
DYSFUNCTIONAL ANALYSIS

VIV

1. PRELIMINARIES AND MOTIVATION

The study of functional analysis is, at its core, really a (careful) study of infinite di-
mensional linear algebra. So let’s talk about some infinite-dimensional linear algebra!
First, let’s keep in mind some of the things that we might care about understanding from
finite-dimensional linear algebra:

• We have vector spaces over R with vectors
• that have lengths
• and transposes (dual vectors + dot products)
• and bases
• and there are linear transformations between vector spaces
• that have eigenvalues and eigenvectors.

We’ll talk about as many bullet points as we can this week.

2. LENGTH

To begin with, when we think of finite dimensional vector spaces, we often think of
Rn, something that looks like a space of n-vectors. So, what if we just consider a space of
infinite-dimensional vectors, i.e. R∞ in the same sense?

Formally this could be OK, but one problem is that this allows things like (1, 1, 1, 1, . . . )
or even worse (1, 2, 3, 4, 5, 6, 7, . . . ), which don’t jibe well with how we think lengths ought
to work.

Definition 2.1. A normed linear space is a vector space V over R or C, along with a function,
called the norm and denoted || · ||, from V to R which satisfies:

• ||v|| ≥ 0 for all v ∈ V (positivity);
• ||v|| = 0 ⇐⇒ v = 0 (definiteness);
• ||αv|| = |α|||v|| for all v ∈ V, for all α in the base field (scaling);
• and ||v + w|| ≤ ||v||+ ||w|| for all v and w in V (triangle inequality).

Example 2.2. Let’s think about R2 for the moment. The example of norm that we see most
often is the standard length, where ||(a, b)||2 =

√
a2 + b2. If we draw the set of vectors

with norm 1 (or unit vectors) under this norm, we get the standard unit circle:
1
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(0,−1)

(0, 1)

However, another norm we could have used is the taxicab norm, where ||(a, b)||t =
|a|+ |b|. This norm certainly satisfies positive definiteness and scaling; it’s worth thinking
about why it also satisfies the triangle inequality. In this case the “unit circle” looks like
this:

x

y

(−1, 0) (1, 0)

(0,−1)

(0, 1)

Yet a third norm we could consider is the supremum norm, where ||(a, b)||s = max{a, b}.
In this case the “unit circle” is a square:
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On the other hand, there’s in some sense fewer norms than it may seem in the finite
dimensional case. If you’re counting length by circles or squares or diamonds, no matter
what, you’ll still be able to tell that a pretty long vector is pretty long and a pretty short
vector is pretty short, even if you’re fudging about the details of specific lengths in specific
cases. This concept is equivalence of norms.

Definition 2.3. Let || · ||a and || · ||b be two norms on a finite-dimensional vector space V.
We say that || · ||a and || · ||b are equivalent if there are positive constants C and D so that,
for all v ∈ V,

C||v||a ≤ ||v||b ≤ D||v||a,

or equivalently C||v||a|| ≤ ||v||b and 1
D ||v||b ≤ ||v||a.

Equivalence (along with the constants C and D) gives a bound on how off the length
measurements can be under two different norms. For the finite-dimensional case, we get
equivalence everywhere:

Theorem 2.4. If V is a finite-dimensional vector space, all norms on V are equivalent.

Lemma 2.5 (Cauchy-Schwarz inequality). Let v, w ∈ V be arbitrary vectors, where V has an
orthonormal basis {e1, e2, . . . }. Then

|v · w| ≤ ||v||2||w||2,

where || · ||2 is the standard Euclidean norm, and v · w is the standard dot product.

Proof. Note that ||v||2 =
√

v · v (and same for w). If v = 0, then both sides are 0, and we’re
done. If not, let z = u− u·v

v·v v. Then z · v = 0, since

z · v =
(

u− u · v
v · v v

)
· v = u · v− u · v

v · v v · v = 0,
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so z and v are orthogonal. We then apply the Pythagorean theorem to u = u·v
v·v v + z, which

yields

||u||22 =
∣∣∣u · v
v · v

∣∣∣2 ||v||22 + ||z||22
=
|u · v|2

||v||42
||v||22 + ||z||22

⇒||v||22||u||22 = |u · v|2 + ||z||22||v||22
⇒||v||22||u||22 ≤ |u · v|2.

