
Quasi-Cyclic Regenerating Codes for Distributed
Storage: Existence and Near-MSR Examples

Vignesh G and Andrew Thangaraj
Department of Electrical Engineering

Indian Institute of Technology Madras, Chennai, India
Email: andrew@ee.iitm.ac.in

Abstract—THIS PAPER IS ELIGIBLE FOR THE STUDENT
PAPER AWARD. Regenerating codes for distributed storage
systems promise significant improvements in the cost and main-
tenance requirements of large-scale data centers. Research in
this area continues to define important new parameters and
requirements that have the biggest impact in practice. One of
the simplest requirements for a regenerating code is the so-called
MSR property, which minimizes the number of bits downloaded
during repair. Quasi-cyclic MSR codes are of particular interest,
mainly for reducing the encoding and decoding complexity.
However, quasi-cyclic MSR codes have not been studied in detail
in the existing literature. In this work, we prove the negative
result that quasi-cyclic MSR codes with no symbol extension do
not exist if the number of systematic nodes is greater than or
equal to 4. We provide several examples of quasi-cyclic near-
MSR codes, which could be useful for reducing implementation
complexity. We point out some interesting connections between
zeros of quasi-cyclic codes and the MSR requirement, which are
useful in the study of quasi-cyclic regenerating codes with symbol
extension.

I. INTRODUCTION

In a distributed storage system, bits of a single file are coded
for error protection, split into several parts and each part is
stored in a separate node or storage device. Suppose that there
are a total of n nodes storing b bits each, and let k of them
be systematic nodes. The coding is mainly to protect against
node failures. In large distributed storage systems, failure of
a single node is typical. Upon failure, a new node needs to
be installed with the same data as the failed node - a process
which is termed exact repair. To obtain the data, the new node
connects to the surviving n−1 nodes and downloads some bits.
The number of bits downloaded by the new node is a measure
of the cost needed for repair. An upper bound for this cost
is the size of the file equal to kb. However, by careful code
design, the number of downloaded bits can be made as low
as (n− 1)b/(n− k). Codes that aim to reduce the download
cost for repair are termed regenerating codes.

The area of regenerating codes for distributed storage was
introduced in [1]. In the past few years, there has been very
active research in this area, as summarized in [2]. Important
code designs, methods and bounds were first presented and
explored in [3]. Code constructions using array codes are pre-
sented in [4]. The connection to linear algebraic “interference
alignment” is particularly interesting, and has been explored
further in [5]. Other algebraic code constructions include [6]
and [7].

If the (n, k) regenerating code is over the finite field
GF(2m), then each node stores α = b/m symbols from
GF(2m). Typically, b is chosen such that α is an integer
multiple of n − k, and α/(n − k) is termed the degree of
symbol extension. A code that can achieve the lower bound
of (n − 1)α/(n − k) symbols for regeneration is termed a
MSR code. The code is said to have no symbol extension if
α = n − k. As can be seen, the simplest regenerating codes
do not have symbol extension. However, as shown in [3], the
range of n and k for which MSR codes exist with no symbol
extension is very limited. The constructions in [4] [5] produce
MSR codes using α = O((n−k)k) resulting in an exponential
degree of symbol extension and very high complexity.

Code constructions for rate k/n > 1/2 are known to be
particularly hard with existing solutions, except for a few
cases, needing high complexity in terms of a large b or a large
finite field alphabet. Since most of the known code construc-
tions do not have cyclic structures, decoding complexity can
be higher than that of standard Reed-Solomon codes. Cyclic
constructions, which have a potential for reducing encoding
and decoding complexity, have not received much attention,
except for [7], [8]. In [7], quasi-cyclic regenerating codes for
the case n = 2k with the new node connecting to k + 1 of
the remaining nodes was considered. Code constructions were
provided for some values of n and k, and a general existence
result was proved.

In this work, we are concerned with the existence and
possible constructions of quasi-cyclic regenerating codes. Our
main result is that quasi-cyclic MSR codes with no symbol
extension do not exist for k ≥ 4. To prove this result,
we use a parity-check matrix description for regenerating
codes, and impose the requirements of quasi-cyclic structure
[9]. The proof, though elementary, comprises several steps,
and results from a careful juxtaposition of linear-algebraic
alignment properties needed for MSR codes and the algebraic
quasi-cyclic property.

