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Interpretations of Directed Information in Portfolio
Theory, Data Compression, and Hypothesis Testing
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Abstract—We investigate the role of directed information in
portfolio theory, data compression, and statistics with causality
constraints. In particular, we show that directed information is
an upper bound on the increment in growth rates of optimal
portfolios in a stock market due to causal side information. This
upper bound is tight for gambling in a horse race, which is an
extreme case of stock markets. Directed information also char-
acterizes the value of causal side information in instantaneous
compression and quantifies the benefit of causal inference in joint
compression of two stochastic processes. In hypothesis testing,
directed information evaluates the best error exponent for testing
whether a random process � causally influences another process
� or not. These results lead to a natural interpretation of directed
information ��� �

� ��� as the amount of information that
a random sequence � � � ���� ��� � � � � ��� causally provides
about another random sequence �� � ������� � � � � ���. A
new measure, directed lautum information, is also introduced and
interpreted in portfolio theory, data compression, and hypothesis
testing.

Index Terms—Causal conditioning, causal side information, di-
rected information, hypothesis testing, instantaneous compression,
Kelly gambling, lautum information, portfolio theory.

I. INTRODUCTION

M UTUAL information between two random
variables and arises as the canonical answer to a

variety of questions in science and engineering. Most notably,
Shannon [1] showed that the capacity , the maximal data rate
for reliable communication, of a discrete memoryless channel

with input and output is given by

(1)

Shannon’s channel coding theorem leads naturally to the opera-
tional interpretation of mutual information

as the amount of uncertainty about that can be re-
duced by observing , or equivalently, the amount of informa-
tion that can provide about . Indeed, mutual information
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plays a central role in Shannon’s random coding ar-
gument, because the probability that independently drawn se-
quences and
“look” as if they were drawn jointly decays exponentially in

with as the first order in the exponent. Shannon
also proved a dual result [2] that the rate distortion function

, the minimum compression rate to describe a source
by its reconstruction within average distortion , is given
by . In another duality result (the
Lagrange duality this time) to (1), Gallager [3] proved the min-
imax redundancy theorem, connecting the redundancy of the
universal lossless source code to the maximum mutual infor-
mation (capacity) of the channel with conditional distribution
consisting of the set of possible source distributions (cf. [4]).

It has been shown that mutual information plays important
roles in problems beyond those related to describing sources
or transferring information through channels. Among the most
celebrated of such examples is the use of mutual information in
gambling. In 1956, Kelly [5] showed that if a horse race outcome
can be represented as an independent and identically distributed
(i.i.d.) random variable , and the gambler has some side infor-
mation relevant to the outcome of the race, then the mutual in-
formation captures the difference between growth rates
of the optimal gambler’s wealth with and without side informa-
tion . Thus, Kelly’s result provides an interpretation of mutual
information as the financial value of side information

for gambling in the horse race .
In order to tackle problems arising in information systems

with causally dependent components, Massey [6], inspired by
Marko’s work [7] on bidirectional communication, coined the
notion of “directed information” from to , defined as

(2)

and showed that the normalized maximum directed information
upper bounds the capacity of channels with feedback. Subse-
quently, it was shown that directed information, as defined by
Massey, indeed characterizes the capacity of channels with feed-
back [8]–[16] and the rate distortion function with feedforward
[17]. Note that directed information (2) can also be rewritten as

(3)

each term of which corresponds to the achievable rate at time
given side information (cf. [11] for the details).
Recently, directed information has also been used in models of
computational biology [18]–[21] and in the context linear pre-
diction representation for the rate distortion function of a sta-
tionary Gaussian source [22].
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The main contribution of this paper is showing that directed
information has natural interpretations in portfolio theory, com-
pression, and statistics when causality constraints exist. In stock
market investment (Section III), directed information between
the stock price and side information is an upper bound
on the increase in growth rates due to causal side informa-
tion. This upper bound is tight when specialized to gambling
in horse races. In data compression (Section IV), we show that
directed information characterizes the value of causal side infor-
mation in instantaneous compression and it also quantifies the
role of causal inference in joint compression of two stochastic
processes. In hypothesis testing (Section V), we show that di-
rected information is the exponent of the minimum type II error
probability when one is to decide whether has causal influ-
ence on or not. Finally, we introduce the notion of directed
lautum1 information (Section VI), which extends the notion of
lautum information by Palomar and Verdú [23] to accommodate
causality. We briefly discuss its role in horse race gambling, data
compression, and hypothesis testing.