�

Remark 2.6. As we will use crucially much later, we never used that V was finite dimen-
sional!!

Proof. We will show that any norm || · || is equivalent to || · ||2, the standard Euclidean
norm. This is the same as showing that there exists C > 0, D > 0 so that for all v ∈ V,
C||v|| ≤ ||v||2 ≤ D||v||. Note that this is automatic for v = 0, and that it suffices to show
that this holds for v with ||v||2 = 1. If we know this result in the case when ||v||2 = 1,
then for any v ∈ V,

∣∣∣∣∣∣ v
||v||2

∣∣∣∣∣∣
2
= 1, so we know that

C
∣∣∣∣∣∣∣∣ v
||v||2

∣∣∣∣∣∣∣∣ ≤ 1 ≤ D
∣∣∣∣∣∣∣∣ v
||v||2

∣∣∣∣∣∣∣∣ ,

which by multiplying out by ||v||2 implies C||v|| ≤ ||v||2 ≤ D||v|| for the same C and D.
Assume V is n-dimensional and let {e1, . . . , en} be a basis for V. Let v ∈ V with ||v||2 =

1 and let v = a1e1 + · · ·+ anen, so that ||v||2 =
(
∑n

i=1 |ai|2
)1/2. By the triangle inequality,

||v|| =
∣∣∣∣∣
∣∣∣∣∣ n

∑
i=1

aiei

∣∣∣∣∣
∣∣∣∣∣ ≤ n

∑
i=1
|ai|||ei||.

But note that this last sum is the same as the dot product of the vector (|a1|, . . . , |an|) and
the vector (||e1||, . . . , ||en||), so we have

n

∑
i=1
|ai|||ei|| ≤

(
n

∑
i=1
|ai|2

)1/2( n

∑
i=1
||ei||2

)1/2

=

(
n

∑
i=1
||ei||2

)1/2

,

by Cauchy-Schwarz. If we let C be
(
∑n

i=1 ||ei||2
)−1/2, which is independent of v, we get

that C||v|| ≤ 1, as desired.
Now we want to find D so that 1 ≤ D||v||. We’ve just proven that for all w ∈ V,

C||w|| ≤ ||w||2, which implies that for any sequence of vectors {wi}∞
i=1 with ||wi||2 → 0,

we must also have ||wi|| → 0. In particular, this means that the function || · || : V → R is
continuous! Since the set of vectors in V of length 1 is closed and bounded, it’s compact,
so the continuous function || · || has a minimum on the unit sphere. Let m > 0 be the
minimum value of || · || on the unit sphere. Then for all v on the unit sphere, 1 ≤ 1

m ||v||,
so ||v||2 ≤ 1

m ||v||. �
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But for this argument it was crucial that V be finite-dimensional! The place where
we really used this was in saying that “the set of vectors in V of length 1 is closed and
bounded.” If V is infinite dimensional and has a norm, the set of vectors of length 1 is not
compact!

Let’s see how this works in practice; we’ll start by giving a bunch of examples of
infinite-dimensional normed vector spaces.

Example 2.7. • Let

`2 =

{
{ai}∞

i=1 | ai ∈ R,
∞

∑
i=1
|ai|2 < ∞

}
,

i.e. the set of sequences {ai}∞
i=1 where ai ∈ R and whose square sums converge.

We can then define the `2 norm on V, denoted || · ||2, via ||{ai}||2 =
(
∑∞

i=1 |ai|2
)1/2.

