
Scien&fic	Tests	and	Con'nuous	Integra'on	Strategies	to  
Enhance	Reproducibility	in	the	Scien'fic	So:ware	Context	

Ma#hew	Krafczyk,	August	Shi,	Adhithya	Bhaskar,	Darko	Marinov,	Victoria	Stodden	

Victoria	Stodden	
Associate	Professor,	School	of	InformaBon	Sciences	and	NCSA	

University	of	Illinois	at	Urbana-Champaign	

2nd	Interna'onal	Workshop	on	Prac'cal	Reproducible	Evalua'on	of	Computer	Systems	(P-RECS19)	
Co-located	with	the	28th	InternaBonal	Symposium	on	High-Performance	Parallel	and	Distributed	CompuBng	

(ACM	HPDC	2019)	
Phoenix,	Arizona,	USA	-	June	24th,	2019	



Parsing	Reproducibility

● Empirical	Reproducibility:	
○ tradiBonal	empirical	experiments,	e.g.	at	the	bench/lab	

● Sta's'cal	Reproducibility:			
○ staBsBcal	methodology	used	permits	generalizability	of	data	

inferences			

● Computa'onal	Reproducibility:	
○ transparency	of	computaBonal	steps	that	produce	scienBfic	

findings

V.	Stodden.	(2013).	Resolving	Irreproducibility	in	Empirical	and	Computa&onal	Research.	IMS	Bulle'n



Dissemina'on	of	Computa'onal-	
and	Data-enabled	Discoveries

● Virtually all published discoveries today have data and 
computa'onal components	

● We see a mismatch between traditional research dissemination 
standards and modern computational research practice, 
leading to reproducibility concerns

The software contains “ideas that enable biology...” 
Lior Pachter, Stories from the Supplement, 2013



What	Barriers	Exist	to	Computa'onal	
Reproducibility?	Can	So:ware	Tests	Help?	

• In	a	previous	study	we	a#empted	to	computaBonally	reproduce	55	
studies	published	in	the	Journal	of	ComputaBonal	Physics	(none	
were	successful)	(V.	Stodden,	M.	Krafczyk,	A.	Bhaskar,	Enabling	the	
Verifica0on	of	Computa0onal	Results,	P-RECS	2018)	

• We	evaluated	the	studies	using	the	ICERM	Criteria	(V.	Stodden,	D.	H.	
Bailey,	J.	Borwein,	R.	J.	LeVeque,	W.	Rider,	and	W.	Stein.	(2013).	Se;ng	the	
Default	to	Reproducible:	Reproducibility	in	Computa0onal	and	Experimental	
Mathema0cs,	ICERM	workshop	2013)	

• We	chose	2	that	appeared	most	likely	to	replicate	given	40	hours	of	effort



The	Ar'cles
1. E.	Treister	and	E.	Haber.	2016.	A	fast	marching	algorithm	for	the	

factored	eikonal	equa0on.	J.	Comput.	Phys.	324	(2016),	210	–	225.	
h#ps://doi.org/10.1016/j.jcp.2016.08.012	

2. M.	A.	Hernández	and	M.	J.	Rubio.	2004.	A	modifica0on	of	Newton’s	
method	for	nondifferen0able	equa0ons.	J.	Comput.	Appl.	Math.	
164-165	(2004),	409	–	417.	h#ps://doi.org/10.1016/
S0377-0427(03)00650-2	

For	each	arBcle,	we	enumerated	a	list	of	figures	and	tables	and	used	
exisBng	code	or	wrote	code	to	reproduce	each,	stopping	aier	40	hours.	

https://doi.org/10.1016/S0377-0427(03)00650-2
https://doi.org/10.1016/S0377-0427(03)00650-2


Treister	and	Haber	(T&H)
The	released	code	contained	a	script	runExperiments.jl	that	reproduced	
Tables	1-3	from	the	arBcle:	

This	script	crashed	during	the	higher	resoluBon	experiments	and	other	figures	
were	missing	criBcal	data



Hernández	and	Rubio	(H&R)

No	code	was	released	and	their	results	were	produced	to	machine	
precision	in	Octave	using	code	we	wrote.	



Scien&fic	Tests
• With	both	arBcles	of	interest	successfully	reproduced,	constructed	tesBng	

scripts	that	ran	the	whole	procedure:	
- on	our	local	machines	and,		
- within	a	Docker	container,		
- and	within	the	Travis	CI	environment.	

• We	define	these	tests	as	scien0fic	tests:	tests	that	produce	computaBonal	
results	from	a	published	arBcle.		

• ScienBfic	tests	apply	the	noBon	of	the	black-box	test	in	the	scienBfic	context,	
where	the	most	expansive	scienBfic	test	is	to	reproduce	all	of	the	results	from	
the	arBcle.		

• Within	Travis	CI	we	only	run	experiments	that	can	complete	in	less	than	5	
minutes.	



The	Test	Script
• a	master	script	in	python,	run.sh,	coordinates	all	aspects	of	the	

experiment	from	start	to	finish.	It	calls	subordinate	scripts	to	
perform	different	stages	of	the	work	(e.g.	running	the	computaBonal	
experiments	and	comparing	results).		