II. PRELIMINARIES: DIRECTED INFORMATION AND

CAUSAL CONDITIONING

Throughout this paper, we use the causal conditioning nota-
tion developed by Kramer [8]. We denote by
the probability mass function of causally
conditioned on for some integer , which is defined
as

(4)

By convention, if , then is set to null, i.e., if
then is just . In particular, we use
extensively the cases

(5)

(6)

Using the chain rule, it is easily verified that

(7)

The causally conditional entropy and
are defined respectively as

(8)

1Lautum (“elegant” in Latin) is the reverse spelling of “mutual” as aptly
coined in [23].

Under this notation, directed information defined in (2) can be
rewritten as

(9)

which hints, in a rough analogy to mutual informa-
tion, a possible interpretation of directed information

as the amount
of information that causally available side information can
provide about .

Note that the channel capacity results involve the term
, which measures the amount of information

transfer over the forward link from to . In gambling,
however, the increase in growth rate is due to the side infor-
mation (the backward link), and, therefore, the expression

appears. Throughout the paper we also use the
notation which denotes the directed infor-
mation between the -tuple , i.e., the null symbol
followed by , and , that is,

(10)

Using the causal conditioning notation, given in (8), the directed
information can be written as

(11)

Directed information and mutual information obey the conser-
vation law

(12)

which was established by Massey and Massey [24]. The conser-
vation law is a direct consequence of the chain rule (7), and we
show later in Section IV-B that it has a natural interpretation as
a conservation of a mismatch cost in data compression.

The causally conditional entropy rate of a random process
given another random process and the directed information
rate from to are defined respectively as

(13)

(14)

when these limits exist. In particular, when is stationary
ergodic, both quantities are well-defined, namely, the limits in
(13) and (14) exist [8, Properties 3.5 and 3.6].

III. PORTFOLIO THEORY

Here we show that directed information is an upper bound on
the increment in growth rates of optimal portfolios in a stock
market due to causal side information. We start by considering
a special case of gambling in a horse race market and show that
the upper bound is tight. Then we consider the general case of
stock market investment.

A. Horse Race Gambling With Causal Side Information

Assume that there are racing horses and let denote the
winning horse at time , i.e., . At time
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, the gambler has some side information relevant to the perfor-
mance of the horses, which we denote as . For instance, a pos-
sible side information may be the health condition of the horses
and the jockeys on the day of the race. We assume that the gam-
bler invests all his/her capital in the horse race as a function of
the previous horse race outcomes and side information
up to time . Let be the portion of wealth that the
gambler bets on horse given and . Ob-
viously, the gambling scheme (without short or margin) should
satisfy and for
any history . Let denote the odds of horse

given the previous outcomes , which is the amount of
capital that the gambler receives for each unit capital that the
gambler invested in the horse. We denote by the
gambler’s wealth after races with outcomes and causal side
information . Finally, denotes the growth rate
of wealth, where the growth is defined as the ex-
pectation over the logarithm (base 2) of the gambler’s wealth,
i.e.,

(15)

Without loss of generality, we assume that the gambler’s ini-
tial wealth is 1. We assume that at any time the gambler
invests all his/her capital, and, therefore, we have

(16)

By simple recursion, this implies that

(17)

Let denote the maximum growth, i.e.,

(18)

The following theorem characterizes the investment strategy
that maximizes the growth.