We provide some examples of quasi-cyclic regenerating
codes that are close to MSR, i.e., number of downloaded bits is
close to the lower bound. In some of these cases, we consider
symbol extension of small degree. Though these codes are not
strictly MSR, they are close in terms of number of downloaded
bits, and their encoding/decoding complexity is the same as
that of comparable Reed-Solomon codes. Finally, we make
some initial observations about quasi-cyclic MSR codes with

symbol extension.
In comparison with prior work in this area, the novel aspects

are the use of the parity-check matrix description, which
results in some significant simplifications. The results and
construction examples for quasi-cyclic MSR codes are new
to the best of our knowledge, and have been presented for the
first time here.

II. SYSTEM MODEL

We consider a distributed storage system, where a K-bit
message is encoded into a N -bit codeword and stored in n =
N
b nodes with each node storing b bits. The code is constructed

such that a data collector, interested in accessing the message,
will be able to recover the message by connecting to any k =
K
b out of the n nodes, downloading kb = K bits, and running

a decoding algorithm. We will let b = αm (for some positive
integers α and m), and view the bits stored in each node as
a length-α vector over GF(2m). We stick to characteristic-2
fields, though similar ideas extend to other fields. The vector
stored in node i is denoted ci = [ci,1 ci,2 ... ci,α], 1 ≤ i ≤ n
with coordinates ci,j ∈ GF(2m). A codeword distributed over
n nodes is denoted c = [c1 c2 ... cn] in the node-wise form.
The set of all such codewords is denoted as the code C. The
code C, when considered over the alphabet A = GF(2m)α,
has block-length n and message-length k = K

b . For the data
collector to be successful, the code C needs to be MDS over
A. In this work, we will further assume that C is cyclic over
A, i.e., if c = [c1 c2 ... cn] ∈ C, then [c2 c3 ... cn c1] ∈ C.
This will, as expected, require that n|(2m − 1). We will set
n = 2m − 1 in most examples.

When considered over the alphabet GF(2m), the code C has
block-length nm and message-length km. In this alphabet, the
code C need not be MDS, but we will suppose that C is linear
over GF(2m). Now, since C is cyclic over A, we see that C is
α-quasi-cyclic over GF(2m), i.e., C is closed under a cyclic
shift by α positions. Following the standard convention in the
study of quasi-cyclic codes (see [9] and references thereon),
a codeword c = [c1 c2 ... cn] ∈ C can be thought of as a
concatenation of α vectors of length-n ci = [c1,i c2,i ... cn,i]
for i = 1, 2, ..., α. We will use the notation c = [c1|c2|...|cα]
to denote this concatenation. Note that each vector cj is stored
over n nodes with one symbol ci,j stored in node i.

Using the structure results for quasi-cyclic codes from
[9], C over GF(2m) with codewords in the concatenated
form c = [c1|c2|...|cα] has a parity-check matrix H of size
(n − k)α × nα composed of block sub-matrices Hij , for
1 ≤ i, j ≤ α. Each Hij is circulant, in the sense that row
r is a cyclic right shift by 1 of row r−1 for r = 2, 3, The
matrices Hii are (n− k)× n parity check matrices of cyclic
MDS codes over GF(2m). The matrices Hij are all-zero when
i < j. However, Hij can be non-zero for i > j. There is
another additional constraint imposed upon these off-diagonal
matrices. Considering hii(x) to be the generator polynomial
of the cyclic code with generator matrix Hii, common roots
of hii(x) and hjj(x) must necessarily be roots of hij(x) [8],
[9].

