of {Jj} and {Kj} and to express β(u(I)) (and hence β(�(I))) using the asymp-
totic approximation p0 + δp1 +O(δ2), where p0 and p1 depend on I . We give
the details for I = J3 with the other cases following similarly. For I = J3, we
have

β(u(J3)) = δπ10

δπ10 +δπ10
(93)

= 1− δπ10

δπ10 +δπ10
(94)

= 1−δ
π10

π10
+O(δ2) (95)
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and

β(�(J3)) = δδπ01 +δ
2
(π10π01/π01)

δ2π01 +δδ(π10π01/π01)+δδπ01 +δ
2
(π10π01/π01)

(96)

= 1− δ2π01 +δδ(π10π01/π01)

δ2π01 +δδ(π10π01/π01)+δδπ01 +δ
2
(π10π01/π01)

(97)

= 1−δ
(π10π01/π01)

(π10π01/π01)
+O(δ2) (98)

= 1−δ
π10

π10
+O(δ2). (99)

The asymptotic expressions for the intervals {Jj} are given by (100). The
expressions for K0, K1, K2, and K3 coincide respectively with those for J1, J0,
J3, and J2.

I p0 p1
J0 0 π01/π01

J1 0 π10/π10

J2 1 −π01/π01

J3 1 −π10/π10

(100)

The asymptotic expression (88) for the entropy rate is then obtained by
substituting the expressions (100) into (90) and (91), invoking Lemma 4.15,
substituting the interval probabilities (83) and (84), and combining terms.
It is easy to see that the two cases π01 + π10 ≤ 1 and π01 + π10 > 1
should result in the same expression, since the asymptotic expressions for
the interval end points are permuted in the same manner as the interval
probabilities. �

5 ADeterministic Approximation Algorithm

In this section, we present and analyze an entropy rate approximation scheme,
which is based on approximating the stationary distribution of the alterna-
tive Markov processes constructed in Section 2. We remark that a somewhat
similar scheme has previously been described, though not analyzed, in [32].
Throughout, “operations” refers to arithmetic operations.
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5.1 The symmetric case

Assume without loss of generality that π <1/2. Since |f |≤ log(1−π)/π , from
(24) it is clear that the support of Yi is contained in the interval

Iπ ,δ
�=
[
− log

(1−π)(1−δ)

πδ
, log

(1−π)(1−δ)

πδ

]
.

Let Q be an M -level quantizer of Iπ ,δ (i.e., a mapping from Iπ ,δ to M real
numbers) with the property that

max
x∈Iπ ,δ

|Q(x)−x| ≤ ε. (101)

For example, a uniform quantizer of Iπ ,δ with M ≥ 1
ε
log (1−π)(1−δ)

πδ
levels has

this property. Consider now the finite-state Markov process (with M states)
evolving with the process in (24) according to

Ỹi =Q

(
ri log

1−δ

δ
+sif (Ỹi−1)

)
(102)

and initiated (at time i= 0) with its stationary distribution (say independently
of Y0). Then

|Ỹi −Yi| ≤ ε+|f (Ỹi−1)− f (Yi−1)| (103)

≤ ε+(1−2π)|Ỹi−1 −Yi−1| (104)

≤ ε+(1−2π)[ε+|f (Ỹi−2)− f (Yi−2)|] (105)

... (106)

≤ ε

i∑
j=0

(1−2π)j|Ỹ0 −Y0| (107)

≤ ε

2π
|Ỹ0 −Y0| (108)

≤ ε
1

π
log

(1−π)(1−δ)

πδ
(109)

≤ ε
1

π
log

1

πδ
, (110)
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where (104) follows from (23), and (108) from the fact that both Ỹ0 and Y0
belong to the interval Iπ ,δ . Let

λπ ,δ = max
y∈Iπ ,δ

∣∣∣∣∣∣
∂hb

(
ey

1+ey ∗π ∗δ
)

∂y

∣∣∣∣∣∣ .
Note that λπ ,δ < ∞ when π or δ are bounded away from 0 and 1. Combining
the fact that∣∣∣∣∣hb

(
ey

1+ey
∗π ∗δ

)
−hb

(
ey

′

1+ey′ ∗π ∗δ

)∣∣∣∣∣≤λπ ,δ|y−y′|

for y,y′ ∈ Iπ ,δ with Corollary 4.4, we obtain

∣∣∣∣∣H (Z)−Ehb

(
eỸi

1+eỸi
∗π ∗δ

)∣∣∣∣∣≤λπ ,δε
1

π
log

1

πδ
. (111)

In particular, for the M -level uniform quantizer mentioned above, ε ≤
1
M log (1−π)(1−δ)

πδ
, so (111) implies that

∣∣∣∣∣H (Z)−Ehb

(
eỸi

1+eỸi
∗π ∗δ

)∣∣∣∣∣≤ 1

M

λπ ,δ

π

[
log

1

πδ

]2
. (112)

Thus, for a given precision ε we would need to take M such that
1
M

λπ ,δ
π

[
log 1

πδ

]2 ≤ε, find theM -dimensional stationary distribution vector, and

use it to compute Ehb
(

eỸi

1+eỸi
∗π ∗δ

)
. More specifically, we have the following

approximation algorithm.

Algorithm 4.25.