Theorem 1 (Optimal Causal Gambling): For any finite
horizon , the maximum growth is

(19)

which is achieved when the gambler invests money proportional
to the causally conditional distribution of the horse race out-
come, i.e.,

(20)

Note that since uniquely determines
, and since uniquely determines
, then (20) is equivalent to

(21)

Furthermore, note that the best strategy is greedy, namely, at any
time the best strategy is to maximize regardless of
the horizon . In other words, at any time the gambler should
maximize the expected growth rate, i.e., .

Proof: Consider

(22)

Here the last equality is achieved by choosing
and it is justified by the following upper bound:

(23)

where (a) follows from Jensen’s inequality, (b)
from the chain rule, and (c) from the fact that

.

In case that the odds are fair, i.e., ,

(24)

and thus, the sum of the growth rate and the entropy of the
horse race process conditioned causally on the side information
is constant, and one can see a duality between and

.
Let us define as the increase in the growth

due to the causal side information, i.e.,

(25)

where denotes the maximum growth when side infor-
mation is not available.

Corollary 1 (Increase in the Growth Rate): The increase in
growth rate due to a causal side information sequence for a
horse race sequence is

(26)

As a special case, if the horse race outcome and side infor-
mation are pairwise i.i.d., then the (normalized) directed in-
formation becomes the single-letter mutual
information , which coincides with Kelly’s result [5].
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Fig. 1. Setting of Example 1. The winning horse� is represented as a Markov
process with two states. In state 1, horse number 1 wins, and in state 2, horse
number 2 wins. The side information � is a noisy observation of the winning
horse � .

Proof: From the definition of directed information (9) and
Theorem 1, we obtain

Example 1 (Gambling in a Markov Horse Race Process
With Causal Side Information): Consider the case in which
two horses are racing, and the winning horse behaves
as a Markov process, as shown in Fig. 1. A horse that won
will win again with probability and lose with probability

. At time zero, we assume that the two horses
have equal probability of wining. The side information revealed
to the gambler at time is , which is a noisy observation of
the horse race outcome . It has probability of being
equal to , and probability of being different from . In
other words, , where is a Bernoulli
process independent of .

For this example, the increase in growth rate due to side in-
formation is

(27)

where is the binary
entropy function, and denotes
the parameter of a Bernoulli distribution that results from con-
volving two Bernoulli distributions with parameters and .

The increment of in growth rate can be readily derived
using the identity in (3) as follows:

(28)

where equality (a) is the identity from (3), which can be easily
verified by the chain rule for mutual information [11, (9)], and
(b) is due to the stationarity of the process.

If the side information is known with some lookahead ,
meaning that at time the gambler knows , then the optimal
growth after steps, , is given by

(29)

where . The
identity (29) follows from similar steps as (22), just replacing

by , respectively.
Hence, the increase in the growth rate after gambling rounds
due to side information with lookahead is

As tends to infinity the increase in the growth rate is given by

(30)

where steps (a) and (b) follow from the same arguments as in
(28). As more side information becomes available
to the gambler ahead of time, the increase in the optimal growth
rate converges to the mutual information [5] instead of directed
information. This is due to

(31)

where step (a) follows from (30) and step (b) follows from the
fact that the sequence converges to the en-
tropy rate of the process, i.e.,

.

B. Investment in a Stock Market With Causal Side Information

We use notation similar to that in [25, ch. 16]. A stock market
at time is represented by a vector ,
where is the number of stocks, and the price relative is
the ratio of the price of stock at the end of day to the price
of the stock at the end of day . Note that gambling in a horse
race is an extreme case of stock market investment—for horse
races, the price relatives are all zero except for one stock.