We briefly describe regeneration in terms of the parity-check
matrix, since it is non-standard in this area. In this work,
we restrict ourselves to regenerating node n by accessing
all remaining n − 1 nodes. Since the code is cyclic over A,
regeneration of any other node follows by a cyclic shift. For
regenerating node n, we require α codewords from the dual
code of C (over GF(2m)), or the row-space of H , with some
specific properties [8]. Let M be an α×α(n−k) matrix such
that the rows of the product MH are, precisely, these α dual
codewords. Denoting the i-th column of H as H(i), the i-th
column of MH is MH(i). We form an α × α matrix Mi,
1 ≤ i ≤ n, as

Mi = [MH(i)MH(i+ n) · · ·MH(i+ (α− 1)n)].

Note that for a codeword in the node-wise form c =
[c1 c2 ... cn], we have

∑
iMi(ci)

T = 0.
For regeneration, we need M such that rank(Mn) = α, i.e.,

Mn is invertible. The number of symbols over GF(2m) that
node i needs to send to node n for regeneration is precisely
rank(Mi).

The code C is said have no symbol extension if α = n −
k. The code C is said to be Minimum Storage Regenerating
(MSR) if there exists M such that rank(Mi) = α/(n− k) for
1 ≤ i ≤ n − 1 and rank(Mn) = α. In particular, the MSR
condition with no symbol extension (α = n− k) requires M
such that rank(Mi) = 1 for 1 ≤ i ≤ n− 1, and rank(Mn) =
n− k.

In Sections III and IV, we prove the main result of this
work. Since the proof involves several intertwined steps, we
first provide a proof for the specific case of n = 7, k = 4
for the sake of clarity of exposition. This is followed by a
generalization, which is brief.

III. NON-EXISTENCE OF (7,4) QUASI-CYCLIC MSR CODE
FOR α = 3

For n = 7, k = 4 and α = n−k = 3 (no symbol extension),
a linear MSR code is known to exist [3]. We show, in this
section, that a quasi-cyclic MSR code does not exist for the
same parameters. The proof is by contradiction, and assumes
characteristic-2 fields for simplicity. The same proof extends
to other characteristics readily. So, we assume that there exists
a (7, 4) quasi-cyclic MSR distributed storage code C with a
9× 21 parity-check matrix

H =

H11 03×7 03×7
H21 H22 03×7
H31 H32 H33

Further, there exists a 3 × 9 matrix M for regeneration such
that rank(Mi) = 1, 1 ≤ i ≤ 6, and rank(M7) = 3.

We know from the previous section that the 3× 3 regener-
ative matrices Mi can be written as

Mi = [MH(i) MH(i+ 7) MH(i+ 14)].

For 1 ≤ i ≤ 6, since rank(Mi) = 1, we have dim(N(Mi)) =
2, where N(·) denotes the right nullspace for a matrix. Let

ai = [ai1 ai2 ai3] and bi = [bi1 bi2 bi3] be a basis for N(Mi).
We see that

Mi(ai)
T =M(ai1H(i)+ai2H(i+7)+ai3H(i+14))T = 03×1,

or

ai = (ai1H(i) + ai2H(i+ 7) + ai3H(i+ 14)) ∈ N(M).

Similarly,

bi = (bi1H(i) + bi2H(i+ 7) + bi3H(i+ 14)) ∈ N(M).

Now, since the code C is MDS and has minimum distance 4
over GF (2m)3, we have that the set of columns

{H(i), H(i+ 7), H(i+ 14) : i ∈ S}

are linearly independent for any three-element subset S ⊂
[1 : 7], where [i : j] denotes the integer set {i, i + 1, . . . , j}.
Further, since rank(M7) = 3, we have that rank(M) = 3, and
rank(N(M)) = 6. So, we have

Lemma 1: For S ⊂ [1 : 6] with |S| = 3, the set

BS = {ai,bi : i ∈ S}

is a basis for N(M).
The next lemma further clears up the structure of BS .

Lemma 2: For 1 ≤ i ≤ 6, either ai1 6= 0, or bi1 6= 0.
Proof: We will prove, by contradiction, for i = 1. The

proof for other cases is similar. The main idea used is that
Hii are 3 × 7 parity-check matrices of MDS codes. So, (1)
any three of their columns are independent, and (2) any one of
their columns can be written as a linear combination of three
other columns.