Input: M ,π ,δ

(1) Let Q denote the M -level uniform quantizer of the interval Iπ ,δ and
q1, . . . ,qM denote the quantization levels. Let PM be theM ×M stochastic
matrix given by

PM (i, j)=
[(1−δ)(1−π)]1

(
qj =Q

(
log 1−δ

δ
+ f (qi)

))+
[δ(1−π)]1

(
qj =Q

(− log 1−δ
δ

+ f (qi)
))+

[(1−δ)π ]1
(
qj =Q

(
log 1−δ

δ
− f (qi)

))+
[δπ ]1

(
qj =Q

(− log 1−δ
δ

− f (qi)
))
,

(113)
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where 1(·) is the indicator function of the condition in the argument (i.e.,
1(·)=1 if the condition in the argument is true and 1(·)=0 otherwise).

(2) Compute the stationary distribution of PM , i.e., the M -dimensional row
vector aM solving aM ·PM =aM .

(3) Compute the entropy estimate

Ĥ =
M∑
i=1

aM (i) ·hb
(

eqi

1+eqi
∗π ∗δ

)
. (114)

Output: Ĥ .

Note that Ĥ in (114) is nothing but the expression Ehb
(

eỸi

1+eỸi
∗π ∗δ

)
that

appears in (112), where {Ỹi} is the quantized process defined in (102) (initiated
at its stationary distribution). One possible brute force method for finding the
stationary distribution of anM ×M stochastic matrix is via Gaussian elimina-
tion (2M 3/3 operations), back substitution (M 2 operations), and normalization
(M operations) [12]. Since the remaining steps in the algorithm require O(M )

operations, the overall number of operations required is O(M 3). From (112), it
follows that the resulting precision is O

(
1
M

)
. In summary, we have established

the following theorem.

Theorem 4.24. For fixed π ,δ, Algorithm 4.25 requires O(M 3) operations and
guarantees precision of O

(
1
M

)
. In other words, N operations buy precision

O
(
N−1/3

)
.

Theorem 4.24 was derived via a rather rough analysis. Two ingredients that
are likely to significantly improve the bound on the approximation–precision
tradeoff are:

(1) Using a nonuniform quantizer, with finer resolution near 0 (where f is least
contractive) and coarser resolution towards the end points of the quantized
interval (where f is highly contractive).

(2) The main part of the computational burden is finding the stationary dis-
tribution of the stochastic matrix PM given in (113). The upper bound of
O(M 3) that was used on the number of operations that this requires holds
for anyM ×M stochastic matrix. This does not use the particular structure
of PM , a very sparse matrix with the same four nonzero entries in each row.

Thus, a nonuniform quantization followed by an efficient procedure for finding
the stationary distribution of PM should result in an implementation of Algo-
rithm 4.25 with higher precision than that guaranteed in the theorem. Theorem
4.24, however, suffices to make our main point, which is the independence of
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the bound on the precision order on the process parameters (in this caseπ and δ).
This should be contrasted with the hitherto best known precision–complexity
tradeoff among deterministic approximation schemes obtained via (11). Specif-
ically, the difference between the upper and lower bounds in (11), conveniently
expressed as the mutual information I(Z0;X−n−1|Z−1

−n ), is known since [3] to
decay exponentially with n. The best known bounds have been obtained in [19]
and are of the form

I(Z0;X−n−1|Z−1
−n )≤C(π ,δ)ρ(π ,δ)n, (115)

where C(π ,δ),ρ(π ,δ) are positive constants and ρ(π ,δ) < 1. On the other
hand, the number of operations required to compute the Cover and Thomas
bounds (11) is exponential in n (the exponential rate depending on the size
of the alphabet). When combined, these bounds imply precision O(N−η), for
η =η(π ,δ)>0. However, η(π ,δ) is arbitrarily small for appropriate values of
the parameters, since in the known bound (115) ρ(π ,δ) is arbitrarily close to 1
for appropriate values of the parameters.

5.2 The nonsymmetric case

Let us now derive a similar algorithm for the nonsymmetric chain. Parallelling
the development of the previous section, the idea is to couple the process pair
{(Yi,Ui)} with a quantized process pair {(Ỹi, Ũi)} evolving as

Ỹi =Q

(
ri log

1−δ

δ
+sif (Ũi−1)+(1−si)f (Ỹi−1)

)
(116)

and

Ũi =Q

(
qi log

1−δ

δ
+(1− ti)f (Ũi−1)+ tif (Ỹi−1)

)
, (117)

where {qi}, {ri}, {si}, and {ti} are as defined in Theorem 4.5. We have

|Ỹi −Yi| ≤ ε+si|f (Ũi−1)− f (Ui−1)|+(1−si)|f (Ỹi−1)− f (Yi−1)| (118)

≤ ε+max{|f (Ũi−1)− f (Ui−1)|, |f (Ỹi−1)− f (Yi−1)|} (119)

≤ ε+c(π01,π10)max{|Ũi−1 −Ui−1|, |Ỹi−1 −Yi−1|}, (120)

with c(π01,π10) defined in (20). Since the right-hand side will similarly also
bound |Ũi −Ui|, we have

max{|Ũi −Ui|, |Ỹi −Yi|} ≤ ε+c(π01,π10)max{|Ũi−1 −Ui−1|, |Ỹi−1 −Yi−1|}.
(121)
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Iterating gives, similarly as in (110),

max{|Ũi −Ui|, |Ỹi −Yi|} ≤ ε

1−c(π01,π10)