We assume that at time there is side information that
is known to the investor. A portfolio is an allocation of wealth
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across the stocks. A nonanticipating or causal portfolio strategy
with causal side information at time is denoted as ,
and it satisfies and for
all possible . We define to be the wealth
at the end of day for a stock sequence and causal side
information . We have

(32)

where denotes inner product between the two (column)
vectors and . The goal is to maximize the growth

(33)

The justification for maximizing the growth rate is due to [26,
Theorem 5]; such a portfolio strategy will exceed the wealth of
any other strategy to the first order in the exponent for almost
every sequence of outcomes from the stock market, namely, if

is the wealth corresponding to the growth rate
optimal return, then

(34)

Let us define

(35)

From this definition follows the chain rule:

(36)

from which we obtain

(37)

where denotes the probability density function of
. Here step (a) follows since

, and
depends only on the th component of the sequence

. The maximization in (37), namely,
, is equivalent to the maxi-

mization of the growth rate for the memoryless case where
the cumulative distribution function of the stock vector
is and the portfolio

is a function of , i.e.,

(38)

The objective is simply
, and the constraints are due to the fact that we

invest all the money without short or margin.
In order to upper bound the difference in growth rate due

to causal side information, we recall the following result that
bounds the loss in growth rate incurred by optimizing the port-
folio with respect to a wrong distribution rather than the
true distribution .

Theorem 2 ([27, Theorem 1]): Let be the probability
density function of a stock vector , i.e., . Let be
the growth rate portfolio corresponding to , and let be
the growth rate portfolio corresponding to another density .
Then the increase in optimal growth rate due to using
instead of is upper bounded by

(39)

where denotes the Kullback-
Leibler divergence between the probability density functions
and .

Using Theorem 2, we can upper bound the increase in growth
rate due to causal side information by directed information as
shown in the following theorem. This is due to the fact that
directed information can be written as divergence between

and .

Theorem 3 (Upper Bound on Increase in Growth Rate): The
increase in the optimal growth rate for a stock market sequence

due to a causal side information sequence is upper
bounded as

(40)

where
and .

Proof: Consider

(41)

where the inequality (a) follows from Theorem 2.

Note that the upper bound in Theorem 3 is tight for gam-
bling in horse races (Corollary 1). Hence, we can conclude from
Corollary 1 and Theorem 3 that directed information is the upper
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Fig. 2. Instantaneous data compression with causal side information.

bound on the increase of growth rate due to causal side informa-
tion, and this upper bound is achieved in a horse race market.

IV. DATA COMPRESSION

In this section we investigate the role of directed information
in data compression and find two interpretations:

1) Directed information characterizes the value of causal side
information in instantaneous compression.

2) It also quantifies the role of causal inference in joint com-
pression of two stochastic processes.

A. Instantaneous Lossless Compression With Causal Side
Information

Let be a source and be side informa-
tion about the source. The source is to be encoded losslessly
by an instantaneous code with causally available side informa-
tion, as depicted in Fig. 2. More formally, an instantaneous loss-
less source encoder with causal side information consists of
a sequence of mappings such that each

has the property that for every and
is an instantaneous (prefix) code.

An instantaneous lossless source encoder with causal
side information operates sequentially, emitting the concate-
nated bit stream . The defining
property that is an instantaneous code for
every and is a necessary and sufficient condition
for the existence of a decoder that can losslessly recover
based on and the bit stream
as soon as it receives
for all sequence pairs , and all .
Let denote the length of the concatenated string

. Then the following
result is established by using Kraft’s inequality and adapting
Huffman coding to the case where causal side information is
available.

Theorem 4 (Lossless Source Coding With Causal Side Infor-
mation): Any instantaneous lossless source encoder with causal
side information satisfies

(42)

Conversely, there exists an instantaneous lossless source en-
coder with causal side information satisfying

(43)

Fig. 3. Compression of two correlated sources �� �� � . Since any joint
distribution can be decomposed as ��� � � � � ��� � � ���� �� �,
each link embraces the existence of a forward or feedback channel (chemical
reaction). We investigate the influence of the link knowledge on joint compres-
sion of �� �� � .

where
.

Proof: The lower bound follows from Kraft’s inequality
[25, Theorem 5.3.1] and the upper bound follows from Huffman
coding on the conditional probability . The re-
dundancy term follows from Gallager’s redundancy bound
[28], , where is the probability of the most
likely source letter at time , averaged over side information se-
quence .