Suppose a11 = b11 = 0. Writing a4 ∈ N(M) in the basis
B{1,2,3}, and restricting to the first three positions, we have

a41[H(4)]1:3 = η[H(2)]1:3 + κ[H(3)]1:3,

where η, κ are constants occurring in the linear combination,
and an obvious notation has been used for the restriction. From
the above, since the (7,4) code with parity-check matrix H11

is MDS, we have a41 = 0. Similarly, writing b4 in the basis
B{1,2,3} and a5,b5 in B{1,2,3}, we can show that b41 = a51 =
b51 = 0. Now, using the basis B{1,4,5}, we get that ai1 = bi1 =
0 for 1 ≤ i ≤ 6. So, without loss of generality, we can set ai =
[0 1 0] and bi = [0 0 1]. Therefore, H(15), H(16), H(17) ∈
N(M), which implies that H(21) ∈ N(M), because H(21)
is a linear combination of H(15), H(16), H(17).

Now, H(21) ∈ N(M) contradicts

rank(M7) = rank([MH(7) MH(14) MH(21)]) = 3,

and the proof is complete.
Using Lemma 2, we let, without loss of generality, ai1 = 1
and bi1 = 0. With the above choice, we further have bi2 6= 0.
The proof of this is similar to that of Lemma 2, and we omit
the details. So, we can further set, without loss of generality,
bi2 = 1 and ai2 = 0, and we have, finally,

ai = H(i) + ai3H(i+ 14) ∈ N(M),

bi = H(i+ 7) + bi3H(i+ 14) ∈ N(M),

for 1 ≤ i ≤ 6. From the structure of ai and bi, it is clear
that any bj , when written as a linear combination of a basis
BS , only involves bi, i ∈ S. Writing b4 in the basis B{1,2,3}
(which is, in fact, in terms of b1, b2 and b3), and restricting
to the second three positions, we have

[H(11)]4:6 = c1[H(8)]4:6 + c2[H(9)]4:6 + c3[H(10)]4:6. (1)

Now, [H(i + 7)]4:6, 1 ≤ i ≤ 7, are the columns of H22,
which is a parity-check matrix of a cyclic MDS code. So, (1)
becomes

H22[c1 c2 c3 1 0 0 0]T = 03×1,

and, we see that, [c1 c2 c3 1 0 0 0] is the unique generating
codeword of the cyclic MDS code < H22 >

⊥ (for a matrix
H , < H >⊥ denotes the code with parity-check matrix H).
So, we get that

b4 = c1b1 + c2b2 + c3b3 (2)

resulting in

c1H(8) + c2H(9) + c3H(10) +H(11)+

c1b13H(15)+c2b23H(16)+c3b33H(17)+b43H(18) = 06×1.
(3)

From (3), we see that

[01×7|c1 c2 c3 1 0 0 0|c1b13 c2b23 c3b33 b43 0 0 0] ∈ C. (4)

Since H22 is the parity-check matrix of a cyclic code, we have

H22[0 c1 c2 c3 1 0 0]T = 03×1.

So, writing b5 in the basis B{2,3,4} (which is, in fact, in terms
of b2, b3 and b4), we get

b5 = c1b2 + c2b3 + c3b4. (5)

Proceeding as before, we get that

[01×7|0 c1 c2 c3 1 0 0|0 c1b23 c2b33 c3b43 b53 0 0 0] ∈ C.

Since C is quasi-cyclic, we get that

[01×7|c1 c2 c3 1 0 0 0|c1b23 c2b33 c3b43 b53 0 0 0] ∈ C. (6)

By a similar argument, we further have

[01×7|c1 c2 c3 1 0 0 0|c1b33 c2b43 c3b53 b63 0 0 0] ∈ C. (7)

Adding the codewords in (4) and (6), and the codewords in
(6) and (7), we get that

[c1(b13 + b23) c2(b23 + b33) c3(b33 + b43) (b43 + b53) 0 0 0],

[c1(b23 + b33) c2(b33 + b43) c3(b43 + b53) (b53 + b63) 0 0 0]

are minimum weight codewords of < H33 >
⊥ with the same

support. Therefore, these codewords are proportional to each
other (or they could be equal, which is dealt with later). This
means that

b13 + b23
b23 + b33

=
b23 + b33
b33 + b43

=
b33 + b43
b43 + b53

=
b43 + b53
b53 + b63

.