Note that V is exactly the subset of vectors in R∞ that have finite length in the `2
norm.
• The above example embodies our general strategy; pick a norm first, and then

take as our space the set of vectors with finite norm. We can instead consider the
`1 norm on sequences, given by ||{ai}||1 = ∑∞

i=1 |ai|. This gives

`1 =

{
{ai}∞

i=1 | ai ∈ R,
∞

∑
i=1
|ai| < ∞

}
,

under the `1 norm.
• The sup norm or `∞ norm on sequences is given by ||{ai}||∞ = supi |ai|, so we have

the space

`∞ =

{
{ai}∞

i=1 | ai ∈ R, sup
i
|ai| < ∞

}
,

under the sup norm.
• In this example we can take the sup norm but restrict the vector space we’re look-

ing at, to be sequences where only finitely many entries are nonzero. This is de-
noted c0.

Note that without considering the norm structure, c0 ⊆ `1 ⊆ `2 ⊆ `∞. So let’s consider
as an example c0, which we’ll endow with either the `1 norm or the `2 norm. Consider the
sequence of vectors vn = (1, . . . , 1︸ ︷︷ ︸

n

, 0, . . . ) in `1. Then ||vn||1 = n, but ||vn||2 =
√

n. Thus

for any C > 0, if we pick n so that 1√
n < C, we have C||vn||1 = Cn > n√

n =
√

n = ||vn||2,
and thus C||vn||1 6≤ ||vn||2.

Exercise 2.8. Find a sequence of vectors in c0 that shows that the `1 norm is not equivalent
to the sup norm, and one that shows that the `2 norm is not equivalent to the sup norm.

This means that we’ll generally be talking about infinite dimensional vectors spaces
with a specified norm. Since there are notions of length that work so fundamentally
differently, it’s important to keep track! One last important definition with norms is the
notion of a complete space: if a vector space has a norm, we have a notion of convergence
of sequences and series, and we can ask that if a sequence converges, its limit is in the
vector space.
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Definition 2.9. A complete normed vector space is a vector space V along with a norm || · ||
satisfying the condition that if {vn}∞

n=1 is a Cauchy sequence, i.e. if maxm>n ||vn− vm|| →
0 as n→ ∞, then {vn} has a limit in V, i.e. there exists v ∈ V with ||vn − v|| → 0.

A complete normed vector space is also called a Banach space.

Example 2.10. • c0 is not complete. Why? Consider the sequence {vn}∞
n=1, where

vn = (1, 1
2 , 1

4 , · · · , 1
2n , 0, . . . , 0), and the vector v = (1, 1

2 , 1
4 , . . . , 1

2n , . . . ). The se-
quence {vn} → v, since the supremum of the entries of v− vn is 1

2n+1 . But v has
infinitely many nonzero entries, so v 6∈ c0.
• `1 and `2 are complete.

3. BASES

The definition of basis that we’re used to in the finite case is the following:

Definition 3.1. A Hamel basis B of a vector space V is a linearly independent set of vectors
B = {xi}i∈I such that every element v ∈ V can be written as a linear combination of
elements of B,

where by “linear combination” we mean a finite linear combination, i.e. v = ∑n
i=1 aibi,

and by “linearly independent” we mean that 0 is not a nontrivial finite linear combination
of basis elements. Note that we don’t even need the index set to be countable; in fact, it
most often won’t be.

Example 3.2. The set {vn}∞
n=1 of vectors in c0, where vn has a 1 in the nth entry and 0s

elsewhere, is a Hamel basis for c0.

What’s a Hamel basis for `2? Well, we can start by having the same vn’s that we chose
for the Hamel basis of c0, but since we’re only taking finite linear combinations we can’t
get to vectors like (1, 1

2 , 1
4 , . . . ). So maybe we add that one in, but then we can’t get

to vectors like (1, 0, 1
2 , 0, 1

4 , 0, . . . ), and already this starts to get quite unwieldy to work
with...and life just doesn’t get better.

Fact 3.3. There does exist a Hamel basis for `2.

Proof. Exercise in logic. (Hint: Zorn’s Lemma is necessary!). �

Exercise 3.4. If V is any infinite-dimensional Banach space, then V cannot have a count-
able Hamel basis.

So we may need a definition that’s a bit more robust than the Hamel basis definition;
in particular, it sure would be nice to allow infinite sums. Moreover, right now if we start
to think about components or projection, it’s quite awkward!