Since the Huffman code achieves the entropy rate for
dyadic probability, it follows that if the conditional probability

is dyadic, i.e., if each conditional probability
equals to for some integer , then (42) can be achieved
with equality.

Combined with the identity
, Theorem 4 implies that the com-

pression rate saved in optimal sequential lossless compres-
sion due to the causal side information is upper bounded by

, and lower bounded by .
If all the probabilities are dyadic, then the compression
rate saving is exactly equal to the directed information
rate . This saving should be compared to

, which is the saving in the absence of causality
constraint.

B. Cost of Mismatch in Data Compression

It is well known [25, Thm. 5.4.3] that if we design an optimal
lossless compression code according to where the ac-
tual distribution is , then an additional rate that is needed
(redundancy) is equal to . In this section we quantify
the value of knowing causal influence between two processes
when designing the optimal joint compression.

Suppose we compress a pair of correlated sources
jointly with an optimal lossless variable length code (such as the
Huffman code), and we denote by the average
length of the optimal code. Assume further that is generated
randomly by a forward link as in a communica-
tion channel or a chemical reaction, and is generated by a
backward link such as in the case of an en-
coder or a controller with feedback. By the chain rule (7), for
causally conditional probabilities (7), any joint distribution can
be modeled according to Fig. 3.
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Recall that the optimal variable-length lossless code, in
which both links are taken into account, has the average length
[25, Ch 5.4]

What happens when the compression scheme design fails to take
the forward link into account?

Lemma 1: If a lossless code is erroneously designed to
be optimal for the case in which the forward link does not
exist, namely, the code is designed for the joint distribution

, then the redundancy (up to bit) is
.

Proof: Let be the average code designed
optimally for the joint distribution . Then

is lower bounded [25, Ch 5.4] by

(44)

and upper bounded [25, Ch 5.4] by

(45)

Now note that

(46)

Hence, the redundancy (the gap from the minimum average code
length) is

(47)

Similarly, if the backward link is ignored, we have the fol-
lowing redundancy.

Lemma 2: If a lossless code is erroneously designed to
be optimal for the case in which the backward link does
not exist, namely, the code is designed for the joint distribu-

tion , then the redundancy (up to bit) is
.

The proof of the lemma follows similar steps as the proof of
Lemma 1 with (46) replaced by

(48)

Note that the redundancy due to ignoring both links is the sum
of the redundancies from ignoring each link. At the same time,
this redundancy is for the code designed for the joint distribution

and, hence, is equal to (up to bit).
This recovers the conservation law (12) operationally.

V. DIRECTED INFORMATION AND STATISTICS:
HYPOTHESIS TESTING

Consider a system with an input sequence
and output sequence , where the input is gener-
ated by a stimulation mechanism or a controller, which observes
the previous outputs, and the output may be generated either
causally from the input according to (the
null hypothesis ) or independently from the input according to

(the alternative hypothesis ). For instance,
this setting occurs in communication or biological systems,
where we wish to test whether the observed system output is
in response to one’s own stimulation input or to some other
input that uses the same stimulation mechanism and, therefore,
induces the same marginal distribution . The stimulation
mechanism , the output generator , and
the sequences and are assumed to be known.

An acceptance region is the set of all sequences
for which we accept the null hypothesis . The complement
of , denoted by , is the rejection region, namely, the set of
all sequences for which we reject the null hypothesis

and accept the alternative hypothesis . Let

and (49)

denote the probabilities of type I error and type II error,
respectively.

The following theorem interprets the directed information
rate as the best error exponent of that can be
achieved while is less than some constant .

Theorem 5 (Chernoff–Stein Lemma for the Causal Depen-
dence Test: Type II Error): Let be a
stationary and ergodic random process. Let be
an acceptance region, and let and be the corresponding
probabilities of type I and type II errors (49). For , let

(50)
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Then

(51)

where the directed information rate is the one induced by the
joint distribution from , i.e., .