× max{|Ũ0 −U0|, |Ỹ0 −Y0|} ≤ εc̃(π01,π10,δ),

(122)

where c̃(π01,π10,δ)= 1
1−c(π01,π10)

maxx∈support(Ui)∪support(Yi) |Q(x)−x|. It fol-
lows similarly as in (111) that by letting Ĥ (π01,π10,δ) denote the expectation
on the right-hand side of (42), with Ỹi replacing Y and Ũi replacing U , if the
quantizer used has resolution ε, then

∣∣∣H (Z)− Ĥ (π01,π10,δ)
∣∣∣≤O(ε). (123)

Similarly as in the symmetric case, most of the burden in computing
Ĥ (π01,π10,δ) is in computing the stationary distribution for (Ỹi, Ũi), which is
a Markov chain with state space of sizeM 2 and transition kernel with the same
16 nonzero entries per line, regardless of (sufficiently large) M . Done brute
force (without exploiting the structure of the transition matrix), this requires no
more than (M 2)3 =M 6 operations. Since ε =O(1/M ), we get by (123) preci-
sion O

(
1
M

)
for O(M 6) operations, or similarly as in Theorem 4.24, precision

O
(

1
N1/6

)
for N operations. As in the previous subsection, the analysis can be

refined to improve the order of this polynomial dependence. Beyond possible
refinements that were alreadymentioned for the symmetric case, further simpli-
fication is possible for the nonsymmetric case by noting that rather than the joint
distribution of (Ỹi, Ũi), it is only its two marginals that are needed. The analysis
given, however, suffices to make the main point, which is the independence of
the order of the polynomial on the process parameters.

5.3 Larger alphabet sizes

Extending the above approximation algorithm and its analysis to larger state
and observation alphabet sizes is nontrivial and we leave it for future work.
Briefly, however, such an extension would first require an extension of the
alternative Markov process, the components of which would be (|X | − 1)-
dimensional vectors, corresponding to the conditional probability distribution
of the underlying state variables conditioned on current and past observations.
The components of the alternative Markov process would then capture the
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evolution of this conditional probability distribution conditioned on the possible
values of the underlying state variable.An approximation algorithm could then
be obtained by applying vector quantization to the vector-valued components
of the process, in analogy to the scalar quantization step above. As noted for
a similar algorithm in [32], the complexity of such an algorithm for a given
approximation accuracy would scale rather adversely with the state alphabet
size |X | since, by vector quantization theory (also rate distortion theory), the
number of quantization points required for a given level of quantization error
per dimension of the Markov process components increases exponentially with
the dimension, which is |X | − 1. The complexity scaling, however, is much
more benign in the observation alphabet size |Z|.

Interestingly, the reverse seems to be true for the Cover and Thomas
approximation bounds. The complexity of computing these bounds for a given
conditioning history n, assuming that observation sequence probabilities are
computed efficiently using the well-known “forward” recursion, is easily seen
to beproportional to |Z|n(n|X |2).Thus, the required computation increases con-
siderably faster with the observation alphabet size than with the state alphabet
size, for even moderate n.

The above considerations suggest that, among deterministic algorithms, a
quantization-based approach, along the lines we have presented, may be the
best choice for approximating the entropy rate when |X | is small, while the
Cover and Thomas bounds may be the better choice when |X | is large but |Z|
is small. A rigorous comparison of the precision–complexity tradeoff of these
two approaches for larger alphabet sizes is left for future work.

6 Conclusions and Discussion

We have presented an approach to approximating the entropy rate of a hidden
Markov process via approximations of the stationary distribution of a related
Markov process. It was illustrated how the approach leads to characterization of
the entropy rate in various asymptotic regimes. It was seen that a refinement of
the bounding technique in [29], whereby the support is partitioned into a small
number of nonoverlapping regions with easily computed probabilities, can lead
to significantly tighter bounds and finer characterizations of the asymptotics. It
was argued that the bounds derived can be further tightened by further refining
this partition leading, in various asymptotic regimes, to characterization of
higher-order terms. Finally, a deterministic algorithm for approximating the
entropy rate of the HMP was derived. This scheme, based on approximating
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the stationary distribution of the related Markov process, was shown to achieve
the best known precision–complexity tradeoff.

Though focus was on the binary case, the approach developed for bounding
the entropy rate, for asymptotic characterizations, and for approximation are
applicable in the general finite-alphabet case.

Results for some of the asymptotic regimes (e.g., the “high SNR” regime
when π10 = 1) were shown to be derivable also via the Cover and Thomas
bounds [5, Section 4.5]. On the other hand, for other regimes (e.g., the “low
SNR” one), our bounds were shown to yield precise characterizations of the
asymptotics, while the Cover and Thomas bounds of arbitrarily high order were
shown to fall short of implying such characterizations.

A key ingredient in the bounds developed is bounding the support of the
belief process. As such, the asymptotic regimes characterized via these bounds
are ones that exhibit a “concentration of the support”, meaning that the con-
ditional distribution of the state given the past and present HMP components
lies, with probability one, in a very small subset of the simplex of possible
distributions. For example, in the “high SNR” regime, this belief was seen to
fall, with probability one, in a region of the simplex corresponding to very high
certainty (that the value is either 0 or 1, depending primarily on the present
observation and very weakly on the remaining ones from the past). In the “low
SNR” regime, the belief falls, with probability one, in a small region of the sim-
plex corresponding to very low certainty. In the “almost memoryless” regime,
as a final example, the belief falls in a small region, concentrated near the
belief of a “singlet filter” [6] (which in the binary case consists of two point
masses).