Definition 3.5. A countable sequence {vn}∞
n=1 in a Banach space V is a basis for V if for

all v ∈ V, there exists a unique sequence of scalars {an}∞
n=1 such that

v =
∞

∑
n=1

anvn.

The series is called the basis representation of v with respect to {vn}.
Remark 3.6. The convergence in the definition means convergence in the norm of the
Banach space.
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Remark 3.7. In our definition, not every space has a basis. For example, as we’ll see later,
`∞ will not have one. This is a big deal!

Example 3.8. Under this definition, the set {en}∞
n=1 where en is the sequence with a 1 in

the nth spot and 0s elsewhere is a basis for `1 and `2. But, it’s not a basis for `∞; why not?

4. LINEAR TRANSFORMATIONS

Now that we have a bit of a handle on what these spaces are, let’s talk about linear
maps for a bit. In the finite dimensional case, we have a nice representation of a linear
transformation T : V → W as a matrix, given a basis of each, and we can talk about the
image and kernel, and so on. But right off the bat in the infinite case, there’s a problem:
unlike in finite dimensions, a linear function need not even be continuous!

Definition 4.1. A linear transformation T : V → W between Banach spaces is continuous
at v ∈ V if for every convergent sequence {vn}∞

n=1 approaching v,

lim
n→∞

T(vn) = T(v).

T is continuous if it is continuous at all points.

This is the same definition of continuous that we have for functions on R.

Example 4.2. Consider the linear map λ : `1 → R given by λ(a1, a2, . . . ) = ∑∞
i=1 ai log i.

Note that for all (a1, a2, . . . ) ∈ `1, λ is finite.
However, the sequence {vn} where vn has 1

log n in the nth spot and 0s elsewhere con-
verges to 0, but λ(vn) has a 1 in the nth spot and 0s elsewhere, which is always distance 1
away from 0.

Example 4.3. Let {vi}i∈I be a Hamel basis for an infinite-dimensional Banach space V.
By replacing vi with vi

||vi||
if necessary, we can assume that ||vi|| = 1 for all i. Thus I is

uncountable. Let J = {j1, j2, . . . } be a countable subset of I. Define λ : V → R on the
Hamel basis by the condition that λ(vjn) = n for n ∈N and λ(vi) = 0 if i 6∈ J. We can then
extend λ linearly to all of V, since each nonzero vector v ∈ V has a unique representation
as a finite linear combination of Hamel basis vectors.

Now consider the sequence {wn}∞
n=1 of vectors where wn = 1

n vjn . Then λ(wn) =
1
n λ(vjn) = 1

n · n = 1 for all n, but ||wn|| = 1
n → 0, so wn → 0 as n → ∞. Thus λ is

not continuous.

One thing to note about all of these examples is that the linear transformation at hand
is in some sense getting big; there has to be some sequence of vectors that the linear
transformation scales more and more drastically. This is encapsulated by the following
definition:

Definition 4.4. A linear transformation T : V → W between Banach spaces V and W is
bounded if there exists a constant C ≥ 0 such that for all v ∈ V,

||Tv||W ≤ C||v||V .

Proposition 4.5. For a linear transformation T : V → W between Banach spaces, the following
are equivalent:

(a) T is continuous at some point v ∈ V.
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(b) T is continuous.
(c) T is bounded.

Proof. (a)⇒ (b): Let {un}∞
n=1 be any convergent sequence in V approaching u ∈ V. Then

{un − u + v}∞
n=1 approaches v ∈ V. By continuity at v,

T(v) = lim
n→∞

T(un − u + v)

⇒T(v) = lim
n→∞

T(un)− T(u) + T(v)

⇒T(u) = lim
n→∞

T(un).

Thus T is continuous at u; since this holds for all u ∈ V, T is continuous.
(b)⇒ (c): Assume not. Let {un}∞

n=1 be a sequence of elements of V such that ||un||V = 1

and ||T(un)||W ≥ n. Then
∣∣∣∣∣∣ 1

n un

∣∣∣∣∣∣ = 1
n , so

{
1
n un

}
→ 0 as n→ ∞, but∣∣∣∣∣∣∣∣T( 1

n
un

)∣∣∣∣∣∣∣∣
W

=
1
n
||T(un)||W ≥ 1,

so limn→∞ T
(

1
n un

)
6= 0. Thus T is not continuous, a contradiction.