Theorem 5 is reminiscent of the achievability proof in the
channel coding theorem. In the random coding achievability
proof [25, ch 7.7] we check whether the output is resulting
from a message (or equivalently, from an input sequence )
and we would like the error exponent, which is, according to
Theorem 5, , to be as large as possible so we can
distinguish between as many messages as possible.

The proof of Theorem 5 combines arguments from
the Chernoff–Stein lemma [25, Theorem 11.8.3] with the
Shannon–McMillan–Breiman theorem for directed information
[17, Lemma 3.1], which implies that for a jointly stationary
ergodic random process

in probability

Proof: Achievability: Fix and let be

(52)

By the AEP for directed information [17, Lemma 3.1] we
have that in probability; hence, there exists

such that for all .
Furthermore

(53)

where inequality (a) follows from the definition of and (b)
from the definition of . We conclude that

(54)

establishing the achievability since is arbitrary.
Converse: Let such that

. Consider

(55)

Since and , we obtain

(56)

Finally, since is arbitrary, the proof of the converse is
completed.

VI. DIRECTED LAUTUM INFORMATION

Recently, Palomar and Verdú [23] have defined the lautum
information as

(57)

and showed that it has operational interpretations in statistics,
compression, gambling, and portfolio theory, when the true
distribution is but, mistakenly, a joint distribution

is assumed. In this section we show that if causal
relations between the sequences are mistakenly assumed, then
two new measures we refer to as directed lautum information of
the first and second types emerge as a penalty for the mistaken
assumptions. We first present the definitions and basic prop-
erties of these new measures. The operational interpretations
of the directed lautum information are given in compression,
statistics and portfolio theory. The proofs of the theorems and
lemmas in this section are deferred to the Appendix.

Directed lautum information is defined similarly as lautum
information but regular conditioning is replaced by causal con-
ditioning as follows.

Definition 1 (Directed Lautum Information): We define di-
rected lautum information of the first type by

(58)

and of the second type by

(59)

When (no feedback), the two defini-
tions coincide. We will shortly see that directed lautum informa-
tion of the first type has operational meanings in scenarios where
the true distribution is and, mistakenly, a joint dis-
tribution of the form is assumed. The second
type occurs when the true distribution is ,
but a joint distribution of the form is
assumed.

We have the following conservation law for the first-type di-
rected lautum information:
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Fig. 4. Hypothesis testing.� : The input sequence �� �� � � � � � � causally influences the output sequence �� � � � � � � � � � through the causal conditioning
distribution ��� �� �. � : The output sequence �� � � � � � � � � � was not generated by the input sequence �� �� � � � � � � �, but by another input from the
same stimulation mechanism ��� � � �.

Lemma 3 (Conservation Law for Directed Lautum Infor-
mation of the First Type): For any discrete jointly distributed
random vectors and

(60)

A direct consequence of the lemma is the following condition
for the equality between two types of directed lautum informa-
tion and regular lautum information.

Corollary 2: If

(61)

then

(62)

Conversely,
if (62) holds, then

(63)

The lautum information rate and directed lautum information
rates are respectively defined as

(64)

for (65)

whenever the limits exist. The next lemma provides a technical
condition for the existence of the limits.

Lemma 4: If the process is stationary and Markov,
i.e., for some ,
then and are well defined. Similarly,
if the process is such that for all

, and the process is stationary and Markov, then
is well defined.

Adding causality constraints to the problems that were con-
sidered in [23], we obtain the following results for data com-
pression, hypothesis testing, and horse race gambling. These re-
sults provide operational interpretations to the directed lautum
information.

A. Compression With Joint Distribution Mismatch

In Section IV we investigated the cost of ignoring forward
and backward links when compressing relative to the
optimal lossless variable length code. Here we investigate the
penalty of assuming forward and backward links when in fact
neither exists. Let and be independent sequences.

Lemma 5: If a lossless code is erroneously designed to be
optimal for the case where the forward link exists, namely, the
code is designed for the joint distribution , then
the per-symbol penalty is within bit of .