Asymptotics of the entropy rate can be obtained also in regimes that lack
this concentration property via a more delicate study of the dynamics of the
alternative Markov processes of Subsection 2.3. One such example is the “rare
transitions” regime1 considered in [26], and recently conclusively characterized
in [31]. As is argued in [26], this regime is another example of one whose
asymptotics are not captured by the Cover and Thomas bounds of arbitrarily
high order.

1 In this regime, “most” of the time, between the transitions, there is high certainty regarding the
value of the underlying state yet, every once in a while, around the occurrences of state
transitions, an observer of the HMP will be uncertain regarding the exact location of the
transition and, hence, the state values in the neighborhood of these transitions. Consequently,
the support of the belief process is a large part of the simplex, which includes regions
corresponding to varying degrees of certainty.
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Appendices

A Proof of Theorem 4.11

We first argue that the bounds of Lemma 4.10 continue to hold (and are relaxed)
when A,B,a,b are replaced, respectively, by Ã, B̃, ã, b̃ that have the following
simpler expressions:

Ã= log
1−π

π
+ log

1−δ

δ
, (A.1)

b̃= −f (Ã)+ log
1−δ

δ
, (A.2)

ã= −f (b̃)+ log
1−δ

δ
, (A.3)

and

B̃= f (b̃)+ log
1−δ

δ
. (A.4)

To see this, note that Ã= f (∞)+ log 1−δ
δ

≥ f (A)+ log 1−δ
δ

= A, implying by

the monotonicity of f that b̃≤ b, in turn implying that both ã ≥ a and B̃≤B.

Combined with the decreasing monotonicity of hb
(

ex

1+ex ∗π ∗δ
)
for x>0, this

implies that indeed substituting the tilded quantities in (54) increases the upper
bound and decreases the lower bound. Noting now that

(1−δ)[π ∗(1−δ)]+δ[π ∗δ] =1−π −δ(2−4π)+δ22(1−2π), (A.5)

(1−δ)[π ∗δ]+δ[π ∗(1−δ)] =π +δ(2−4π)−δ22(1−2π), (A.6)

and

1

1+eÃ
∼ π

1−π
δ,

we obtain

hb

(
eÃ

1+eÃ
∗π ∗δ

)
=hb

(
1

1+eÃ
∗π ∗δ

)

=hb

([
π

1−π
δ(1+o(1))

]
∗π ∗δ

)
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=hb

([(
π

1−π
+1

)
δ(1+o(1))

]
∗π

)

=hb

(
π + 1−2π

1−π
δ+o(δ)

)

=hb(π)+h′
b(π)

1−2π

1−π
δ+o(δ). (A.7)

Similarly,

1

1+eb̃
∼ 1

eb̃
∼ eÃ(1−π)+π

eÃπ +(1−π)

δ

1−δ
∼ (1−π)

π
δ,

1

1+eã
∼ 1

eã
∼ eb̃(1−π)+π

eb̃π +(1−π)

δ

1−δ
∼ (1−π)

π
δ,

and

1

1+eB̃
∼ 1

eB̃
∼ eb̃π +(1−π)

eb̃(1−π)+π

δ

1−δ
∼ π

1−π
δ.

Thus, we get also

hb

(
eã

1+eã
∗π ∗δ

)
= hb

(
1

1+eã
∗π ∗δ

)

= hb

([
1−π

π
δ(1+o(1))

]
∗π ∗δ

)

= hb

([
1

π
δ(1+o(1))

]
∗π

)

= hb

(
π + 1−2π

π
δ+o(δ)

)

= hb(π)+h′
b(π)

1−2π

π
δ+o(δ) (A.8)

and similarly obtain

hb

(
eb̃

1+eb̃
∗π ∗δ

)
=hb(π)+h′

b(π)
1−2π

π
δ+o(δ) (A.9)

and

hb

(
eB̃

1+eB̃
∗π ∗δ

)
=hb(π)+h′

b(π)
1−2π

1−π
δ+o(δ). (A.10)
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Combining Lemma 4.10 (with Ã, B̃, ã, b̃ replacing A,B,a,b) with (A.5), (A.6),
(A.7), (A.8), (A.9), and (A.10) gives

H (Z)= [(1−π)−δ(2−4π)+o(δ)]
[
hb(π)+h′

b(π)
1−2π

1−π
δ+o(δ)

]

+ [π +δ(2−4π)+o(δ)]
[
hb(π)+h′

b(π)
1−2π

π
δ+o(δ)

]

=hb(π)+δ
[
h′
b(π)(1−2π)−(2−4π)hb(π)+h′

b(π)(1−2π)

+(2−4π)hb(π)]+o(δ)

=hb(π)+δ2h′
b(π)(1−2π)+o(δ)

=hb(π)+δ2(1−2π) log2
1−π

π
+o(δ). �

B Proof of Theorem 4.12

It is easily checked that in this regime f
(
log 1−δ

δ
+o(1)