(c)⇒ (a): We will prove that T is continuous at 0. Let {vn}∞
n=1 be any sequence with

vn → 0, i.e. ||vn||V → 0. Then

||T(vn)||W ≤ C||vn||V → 0,

so limn→∞ T(vn) = 0, and thus T is continuous at 0. �

So that’s fun! Bounded linear maps are really just the same as continuous maps.

5. LINEAR FUNCTIONALS AND SEPARABILITY

Let’s now turn our attention to one relatively simple case of linear maps, the case of
linear functionals, or maps V → R. Since unbounded maps are so misbehaved, in this
case as in general, we’re going to restrict our view to bounded linear functionals, which
have more hope of being either useful or understandable (or both :P). Linear functionals
can add and be scaled, so they themselves form a vector space, called the dual space and
denoted V∗.

Definition 5.1. Let T : V → W be a bounded linear map. Let c ≥ 0 be the infimum of all
constants C ≥ 0 such that for all v ∈ V, ||T(v)||W ≤ C||v||V . Then c is called the operator
norm of T.

Exercise 5.2. Under the operator norm, V∗ is a Banach space.

Example 5.3 (Linear functionals: finite-dimensional case). Let V be an n-dimensional vec-
tor space with basis {e1, . . . , en}. Let λ : V → R be any linear functional; then λ can be
represented by a 1×n matrix as a linear transformation. This is just a row vector, which
is also an n-dimensional vector space. Moreover, by taking the transpose, row vectors are
isomorphic to column vectors, so V∗ ∼= V. As we’ll discuss more later, this isomorphism
is not canonical! It depends on the choice of basis.
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Since transposing twice yields the original vector back again, (V∗)∗ ∼= V∗ ∼= V as well.
Note that the isomorphism (V∗)∗ ∼= V can actually be made to be basis independent.
One way to think of this is that for all v ∈ V, there is a linear map ev : V∗ → R given
by evaluation at v, i.e. λ 7→ λ(v). This correspondence is the desired isomorphism V →
(V∗)∗, and we didn’t need to pick a basis.

But as always, life is harder on the infinite side of the fence. We’re going to look into
two examples in depth, to get a grasp of the picture. The first is the case of `1 and `∞.

Proposition 5.4. `∗1 = `∞.

Proof. We’ll first show that `∞ ⊆ `∗1 . Let a = (a1, a2, . . . ) ∈ `∞, so that supi |ai| < ∞. Now
for all v = (v1, v2, . . . ) ∈ `1, we will say that

a(v1, v2, . . . ) =
∞

∑
i=1

aivi.

Note that this sum converges absolutely since the ai’s are bounded and the vi’s converge
absolutely. Also,

|a(v1, v2, . . . )| =
∣∣∣∣∣
∣∣∣∣∣ ∞

∑
i=1

aivi

∣∣∣∣∣
∣∣∣∣∣ ≤ ∞

∑
i=1
|ai||vi| ≤ sup

i
|ai|

∞

∑
i=1
|vi| = ||a||∞||v||1.

Thus every element a of `∞ is a bounded linear transformation from `1 → R, so `∞ ⊆ `∗1 .
We’d now like to show that every linear functional in `∗1 arises in this manner. Let

λ : `1 → R be a linear functional. Consider en ∈ `1, with a 1 in the nth entry and 0s
elsewhere. Let an = λ(en). We’ll show that a = (a1, a2, . . . ) is in `∞ and corresponds to
the same linear functional λ that we started with.

a ∈ `∞: Note that ||en||1 = 1 for all n. Since λ is bounded, there exists C such that
|λ(en)| ≤ C||en||1 for all n, which implies that |an| ≤ C. Thus supn |an| < ∞, so a ∈ `∞.

a corresponds to λ: We’d like to show that for an arbitrary element v = (v1, v2, . . . ) ∈
`1, λ(v) = a(v). By linearity,

λ(v) = λ

(
∞

∑
n=1

vnen

)
=

M−1

∑
n=1

vnλ(en) + λ

(
∞

∑
n=M

vnen

)
.