Similarly, if we incorrectly assume that the backward link
exists, we have the following lemma.

Lemma 6: If a lossless code is erroneously designed to be
optimal for the case where the backward link exists, namely, the
code is designed for the joint distribution ,
then the per-symbol penalty is within bit of

.
If both links are mistakenly assumed, the penalty [23] is

lautum information . Note that the penalty due to
erroneously assuming both links is the sum of the penalty from
erroneously assuming each link. This recovers the conservation
law (60) for lautum information operationally.

B. Hypothesis Testing

We revisit the hypothesis testing problem in Section V, which
is described in Fig. 4. As a dual to Theorem 6, we charac-
terize the minimum type I error exponent given the type II error
probability:

Theorem 6 (Chernoff–Stein Lemma for the Causal De-
pendence Test: Type I Error): Let
be stationary, ergodic, and Markov of some order such
that implies . Let

be an acceptance region, and let and
be the corresponding probabilities of type I and type II errors
(49). For , let

(66)

Then

(67)
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where the directed lautum information rate is the one induced
by the joint distribution from , i.e., .

The proof of Theorem 6 follows very similar steps as in the
proof of Theorem 5 upon taking

(68)

analogously to (52), and using the Markov assumption to guar-
antee the AEP; we omit the details.

C. Horse Race Gambling With Mismatched Causal Side
Information

Consider the horse race setting in Section III-A where the
gambler has causal side information. The joint distribution of
horse race outcomes and the side information is given by

, namely, form a Markov
chain, and, therefore, the side information does not increase the
growth rate. The gambler mistakenly assumes a joint distribu-
tion , and, therefore, uses a gambling
scheme .

Theorem 7: If the gambling scheme
is applied to the horse race described above, then

the penalty in the growth with respect to the optimal gambling
scheme that uses no side information is .
For the special case where the side information is independent
of the horse race outcomes, the penalty is .

This result can be readily extended to the general
stock market, for which the penalty is upper bounded by

.

VII. CONCLUDING REMARKS

We have established the role of directed information in port-
folio theory, data compression, and hypothesis testing. Put to-
gether with its key role in communications [8], [10]–[14], [17],
[29] and in estimation [30], directed information is a key quan-
tity in scenarios where causality and the arrow of time are cru-
cial to the way a system operates. Among other things, these
findings suggest that the estimation of directed information can
be an effective tool for inferring causal relationships and related
properties in a wide array of problems. This direction is under
current investigation; see, for example, [31].

APPENDIX

Proof of Lemma 3: Consider

(69)

where (a) follows from the definition of lautum infor-
mation and (b) follows from the chain rule

.

Proof of Corollary 2: The proof of the first part follows
from the conservation law (69) and the nonnegativity of Kull-
back-Leibler divergence [25, Theorem 2.6.3] (i.e.,

implies that ). The second part
follows from the definitions of regular and directed lautum in-
formation.

Proof of Lemma 4: It is easy to see the sufficiency of the
conditions for from the following identity:

Since the process is stationary the limits
and exist. Furthermore, since the
pmf is of the form
and since the process is stationary and Markov (i.e.,

for some finite ),
the limit
exists. The sufficiency of the condition can be proved for

and the lautum information rate using a similar
argument.

Proof of Lemma 5: Let be the av-
erage code designed optimally for the joint distribution

. Then is lower bounded [25,
Ch 5.4] by

(70)

and upper bounded [25, Ch 5.4] by

(71)

Now note that

(72)
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Hence, the penalty (the gap from the minimum average length
code if there was no mismatch) is

(73)

Proof of Lemma 6: The proof of the lemma follows similar
steps as the proof of Lemma 5 with (72) was replaced by

(74)

Proof of Theorem 7: The optimal growth rate where
the joint distribution is is

. Let de-
notes the expectation with respect to the joint distribution

. The growth rate for the gambling strategy
is

(75)

hence . In the
special case, where the side information is independent of the
horse outcome, namely, , then

.
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