)= 4ε(1−2δ)+o(ε),
implying that

A= f (A)+ log
1−δ

δ
= log

1−δ

δ
+4ε(1−2δ)+o(ε), (A.11)

b= −f (A)+ log
1−δ

δ
= log

1−δ

δ
−4ε(1−2δ)+o(ε), (A.12)

a= −f (b)+ log
1−δ

δ
= log

1−δ

δ
−4ε(1−2δ)+o(ε), (A.13)

and

B= f (b)+ log
1−δ

δ
= log

1−δ

δ
+4ε(1−2δ)+o(ε). (A.14)

It follows that
1

1+eA
= δ+4δ(1−δ)(1−2δ)ε+o(ε), (A.15)

1

1+eB
= δ+4δ(1−δ)(1−2δ)ε+o(ε), (A.16)

1

1+ea
= δ−4δ(1−δ)(1−2δ)ε+o(ε), (A.17)

and
1

1+eb
= δ−4δ(1−δ)(1−2δ)ε+o(ε). (A.18)
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Now

(1−δ)[π ∗(1−δ)]+δ[π ∗δ] = (1−δ)[(1/2−ε)∗(1−δ)]+δ[(1/2−ε)∗δ]
= 1

2
+ε(1−2δ)2 (A.19)

and

(1−δ)[π ∗δ]+δ[π ∗(1−δ)] = 1

2
−ε(1−2δ)2. (A.20)

Now

1

1+eA
∗π ∗δ = [δ+4δ(1−δ)(1−2δ)ε+o(ε)]∗

(
1

2
−ε

)
∗δ

= 1

2
−ε(1−2δ)2 +ε28δ(1−δ)(1−2δ)2 +o(ε2) (A.21)

and, similarly,

1

1+eB
∗π ∗δ = [δ+4δ(1−δ)(1−2δ)ε+o(ε)]∗

(
1

2
−ε

)
∗δ

= 1

2
−ε(1−2δ)2 +ε28δ(1−δ)(1−2δ)2 +o(ε2), (A.22)

1

1+ea
∗π ∗δ = [δ+4δ(1−δ)(1−2δ)ε+o(ε)]∗

(
1

2
−ε

)
∗δ

= 1

2
−ε(1−2δ)2 −ε28δ(1−δ)(1−2δ)2 +o(ε2), (A.23)

and

1

1+eb
∗π ∗δ = [δ+4δ(1−δ)(1−2δ)ε+o(ε)]∗

(
1

2
−ε

)
∗δ

= 1

2
−ε(1−2δ)2 −ε28δ(1−δ)(1−2δ)2 +o(ε2). (A.24)
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It follows now from Lemma 4.10, (A.49), the above displays and

hb

(
1

2
−ε

)
=1+ 1

2
h′′
b(1/2)ε

2 + 1

4!h
(4)
b (1/2)ε4 +O(ε6)=1− 2

log2
ε2 +O(ε4)

(A.25)

(note that hb is symmetric around 1/2, so odd-ordered terms annihilate) that

H (Z) =
[
1

2
+ε(1−2δ)2

]

×hb

(
1

2
−ε(1−2δ)2 +ε28δ(1−δ)(1−2δ)2 +o(ε2)

)
(A.26)

+
[
1

2
−ε(1−2δ)2

]

×hb

(
1

2
−ε(1−2δ)2 −ε28δ(1−δ)(1−2δ)2 +o(ε2)

)
(A.27)

=
[
1

2
+ε(1−2δ)2

]

×
{
1− 2

log2

[
ε(1−2δ)2 −ε28δ(1−δ)(1−2δ)2

]2 +o(ε3)

}
(A.28)

+
[
1

2
−ε(1−2δ)2

]

×
{
1− 2

log2

[
ε(1−2δ)2 +ε28δ(1−δ)(1−2δ)2

]2 +o(ε3)

}
. (A.29)

So,

1−H (Z) = 2

log2

{[
1

2
+ε(1−2δ)2

]

×[ε(1−2δ)2 −ε28δ(1−δ)(1−2δ)2
]2

(A.30)

+
[
1

2
−ε(1−2δ)2

][
ε(1−2δ)2 +ε28δ(1−δ)(1−2δ)2

]2}

+o(ε3) (A.31)

= 2

log2
ε2(1−2δ)4 +o(ε3). (A.32)
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C Proof of Theorem 4.13

Proof. By (A.5) and (A.6),

(1−δ)[π ∗(1−δ)]+δ[π ∗δ] = 1−π −
(
1

2
−ε

)
(2−4π)+

(
1

2
−ε

)2

2(1−2π) = 1

2
+ε22(1−2π) (A.33)

and

(1−δ)[π ∗δ]+δ[π ∗(1−δ)] = π +
(
1

2
−ε

)
(2−4π)−

(
1

2
−ε

)2

2(1−2π) = 1

2
−ε22(1−2π). (A.34)

Now, recalling (45),

A= log


(α−1)

1−π

2π
+
√

α+
[
(α−1)

1−π

2π

]2 ,

where α
�= 1−δ

δ
= 1+2ε

1−2ε
=1+4ε+o(ε), so

A = log


(4ε+o(ε))

1−π

2π
+
√
1+4ε+o(ε)+

[
(4ε+o(ε))

1−π

2π

]2
(A.35)

= log

[
(4ε+o(ε))

1−π

2π
+√1+4ε+o(ε)

]
(A.36)

= log

[
(4ε+o(ε))

1−π

2π
+1+2ε+o(ε)

]
(A.37)

= log

[
1+ε

(
4 · 1−π

2π
+2

)
+o(ε)

]
(A.38)