Since λ is continuous and |∑∞
n=M |vn|| → 0 as M → ∞ we can take the limit as M → ∞

on both sides, yielding

λ(v) = lim
M→∞

M−1

∑
n=1

vnλ(en) + λ

(
∞

∑
n=M

vnen

)
=

∞

∑
n=1

vnλ(en) = a(v).

�

The question then remains if `∞ dual is also `1. The answer (spoiler alert!) is no, but to
see why, we’ll need separability.

Definition 5.5. A subset S of a Banach space V is dense if for all v ∈ V and for all ε > 0,
there exists s ∈ S such that ||v− s|| < ε.

So for example Q is dense in R, points with rational coordinates are dense in general,
and so on.
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Definition 5.6. A Banach space V is separable if it has a countable dense subset S.

Example 5.7. • Q is countable, as is Qn, so R is separable, as is Rn.
• Any Banach space with a basis (or countable basis) is separable. If V has basis
{vn}∞

n=1, then
∞⋃

n=1

{
n

∑
i=1

aivi | ai ∈ Q

}
is a countable dense subset of V.
• Consider the set of sequences which have rational coordinates and only finitely

many nonzero coordinates. These are dense in `1 and in `2. Also, this is a union of
countably many countable sets, so it too is countable; thus `1 and `2 are separable.
• `∞ is not separable. The set from the previous example isn’t dense anymore, since

we can take the sequence of all 1’s in `∞; this distance from this sequence to ev-
erything that has finitely many nonzero coordinates is at least 1. Moreover, for
every subset J ⊆ N, `∞ contains an indicator function for J, i.e. an element eJ that
is 1 on coordinates in J and 0 on coordinates not in J. The distance between any
two of these indicator elements eJ and eK is ||eJ − eK||∞ = 1. Thus by the triangle
inequality, no element a ∈ `∞ can satisfy ||a− eJ ||∞ < 1/3 and ||a− eK||∞ < 1/3
for K and J distinct subsets of N. Thus any dense subset of `∞ must have at least
as many elements as the power set of the naturals—which is already uncountable!

Exercise 5.8. If V is a separable Banach space and S ⊆ V is a subset where we consider
the same distance function, S is also separable.

Black Box 5.9 (Hahn-Banach). Let V be a Banach space with Z ⊆ V a subspace. Let v ∈ V
be an element such that

inf
z∈Z
||v− z||V = d.

Then there exists λ ∈ V∗ such that ||λ||V∗ ≤ 1, λ(y) = d, and λ(z) = 0 for all z ∈ Z.

The Hahn-Banach theorem (usually in a different form) is very useful and not hard to
prove, but it involves some precise details that we won’t go into here. For a proof, see
handout.

Theorem 5.10. Let V be a Banach space. Assume that V∗ is separable. Then V is separable.

Proof. Consider the unit sphere S∗ ⊆ V∗, which is separable by the exercise. Let {λn}∞
n=1

be a countable dense subset of S∗. Thus for each λn, the operator norm of λn is 1, so there
must exist some zn ∈ V with ||zn||V = 1 and |λn(zn)| > 1/2. Let D ⊆ V be the Banach
space with basis {zn}∞

n=1 and the same norm as V. Since D has a countable basis, it is
separable.

Claim: D = V.

Proof of claim. Assume not. Then there exists y ∈ V \ D; note that since D is a Banach
subspace, this means that y has positive distance from D, i.e. infz∈D ||y− z||V = d > 0.
By our black box, there exists λ ∈ V∗ with ||λ||V∗ = 1, λ(y) 6= 0, but λ(z) = 0 for all
z ∈ D. Since the λn are dense in S∗ and ||λ||V∗ = 1, there exists a subsequence {λnk}k that
converge to λ in V∗.
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However,

||λ− λnk ||V∗ ≥ |(λ− λnk)(znk)| = |λnk(znk)| ≥
1
2

.