• we	produced	a	.travis.yml	file	that	uses	the	Ubuntu	OS’s	repositories	
to	install	all	necessary	soiware,	and	then	executes	the	run.sh	script.	

➡ ComputaBonal	experiments	are	run,	their	results	are	checked,	and	
Travis	CI	reports	success	or	failure	status.		

See	e.g.	(H&R):	h#ps://raw.githubusercontent.com/ReproducibilityInPublishing/
10.1016_S0377-0427-03-00650-2/master/run.sh	and	h#ps://raw.githubusercontent.com/
ReproducibilityInPublishing/10.1016_S0377-0427-03-00650-2/master/.travis.yml



Problems	Encountered
1. older	soiware	versions	used	at	the	Bme	of	publicaBon,	e.g.	Julia	0.6	

2. scienBfic	variables	that	differ	near	machine	precision	can	affect	output,	so	a	
tolerance	used	in	comparisons	

3. when	arBcle	code	was	released	it	was	not	organized	to	reproduce	results	in	
the	arBcles.	

4. For	figure	comparisons	visualizaBon	soiware	is	oien	not	well	documented,	
and	even	slight	plot	color	differences	can	affect	comparisons.	

In	general,	code	can	evolve	with	Bme,	introducing	changes	into	necessary	tools	
or	dependencies	that	can	change	the	output.	OperaBons	on	floa'ng-point	
numbers	can	introduce	imprecision	between	different	runs.	Mul'-threaded	
algorithms	can	be	inherently	non-determinisBc,	producing	differences	between	
calculated	and	published	results.



Specialized	Hardware	and	
Reduc&on	Tests

1. Some	arBcles	may	use	specialized	hardware	and	require	an	
extreme	amount	of	Bme	and	resources.		

2. In	this	case,	we	recommend	publishing	results	from	minimized	
versions	of	their	computaBonal	experiments	together	with	their	
main	results:	e.g.	mimic	the	original	work	as	much	as	possible	but	
at	a	smaller	scale.		

3. Examples:	scale	down	resoluBon	and/or	reduce	how	oien	
snapshots	are	saved	or	reduce	resoluBon	or	Bme	steps.		

4. A	ReducBon	Test	can	permit	serious	science	bugs	to	be	detected	
quickly.



Reduc&on	Test	Example	(T&H)
Recall	Figure	3	from	T&T	and	our	reproducBon:	

NoBce	our	computaBonal	costs	increases	for	each	experiment	at	a	
faster	rate	than	that	reported	in	Table	3.	



Reduc&on	Test	Example	(T&H)
Travis	CI	uses	stages	to	define	different	test	categories,	executed	in	
sequence.	

Certain	stages	can	be	flagged	to	not	trigger	a	build	failure	when	they	do	fail.	
This	technique	can	be	harnessed	to	create	two	test	groups:	

1.	A	first	group	completes	quickly,	leong	the	authors	know	about	obvious	bugs,	
and	reducBon	tests	can	be	fit	here.		

2.	A	second	group	of	tests	can	take	much	longer	to	complete	performing	more	
thorough	analysis.	ScienBfic	tests	that	require	a	large	amount	of	Bme,	but	for	
which	authors	do	not	want	to	wait	for	their	compleBon	during	the	soiware	
development	cycle,	are	good	candidates	here.		

We	grouped	reproducBon	of	all	but	the	last	two	rows	of	Tables	1–6	as	the	
reduc0on	tests	in	this	paradigm,	and	the	last	two	rows	of	each	table	as	the	set	
of	long-running	scien0fic	tests.	



Reduc&on	Test	Example	(T&H)
Travis	CI	uses	stages	to	define	different	test	categories,	executed	in	
sequence.	

Certain	stages	can	be	flagged	to	not	trigger	a	build	failure	when	they	do	fail.	
This	technique	can	be	harnessed	to	create	two	test	groups:	

1.	A	first	group	completes	quickly,	leong	the	authors	know	about	obvious	bugs,	
and	reducBon	tests	can	be	fit	here.		

2.	A	second	group	of	tests	can	take	much	longer	to	complete	performing	more	
thorough	analysis.	ScienBfic	tests	that	require	a	large	amount	of	Bme,	but	for	
which	authors	do	not	want	to	wait	for	their	compleBon	during	the	soiware	
development	cycle,	are	good	candidates	here.		

We	grouped	reproducBon	of	all	but	the	last	two	rows	of	Tables	1–6	as	the	
reduc0on	tests	in	this	paradigm,	and	the	last	two	rows	of	each	table	as	the	set	
of	long-running	scien0fic	tests.	



Thank	you	and	Links
T&H:	

–	Code	and	data:	h#ps://github.com/ReproducibilityInPublishing/j.jcp.
2016.08.012.	(Commit	ba16911	at	Bme	of	publicaBon)		

–	TravisCI:	h#ps://travis-ci.org/ReproducibilityInPublishing/j.jcp.2016.08.012	

H&R:	

–	Code	and	data:	h#ps://github.com/ReproducibilityInPublishing	
10.1016_S0377-0427-03-00650-2.	(Commit	227b842	at	Bme	of	publicaBon)		

–	TravisCI:	h#ps://travis-ci.org/ReproducibilityInPublishing/	
10.1016_S0377-0427-03-00650-2		