= log

[
1+ε · 2

π
+o(ε)

]
(A.39)

= ε · 2
π

+o(ε), (A.40)

implying that

1

1+eA
= 1

2+ε · 2
π

+o(ε)
= 1

2
− 1

2π
ε+o(ε). (A.41)
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Now, recalling that f (0)=0 and using (19),

b = −f (A)+ log
1−δ

δ
= −f ′(0)A+o(A)+ log[1+4ε+o(ε)]

= −(1−2π)ε · 2
π

+4ε+o(ε)= (8−2/π)ε+o(ε), (A.42)

implying that

1

1+eb
= 1

2+ε ·(8−2/π)+o(ε)
= 1

2
−
(
2− 1

2π

)
ε+o(ε). (A.43)

Moving to a, we have

a = −f (b)+ log
1−δ

δ
= −f ′(0)b+o(b)+ log[1+4ε+o(ε)]

= −(1−2π)(8−2/π)ε+4ε+o(ε)= (16π +2/π −8)ε+o(ε), (A.44)

implying that

1

1+ea
= 1

2+ε ·(16π +2/π −8)+o(ε)
= 1

2
−
(
4π + 1

2π
−2

)
ε+o(ε).

(A.45)
Finally,

B = f (b)+ log
1−δ

δ
= f ′(0)b+o(b)+ log[1+4ε+o(ε)]

= (1−2π)(8−2/π)ε+4ε+o(ε)= (−16π −2/π +16)ε+o(ε), (A.46)

implying that

1

1+eB
= 1

2+ε ·(−16π −2/π +16)+o(ε)
= 1

2
−
(

−4π − 1

2π
+4

)
ε+o(ε).

(A.47)
Using the easily verified identity

(
1

2
−cε

)
∗π ∗

(
1

2
−ε

)
= 1

2
−2c(1−2π)ε2, (A.48)

the Taylor expansion

hb

(
1

2
−ε

)
=1+ 1

2
h′′
b(1/2)ε

2 +o(ε2)=1− 2

log2
ε2 +o(ε2), (A.49)
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and combining with (A.33), (A.34), (A.41), and (A.45) gives

{(1−δ)[π ∗(1−δ)]+δ[π ∗δ]}hb
(

eA

1+eA
∗π ∗δ

)

+{(1−δ)[π ∗δ]+δ[π ∗(1−δ)]}hb
(

ea

1+ea
∗π ∗δ

)

=
[
1

2
+ε22(1−2π)

]
hb

(
1

2
− 1−2π

π
ε2 +o(ε2)

)
(A.50)

+
[
1

2
−ε22(1−2π)

]

×hb

(
1

2
−2

(
4π + 1

2π
−2

)
(1−2π)ε2 +o(ε2)

)
(A.51)

=
[
1

2
+ε22(1−2π)

]{
1− 2

log2

[
1−2π

π
ε2
]2

+o(ε4)

}

+
[
1

2
−ε22(1−2π)

]
(A.52)

×
{
1− 2

log2

[
2

(
4π + 1

2π
−2

)
(1−2π)ε2

]2
+o(ε4)

}
(A.53)

= 1− 1

log2

{[
1−2π

π

]2
+
[
2

(
4π + 1

2π
−2

)
(1−2π)

]2}
ε4 +o(ε4)

(A.54)

= 1− 2(1−2π)2(1−4π +16π2 −32π3 +32π4)

π2 log2
ε4 +o(ε4). (A.55)

Similarly, using (A.43) and (A.47) in lieu of (A.41) and (A.45), we obtain

{(1−δ)[π ∗(1−δ)]+δ[π ∗δ]}hb
(

eB

1+eB
∗π ∗δ

)

+ {(1−δ)[π ∗δ]+δ[π ∗(1−δ)]}hb
(

eb

1+eb
∗π ∗δ

)

=
[
1

2
+ε22(1−2π)

]

×
{
1− 2

log2

[
2

(
−4π − 1

2π
+4

)
(1−2π)ε2

]2
+o(ε4)

}
(A.56)
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+
[
1

2
−ε22(1−2π)

]{
1− 2

log2

[
2

(
2− 1

2π

)
(1−2π)ε2

]2
+o(ε4)

}

=1− 1

log2

{[
2

(
−4π − 1

2π
+4

)
(1−2π)

]2
(A.57)

+
[
2

(
2− 1

2π

)
(1−2π)

]2}
ε4

+o(ε4) (A.58)

=1− 2(1−2π)2(1−12π +48π2 −64π3 +32π4)

π2 log2
ε4 +o(ε4). (A.59)

Combining (A.55) and (A.59) with Lemma 4.10 completes the proof. �

D Proof of Theorem 4.14 via the Cover and Thomas bounds

In this section, we show that the result of Subsection 4.1 can be obtained
using the upper and lower bounds on the entropy rate of an HMM given in
the book of Cover and Thomas. These upper and lower bounds are H (Zk |Zk)

and H (Zk |Zk
2 ,X1), respectively, and are valid for any k. We analyze the asymp-

totic behavior of these bounds for k = 3 for the setting of Section 4.1, and
show that the factor multiplying the δ log2 1/δ term in both the lower and upper
bounds agrees with that given in Theorem 4.14.