Since ||λ− λnk ||V∗ ≥ 1
2 , ||λ− λnk ||V∗ cannot approach 0, contradicting the fact that λnk →

λ as k→ ∞. �

�

Now that we have this theorem, we can come back to the dual space question. Since `1
is separable but `∞ is not, `∗∞ 6= `1; it’s something bigger.1

6. HILBERT SPACES AND RIESZ REPRESENTATION

We’ll now turn our attention to `2, which works very differently. Spoiler alert: here
“very differently” means “much better”; this class has secretly been a long-form adver-
tisement for the magic of `2. Why is `2 so special? It has an extra structure that we can
exploit that most Banach spaces don’t have.

Definition 6.1. A vector space V is an inner product space if there exists a function 〈·, ·〉 :
V×V → R satisfying the following for all u, v, w ∈ V and for all scalars α:

• 〈x, x〉 ≥ 0 and 〈x, x〉 = 0 ⇐⇒ x = 0 (positive definiteness)
• 〈x, y + z〉 = 〈x, y〉+ 〈x, z〉 (linearity)
• 〈x, αy〉 = α〈x, y〉 (scaling)
• 〈x, y〉 = 〈y, x〉.

Example 6.2. Let V be any finite dimensional vector space with a bases {e1, . . . , en}. Then
taking standard dot products in this basis is an inner product.

Fact 6.3. If V is an inner product space with inner product 〈·, ·〉, then V is also a normed
space, with norm ||v|| = 〈v, v〉1/2.

Example 6.4. Consider `2, with the inner product that

〈(a1, a2, . . . ), (b1, b2, . . . )〉 =
∞

∑
i=1

aibi.

Note that this is always finite; under this inner product, the single components as vectors
are orthogonal, so by Cauchy-Schwarz∣∣∣∣∣ ∞

∑
i=1

aibi

∣∣∣∣∣ ≤
(

∞

∑
i=1
|ai|2

)1/2( ∞

∑
i=1
|bi|2

)1/2

< ∞.

Also, the norm resulting from this inner product is exactly the `2 norm back again.

1The situation is summarized by the following brief poem:

`1 dual is `∞
`∞ is too big

`∞ is not separable
`∞, what a pig!

Credit to Hannah Larson (MC’12) and myself.



12 VIV

So `2 is special because it’s a Banach space with an inner product, which is also called
a Hilbert space. What does this tell us about the dual space in this case? For each v ∈ V,
where V is a Hilbert space, there is a linear functional λv : V → R given by λv(w) =
〈v, w〉. However, we ultimately get that that’s everything!

Theorem 6.5 (Riesz Representation). For each λ ∈ V∗, there exists wλ ∈ V such that for all
v ∈ V, λ(v) = 〈wλ, v〉. Moreover, ||wλ||V = ||λ||V∗ .

So, this says that as normed spaces, V ∼= V∗ canonically when V is a Hilbert space.
Note that choosing a Hilbert space structure on V is akin to choosing a basis in the finite-
dimensional case, so this is an exact generalization of what’s happening in the finite-
dimensional universe. To prove this theorem, we first define orthogonal complement and
discuss two lemmas.

Definition 6.6. Let V be a Hilbert space and M ⊆ V be a subspace that is complete under
the norm. The orthogonal complement M⊥ of M is the set

M⊥ = {w ∈ V | 〈u, w〉 = 0∀u ∈ M}.

Exercise 6.7. M⊥ is also complete under the norm, i.e. it contains its limit points.

Ideally we’d like to say that V = M + M⊥ = {u + w | u ∈ M, w ∈ M⊥}. That is given
to us by the following three lemmas.

Lemma 6.8 (Parallelogram Rule). Let V be a Hilbert space. Then for all x, y ∈ V,

||x + y||2 + ||x− y||2 = 2||x||2 + 2||y||2.