Now, we can always find a b73 ∈ GF(2m) such that

b53 + b63
b63 + b73

=
b43 + b53
b53 + b63

.

The existence of such a b73 (if all bi3 are equal, then b73 is
simply equal to one of them) would imply that

[01×7|c1 c2 c3 1 0 0 0|c1b43 c2b53 c3b63 b73 0 0 0] ∈ C,

which in turn implies that

[01×7|0 0 0 c1 c2 c3 1|0 0 0 c1b43 c2b53 c3b63 b73] ∈ C.

Hence, we see that H(14) + b73H(21) ∈ N(M), and, finally,
we have the contradiction that rank(M7) < 3.

Thus, it is not possible to construct a (7, 4) MSR quasi-
cyclic code.

IV. NON-EXISTENCE OF QUASI-CYCLIC MSR CODES FOR
α = n− k AND k ≥ 4

Linear MSR codes with α = n − k (no symbol extension)
do not exist if n < 2k − 2 [3]. In this section, we show that
quasi-cyclic MSR codes with α = n−k do not exist for k ≥ 4
with no regard to rate. The proof is similar in spirit to that in
Section III that dealt with the special case of n = 7. So, we
will be brief and focus mostly on the generalization steps.

The proof is by contradiction. So, we assume that there
exists an (n, k) quasi-cyclic MSR distributed storage code C
with an (n − k)α × nα parity-check matrix H composed of
(n−k)×n block matrices Hij , 1 ≤ j ≤ i ≤ α. Further, there
exists an α × (n − k)α matrix M for regeneration such that
rank(Mi) = 1, 1 ≤ i ≤ n− 1, and rank(Mn) = α.

For 1 ≤ i ≤ n− 1, let aij = [aij1 aij2 · · · aijα], 1 ≤ j ≤
α− 1 be a basis for N(Mi). We see that

aij = (aij1H(i) + aij2H(i+ n)+

· · ·+ aijαH(i+ (α− 1)n)) ∈ N(M)

for 1 ≤ j ≤ α − 1. The generalization of Lemma 1 is
immediate.

Lemma 3: For S ⊂ [1 : n− 1] with |S| = n− k, the set

BS = {aij : i ∈ S, 1 ≤ j ≤ α− 1}

is a basis for N(M).
The generalization of Lemma 2 needs a few more arguments.

Lemma 4: For each i ∈ [1 : n − 1], aij1 6= 0 for at least
one j ∈ [1 : α− 1].

Proof: We will prove for i = 1, since the proof for any
i is similar. Suppose a1j1 = 0 for all 1 ≤ j ≤ α− 1. Writing
an−k+l,j in terms of vectors in B[1:n−k], we get an−k+l,j,1 =
0 for 1 ≤ j ≤ α− 1 for 1 ≤ l ≤ k − 1. Writing aij , 2 ≤ i ≤
n−k, in the basis BS with S = [1 : i−1]∪ [i+1 : n−k+1],
we get that aij1 = 0. Thus, aij1 = 0 for all i ∈ [1 : n − 1],
j ∈ [1 : α−1]. For each i, the aij , 1 ≤ j ≤ α−1, are linearly
independent. So, we can now set

ai,α−1 = [01×α−1 1], 1 ≤ i ≤ n− 1,

which implies that H(i+(α−1)n) ∈ N(M) for 1 ≤ i ≤ n−1.
This results in H(nα) ∈ N(M), and the contradiction that
rank(Mn) < α.
Now, proceeding as in Section III, we can set, without loss of
generality,

aij = [01×j−1 1 01×α−j−1 aijα]

for 1 ≤ i ≤ n − 1, 1 ≤ j ≤ α − 1. We focus on j = α − 1
and set, for 1 ≤ i ≤ n− 1,

bi = ai,α−1 = H(i+ (α− 2)n) + biαH(i+ (α− 1)n), (8)

where biα = ai,α−1,α.
Now, expressing bn−k+j , 1 ≤ j ≤ k − 1 in terms of bj ,

b1+j , . . ., bn−k−1+j , we have that

cj =[01×(α−2)n|
c1 c2 · · · cn−k 1 0k−1|

(9)
c1bjα c2b1+j,α · · · cn−kbn−k−1+j,α bn−k+j,α 0k−1] ∈ C.