We first treat the upper bound H (Z3|Z2,Z1) and expand it as H (Z3,Z2,Z1)−
H (Z2,Z1). In each resulting joint entropy the −p(·) log2 p(·) terms contribut-
ing to the δ log2 1/δ factor are those for which p(z3,z2,z1) and p(z2,z1) tend to
zero no faster than δ. The remaining −p(·) log2 p(·) terms contribute to higher-
order asymptotics and we ignore these. The �(δ) probabilities arise from those
sequences (z3,z2,z1) and (z2,z1) that have zero probability under the Markov
chain distribution PX3X2X1 , and differ from at least one nonzero probability
sequence, again under the Markov chain distribution, in precisely one posi-
tion. The factor contributed to the δ log2 1/δ term by any such zero probability
sequence is then the probability, under the Markov chain distribution, of the set
of sequences at Hamming distance 1. The sequences at Hamming distance 2 or
greater contribute terms of δ2 log2 1/δ or smaller.

Let m0 =Pr(Xi = 0) = π10/(π01 +π10) and m1 =Pr(Xi = 1) = 1−m0. For
the H (Z2,Z1) term, (1,1) is the only zero probability sequence and the prob-
ability of the Hamming distance 1 sequences (1,0) and (0,1) is m0π01 +m1.
For the H (Z3,Z2,Z1) term, there are three zero probability sequences (1,1,1),
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(1,1,0), and (0,1,1). For (1,1,1), the only Hamming distance 1 sequence with
non-zero probability is (1,0,1) and its probability is m1π01. For (1,1,0), the
non-zero probability Hamming distance 1 sequences are (0,1,0) and (1,0,0)
with a combined probability of m0π01 +m0π01π01. Similarly, for (0,1,1), the
contributing sequences are (0,1,0) and (0,0,1) with a combined probability of
m0π01 +m1π01. Thus, the overall factor multiplying the δ log2 1/δ term is

m1π01 +m0π01 +m0π01π01 +m0π01 +m1π01 −m0π01 −m1

=m0π01π01 +m0π01 (A.60)

= π01

1+π01
(2−π01). (A.61)

The lower bound H (Z3|Z2,X1) is similarly expanded to H (Z3,Z2,X1) −
H (Z2,X1) and the two joint entropies are analyzed as above. In this case, the
Hamming distance 1 sequences must differ from the zero probability sequences
(z3,z2,x1) and (z2,x1)only in the zi positions. For theH (Z2,X1) term, again (1,1)
is the only zero probability sequence, and the only allowed nonzero probability
Hamming distance 1 sequence under the new restriction is (0,1), the probability
of which ism1. For theH (Z3,Z2,X1) term, the three zero probability sequences
are again (1,1,1), (1,1,0), and (0,1,1). The contributions from (1,1,1) and
(1,1,0) are as above. For (0,1,1), the only contributing Hamming distance 1
sequence is (0,0,1) (since the sequence (0,1,0) differs in the x position), and
its probability is m1π01. The overall factor multiplying δ log2 1/δ for the lower
bounds is

m1π01 +m0π01 +m0π01π01 +m1π01 −m1 =m0π01π01 +m0π01 (A.62)
π01

1+π01
(2−π01). (A.63)

The claim of Theorem 4.14 then follows from the agreement of the upper and
lower bound factors. �

E Proofs of lemmas used in proving theorem 4.14

Proof of Lemma 4.16. As noted, −r(π01) = f (−∞) ≥ f (r(δ)− r(π01)). This
fact together with the fact that f (x) is decreasing shows that I0 and I2 are non-
empty. The other two intervals are handled by similarly noting that −r(π01)≥
f (−r(δ)−r(π01)). �

Proof of Lemma 4.17. For x large and positive the difference between f (x)
and −x+ logπ01 converges to 0. Therefore, δ tends to 0, the right end point
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of I0 behaves like −r(δ)+ f (r(π01)+ logπ01)= −r(δ)+ f (logπ01)= −r(δ)−
r(π01)− log2, while the left end point of I1 behaves like −r(δ)− f (−∞) =
−r(δ)− r(π01). It thus follows that I0 < I1 for all sufficiently small δ > 0. The
right end point of I1 tends to −∞, while the left end point of I2, based on
the preceding observations, tends to r(π01)+ logπ01 = logπ01. Consequently,
I1< I2 for all sufficiently small δ>0. Finally, the right end point of I2 (similarly
to the right end point of I0) behaves like r(δ)−r(π01)− log2, while the left end
point of I3 behaves like r(δ)−r(π01), implying here as well that I2 < I3 for all
sufficiently small δ >0. �

Proof of Lemma 4.18. As a consequence of the above upper bound on f (x),
it follows from the transitions of {(Ui,Yi)} that the supports of PU and PY are
bounded from above by

u= log
δ

δ
+ log

π01

π01
= r(δ)−r(π01).

Furthermore, since f (x) ≥ f (u) for x≤ u, the Ui and Yi are also bounded from
below by

�= −r(δ)+ f (u).

Next, we argue that the values of qi, ti, ri, qi−1, and ri−1, appearing in the
Markov chain transitions, determine intervals among Ij, j=0,1,2,3, into which
Ui and Yi must fall and do so according to the table below.