Proof.

||x + y||2 + ||x− y||2 = 〈x + y, x + y〉+ 〈x− y, x− y〉
= 〈x, x〉+ 〈x, y〉+ 〈y, x〉+ 〈y, y〉+ 〈x, x〉 − 〈y, x〉 − 〈x, y〉+ 〈y, y〉
= 2〈x, x, 〉+ 2〈y, y〉 = 2||x||2 + 2||y||2.

�

Lemma 6.9. Let V be a Hilbert space, M ⊆ V a closed subspace, and let v ∈ V. Then there exists
a unique element u ∈ M that is closest to v.

Proof. Let d = infy∈M ||v − y||V , and choose a sequence {yn}∞
n=1 of points in M so that

||x− yn||V → d. Then for n < m,

||yn − ym||2V = ||(v− ym)− (v− yn)||2V
= 2||v− ym||2V + 2||v− yn||2V − ||(v− ym) + (v− yn)||2V , by the Parallelogram Rule

= 2||v− ym||2V + 2||v− yn||2V − 4||v− 1
2(ym + yn)||2V

≤ 2||v− ym||2V + 2||v− yn||2V − 4d2, since 1
2(ym + yn) ∈ M.

Taking the limit as n → ∞, with the assumption n < m, the right hand side becomes
2d2 + 2d2 − 4d2 = 0, so the sequence {yn} must be a Cauchy sequence, so it converges to
an element u ∈ M by completeness of M. If there were another point u′, we could take
our sequence to alternate between u and u′, showing that u = u′. �
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Lemma 6.10 (Projection). Let V be a Hilbert space with closed subspace M. Every v ∈ V can be
written v = u + w with u ∈ M, w ∈ M⊥.

Proof. Let v ∈ V. By the lemma, there exists a unique element u ∈ M minimizing distance
to v. Define w = v− u, so v = u + w. Let d = ||v− w||V ; then for all t > 0, for all y ∈ M,

d2 ≤ ||v− (u + ty)||2V = ||w− ty||2V = 〈w− ty, w− ty〉
= d2 − 2t〈w, y〉+ t2||y||2V .

Thus for all t > 0, −2t〈w, y〉+ t2||y||2V > 0, or equivalently t||y||2V > 2〈w, y〉. We can pick
t arbitrarily small, so this must imply that 〈w, y〉 = 0 �

Proof of Riesz. Fix λ ∈ V∗. Let N ⊆ V be the set of v ∈ V with λ(v) = 0. Since λ is
continuous, the preimage of {0}, which is N, is closed. If N = V, then λ is the 0 map, so
wλ = 0. If not, consider N⊥, which has a nonzero vector w in it by the projection theorem.
By scaling, we can assume that ||w||2V = 1. Then define wλ = λ(w)w.

To verify that wλ has the right properties, note first of all that w and N span all of V,
since every v ∈ V can be written

v =

(
v− λ(v)

λ(w)
w
)
+

λ(v)
λ(w)

w,

and

λ

(
v− λ(v)

λ(w)
w
)
= λ(v)− λ(v)

λ(w)
λ(w) = 0,

so the first component is in N. Moreover, for all v, and noting that wλ is perpendicular to
N,

〈v, wλ〉 =
〈(

v− λ(v)
λ(w)

w
)
+

λ(v)
λ(w)

w, λ(w)w
〉

= λ(w)

〈(
v− λ(v)

λ(w)
w
)

, w
〉
+ 〈 λ(v)

λ(w)
w, λ(w)w〉

= 0 +
λ(v)
λ(w)

λ(w) = λ(v).

To prove that ||λ||V∗ = ||wλ||V , note that

||λ||V∗ = sup
||v||V=1

|λ(v)| = sup
||v||V=1

|〈v, wλ〉| ≤ sup
||v||V=1

||wλ||V ||v||V = ||wλ||V

by Cauchy-Schwarz, and moreover that

||λ||V∗ = sup
||v||V=1

|λ(v)| ≥ |λ(w)| = 〈w, wλ〉 = ||wλ||V ,

so equality holds. �

This completes our proof! The self-dual property of finite dimensional spaces are really
a property of Hilbert spaces in all of their shining glory.
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