Considering cj+ cj+1, 1 ≤ j ≤ k−2, we get k−2 minimum
weight codewords of < Hα,α >

⊥ with the same support. Since
k ≥ 4, there are at least two such codewords, and a similar
argument as in Section III shows the existence of bnj such
that

H((α− 1)n) + bnjH(n) ∈ N(M)

resulting in the contradiction that rank(Mn) < α.
This completes the proof. So, the only interesting param-

eters for quasi-cyclic MSR codes with k/n > 1/2 and no
symbol extension are (3, 2) and (4, 3) with α = 1, and (5, 3)
with α = 2. Of these, (3, 2) and (4, 3) are easily seen to be
not possible. So, the (5,3) quasi-cyclic MSR code with α = 2
reported in [8] is the only non-trivial one with no symbol
extension.

V. NUMERICAL SEARCH FOR CODES

Since it is not possible to construct (7,4) quasi-cyclic MSR
codes with α = 3, we attempted to search (by computer) for
quasi-cyclic codes that perform close to MSR. The goal is to
find H and M such that rank(M7) = 3, and βi = rank(Mi)
for 1 ≤ i ≤ 6 are either 1 or 2. We obtained one code over
GF(8) for which β1 = β2 = β4 = 1 and β3 = β5 = β6 = 2.
To specify the parity-check matrix H , we provide the first rows
of Hij , denoted hij(x) in polynomial notation (γ ∈ GF(23)
is primitive):

h11(x) = γ + γ3x+ γ6x2 + γ6x3 + x4,
h21(x) = γ6 + γ5x+ γ5x2 + γ2x3 + x4,
h31(x) = 1 + γ4x+ γ2x2 + γ4x3 + x4,
h22(x) = γ5 + γ2x+ γ3x2 + γ3x4 + γ6x5 + γ4x6,
h32(x) = γ2 + γ3x2 + γx3 + γ4x4 + γ5x5 + γ6x6,
h33(x) = γ4x+ x2 + γx3 + γ3x4 + γx5 + γ3x6.

The three regenerative vectors are given by

[γ41γ3γ2γ50 γ | γ2γγ6γ61γ2γ6 | γ51γ6γγ61γ5]
[1 1γ2γ6γ6γ6γ3 | γ5γγ50 0 γγ6 | γ1γ50γ2γ6γ4]
[γ2γ4γ400γ5γ6 | 1γ51γ3γ γ 0 | γ3γ41γ5γ20γ]

The above (7,4) code is an improvement over the code reported
in [8].

We have found (7,4) quasi-cyclic codes that are close to
MSR with symbol extension. For instance, with α = 9, we
get H and M with βi = 4, 1 ≤ i ≤ 6 and rank(M7) = 9.
Note that an MSR code would have βi = 3. Similarly we
have a (7, 4), α = 12 code with βi = 5, 1 ≤ i ≤ 5 and
rank(M7) = 12, while for an MSR code βi would have been
4. All these codes are over GF(8).

For (n, k) = (9, 5), α = 4, we found a code over GF(64)
such that βi = 2, 1 ≤ i ≤ 8, and rank(M9) = 4. For (n, k) =
(7, 2), α = 5 in GF (23), we found a code with βi = 1,
1 ≤ i ≤ 5, β6 = 2, rank(M7) = 5. A summary of our findings
by computer search are given in Table I.