I Yi Ui

I0 {(ri,qi−1)= (−1,1)} {(qi, ti,qi−1)= (−1,0,1)}∪{(qi, ti,ri−1)= (−1,1,1)}
I1 {(ri,qi−1)= (−1,−1)} {(qi, ti,qi−1)= (−1,0,−1)}∪{(qi, ti,ri−1)= (−1,1,−1)}
I2 {(ri,qi−1)= (1,1)} {(qi, ti,qi−1)= (1,0,1)}∪{(qi, ti,ri−1)= (1,1,1)}
I3 {(ri,qi−1)= (1,−1)} {(qi, ti,qi−1)= (1,0,−1)}∪{(qi, ti,ri−1)= (1,1,−1)}

(A.64)

The entries in the row corresponding to interval Ij and columns corresponding to
Yi and Ui specify the values of the above variables that force Yi and Ui, respec-
tively, to fall in Ij. The table is derived by inspecting the transitions of {(Ui,Yi)}.
As a representative example of how the table is filled, we consider the entry in
row I2 and column Ui and show how {(qi, ti,qi−1) = (1,0,1)}∪{(qi, ti,ri−1) =
(1,1,1)} implies that Ui ∈ I2. In the case that {(qi, ti,qi−1) = (1,0,1)}, the
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transitions of {(Ui,Yi)} imply that

Ui ∈ [ min
x∈[�,u]r(δ)+ f (r(δ)+ f (x)), max

x∈[�,u]r(δ)+ f (r(δ)+ f (x))] (A.65)

(a)⊂ [r(δ)+ f (r(δ)+ f (−∞)),r(δ)+ f (r(δ)+ f (u))] (A.66)

= [r(δ)+ f (r(δ)−r(π01)),r(δ)+ f (r(δ)+ f (r(δ)−r(π01)))], (A.67)

where (a) follows from the fact noted above that f (x) is decreasing in x. The
case of {(qi, ti,ri−1)= (1,1,1)} and the other entries of the table are obtained in
a similar fashion.

Lemma 4.17 guarantees that for all sufficiently small δ >0, the intervals Ij,
j=0,1,2,3, are disjoint. From this and the fact that the events in each column
of the above table are exhaustive, we can conclude that for all sufficiently small
δ > 0, the probabilities of the interval Ij under PYi and PUi , for all i> 2, and
hence under PY and PU , coincide with the probabilities of the corresponding
events in the respective columns of Table A.64. The entries of Table 62 are
simply the probabilities of the events in Table A.64 as specified by the Markov
chain transitions. �

References

[1] L. Arnold, L. Demetrius, and M. Gundlach. Evolutionary formalism for products
of positive random matrices. Ann. Appl. Prob., 4 (1994) 859–901

[2] T. Berger and J. D. Gibson. Lossy source coding. IEEE Trans. Inf. Theory, 44(6)
(1998) 2693–2723

[3] J. J. Birch. Approximations for the entropy for functions of Markov chains. Ann.
Math. Statist., 33 (1962) 930–938

[4] D. Blackwell. The entropy of functions of finite-state Markov chains. In Trans.
First Prague Conf. Information Theory, Statistical Decision Functions, Random
Processes, 1957, pp. 13–20

[5] T. M. Cover and J. A. Thomas. Elements of Information Theory, 2nd edn.. Wiley,
New Jersey, 2006

[6] J. L. Devore.Anote on the observation of aMarkov source through a noisy channel.
IEEE Trans. Inf. Theory 20 (1974) 762–764

[7] S. Egner, V. B. Balakirsky, L. M. G. M. Tolhuizen, S. P. M. J. Baggen, and H. D. L.
Hollmann. On the entropy rate of a hidden Markov model. In Proc. Int. Symp.
Information Theory, Chicago, IL, June 2004, p. 12

[8] E. O. Elliott. Estimates of error rates for codes on burst-noise channels. Bell Syst.
Tech. J. 42 (1963) 1977–1997

[9] Y. Ephraim and N. Merhav. Hidden Markov processes. IEEE Trans. Inf. Theory,
48(6) (2002) 1518–1569



MARCUSBRIAN: “CHAP04” — 2011/1/18 — 11:28 — PAGE 169 — #53

Entropy rate of binary hidden Markov processes 169

[10] E. N. Gilbert. Capacity of a burst-noise channel. Bell Syst. Tech. J. 39 (1960)
1253–1265

[11] F. Le Gland and L. Mevel. Exponential forgetting and geometric ergodicity in
hidden Markov models. Math. Control Signals Syst. 13(1) (2000) 63–93

[12] G. H. Golub and C. F. Van Loan. Matrix Computations, third edn. Johns Hopkins,
Baltimore, MD, 1996

[13] R.M. Gray. Information rates of autoregressive processes. IEEETrans. Inf. Theory
16(2) (1970) 412–421

[14] R. M. Gray. Rate distortion functions for finite-state finite-alphabet Markov
sources. IEEE Trans. Inf. Theory 17(2) (1971) 127–134

[15] G. Han and B. Marcus. Analyticity of entropy rate of hidden Markov chains. IEEE
Trans. Inf. Theory 52(12) (2006) 5251–5266

[16] G. Han and B. Marcus. Derivatives of entropy rate in special families of hidden
Markov chains. IEEE Trans. Inf. Theory 53(7) (2007) 2642–2652

[17] G. Han and B. Marcus. Asymptotics of noisy constrained channel capacity. Ann.
Appl. Prob. 19(3) (2009) 1063–1091

[18] G.Han,B.Marcus, andY.Peres.Anote ona complexHilbertmetricwith application
to domain of analyticity for entropy rate of hiddenMarkov processes. This volume,
2011
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