(n, k) α βi, 1 ≤ i ≤ n− 1 Field size
(7,5) 2 [1 1 1 2 1 2] 8
(7,4) 3 [1 1 2 1 2 2] 8

9 [4 4 4 4 4 4]
12 [5 5 5 5 5 5]

(7,3) 4 [1 1 1 1 2 2] 8
8 [3 3 3 3 3 3]

(7,2) 5 [1 1 1 1 1 2] 8
10 [3 3 3 3 3 3]

(9,5) 4 [2 2 2 2 2 2 2 2] 64

TABLE I
CODES FOUND BY COMPUTER SEARCH.

VI. CONCLUDING REMARKS

We proved the non-existence of quasi-cyclic MSR codes
with no symbol extension when k ≥ 4. The condition k ≥ 4 is
quite intriguing, since it validates the existence of (5, 3) MSR
quasi-cyclic codes discussed in [8], and also precludes (7, 4)
quasi-cyclic MSR codes, for which there exist linear codes.
This makes the quasi-cyclic requirement much stronger than
that of the MSR requirement. It also emphasises, strongly, the
difficulty in obtaining quasi-cyclic MSR codes for rate≥ 0.5.

The analysis of quasi-cyclic MSR codes with symbol exten-
sion (α = µ(n−k), µ = 2, 3, . . .) is an interesting problem. An
important factor in this analysis is the nature of the roots of the
generator polynomials of < Hii >

⊥. We state, without proof,
the requirements that we could derive for the existence of a
(7, 4) quasi-cyclic MSR code with α = 6. The requirements
are the following: (1) the spacing between the zeros of
< H44 >⊥ and < H55 >⊥ should be the same, and (2)
the spacing between the zeros of < H33 >

⊥ and < H66 >
⊥

should be the same. However, the remaining requirements are
non-linearly coupled and require further study.

Going by the results of computer search, it appears that
a significantly large symbol extension will be needed for
quasi-cyclic MSR codes, if they exist at all. Therefore, near-
MSR codes offer an interesting compromise from a complexity
perspective.

REFERENCES

[1] A. Dimakis, P. Godfrey, Y. Wu, M. Wainwright, and K. Ramchandran,
“Network coding for distributed storage systems,” Information Theory,
IEEE Transactions on, vol. 56, pp. 4539 –4551, sept. 2010.

[2] A. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, “A survey on network
codes for distributed storage,” Proceedings of the IEEE, vol. 99, pp. 476
–489, march 2011.

[3] N. Shah, K. Rashmi, P. Kumar, and K. Ramchandran, “Interference
alignment in regenerating codes for distributed storage: Necessity and
code constructions,” Information Theory, IEEE Transactions on, vol. 58,
pp. 2134 –2158, april 2012.

[4] I. Tamo, Z. Wang, and J. Bruck, “Zigzag codes: MDS array codes with
optimal rebuilding,” to appear in IEEE Transactions on Information
Theory, vol. abs/1112.0371, 2011.

[5] V. R. Cadambe, C. Huang, S. A. Jafar, and J. Li, “Optimal repair of MDS
codes in distributed storage via subspace interference alignment,” CoRR,
vol. abs/1106.1250, 2011.

[6] F. Oggier and A. Datta, “Self-repairing codes for distributed storage -
a projective geometric construction,” in Information Theory Workshop
(ITW), 2011 IEEE, pp. 30 –34, oct. 2011.

[7] B. Gaston, J. Pujol, and M. Villanueva, “Quasi-cyclic minimum storage
regenerating codes for distributed data compression,” in Data Compres-
sion Conference (DCC), 2011, pp. 33 –42, march 2011.

[8] A. Thangaraj and C. Sankar, “Quasicyclic MDS codes for distributed
storage with efficient exact repair,” in Information Theory Workshop
(ITW), 2011 IEEE, pp. 45 –49, oct. 2011.

[9] K. Lally and P. Fitzpatrick, “Algebraic structure of quasicyclic codes,”
Discrete Applied Mathematics, vol. 111, no. 12, pp. 157 – 175, 2001.
Coding and Cryptology.

	Introduction
	System Model
	Non-existence of (7,4) quasi-cyclic MSR code for =3
	Non-existence of quasi-cyclic MSR codes for =n-k and k 4
	Numerical Search for Codes
	Concluding Remarks
	References

