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1. NOTATION USED THROUGHOUT

K a number field;
E/K an elliptic curve over K;
MK a complete set of inequivalent absolute values on K;
M∞

K (resp. M0
K) the archimedean (resp nonarchimedean) absolute values on MK;

v(x) = − log |x|v for v ∈ MK, | · |v the normalized absolute value for v ∈ MK;
R ring of integers of K, R× unit group of R;
Kv completion of K at v ∈ MK, Rv ring of integers of Kv;
HK the projective height, HK(P) = ∏v∈MK

maxi{|xi|v} for P = [x0, . . . , xN] ∈ PN(K);
h f = log HK( f (P)) for f : E→ PN the height on E
nv is the local degree [Kv : Qv]
ordQ( f ) is the vanishing order of a function f at a point Q

2. MOTIVATION AND A CLASSICAL QUESTION

The question that this talk is answering is generally “How many integral points are
there on elliptic curves?” The answer (spoiler alert!) is generally “finitely many.”

Remark 2.1. But wait! I hear you cry. I have an objection! We’ve already seen that there
are infinitely many rational points on an elliptic curve. If it’s a projective curve, then we
can automatically say that there are infinitely many integer points, by just multiplying out
the denominators.

Indeed we could! We will not be in the projective setting for this talk. We are in the
affine setting.

Consider the following more specific and more classical question, which will help us on
our way.

Question 2.2. Given an irrational number x ∈ R, can we approximate x by a rational
number p

q where
∣∣∣x− p

q

∣∣∣ is small relative to q?

This question was posed by Dirichlet, who also gave the following answer.

Proposition 2.3 (Dirichlet). Let x ∈ R be irrational. There are infinitely many p
q ∈ Q with∣∣∣∣ p

q
− x
∣∣∣∣ ≤ 1

q2 .

Most of the results in this talk are going to be about cases where we can’t do this, i.e.
a statement of the form “There are only finitely many rational approximations of an irrational
point where the error is small.” Here’s the first one.
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Proposition 2.4 (Liouville). Let α ∈ Q̄ with [Q(α) : Q] = d for d ≥ 2. There exists a constant
C > 0, dependent on α, such that for all p/q ∈ Q we have∣∣∣∣ p

q
− α

∣∣∣∣ ≥ C
qd .

Here’s an equivalent phrasing of Liouville’s theorem which will motivate a definition to
follow.

Proposition 2.5 (Liouville, again). Let α ∈ Q̄ with [Q(α) : Q] = d for d ≥ 2. Fix any ε > 0
and any C > 0. There are only finitely many p

q ∈ Q with∣∣∣∣ p
q
− α

∣∣∣∣ < Cq−(d+ε).

This gives us the idea of an approximation exponent which is basically an option for
something in the exponent of q. More generally:

Definition 2.6. Let K be a number field, and let τ(d) : N → R>0. We say that τ is an
approximation exponent for K if for any α ∈ K̄ with [K(α) : K] = d and for any v ∈ MK an
absolute value on K extended to K(α), for any C there are only finitely many x ∈ K with

|x− α|v < CHK(x)−τ(d).

So our third and most compact formulation of Liouville’s theorem is that for all ε > 0,
τ(d) = d + ε is an approximation exponent for Q. Several incremental improvements were
made on Liouville’s result, culminating in Roth’s theorem of 1955.

Theorem 2.7 (Roth). For every ε > 0 and every number field K, τ(d) = 2+ ε is an approximation
estimate.

Remark 2.8. Another formulation of Dirichlet’s theorem above is that 2 is not an approxi-
mation estimate for Q, so in that sense this is the best we can do.

The proof of Roth’s theorem has many steps, none of which are “tremendously deep,”
but it ends up being quite lengthy in full detail. See Silverman [2] for an outline. We will,
however, discuss the following example in elliptic curves, which shows why this story
becomes relevant.

Example 2.9. Consider the curve x3 − 2y3 = k, for k ∈ Z. If y 6= 0, we can factor to get(
x
y
− 3
√

2
)(

x
y
− ζ

3
√

2
)(

x
y
− ζ2 3
√

2
)
=

k
y3 ,

where ζ is a primitive third root of unity. The second and third factors are bounded away
from 0 when x, y are integral, and this bounding is independent of the values of x and y.
Thus there exists a constant C independent of x, y with∣∣∣∣xy − 3

√
2
∣∣∣∣ ≤ C
|y|3 .

By Roth’s theorem, there can only be finitely many possibilities for x, y. Thus there are
only finitely many integral points on this elliptic curve.



SIEGEL’S THEOREM 3

3. DISTANCE FUNCTIONS

In order to state Siegel’s theorem, we’ll need to briefly discuss distance functions.

Definition 3.1. Let C/K be a curve, let v ∈ MK, and fix a point Q ∈ C(Kv). Choose
a function tQ ∈ Kv(C) with a zero of order e ≥ 1 at Q and no other zeroes. Then for
P ∈ C(Kv), we define the (v-adic) distance from P to Q by

dv(P, Q) = min
{
|tQ(P)|1/e

v , 1
}

.

Remark 3.2. Such a tQ must exist because of Riemann-Roch. If tQ has a pole at P, we
formally set |tQ(P)| = ∞.

The mantra of distance functions is that “they’re nicer than they appear.” In fact, as
defined, we have dv(P, Q) dependent on our choice of tQ(P), which seems bad. But, the
following proposition shows that things are nicer than they appear; the choice of tQ is
irrelevant for our theorems.

Proposition 3.3. For Q ∈ C(Kv) and F ∈ Kv(C) a function vanishing at Q, the limit

lim
P∈C(Kv),P→vQ

log |F(P)|v
log dv(P, Q)

= ordQ(F)

exists and is independent of the choice of tQ.

Proof sketch. The clever step is noting that φ = FordQ(tQ)

t
ordQ(F)
Q

has neither a zero nor a pole at Q;

writing the limit in terms of φ gives the result. �

The following is another computational fact about distance functions which we’ll need
but won’t prove.

Proposition 3.4. Let φ : C1 → C2 be a finite map defined over K of curves Ci/K. Let Q ∈ C1(Kv)
and let eφ(Q) be the ramification index of φ at Q. Then

lim
P∈C1(Kv)P→vQ

log dv(φ(P), φ(Q))

log dv(P, Q)
= eφ(Q).

We will end our foray into distance functions with a reinterpretation of Roth’s theorem
in this language.

Corollary 3.5 (Roth’s Theorem). Fix v ∈ MK. Let C/K be a curve, let f ∈ K(C) be a
nonconstant function, and let Q ∈ C(K̄). Then

lim inf
P∈C(K),P→vQ

log dv(P, Q)

log HK( f (P))
≥ −2.

Proof. Assume without loss of generality that f (Q) 6= ∞ (if not, replace f by 1/ f , which
does not change HK( f (P)). Let e be the order of the vanishing of f − f (Q) at Q. Then by
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Proposition 3.3,

lim inf
P∈C(K),P→vQ

log | f (P)− f (Q)|v
log dv(P, Q)

= e

⇒ lim inf
P∈C(K),P→vQ

log dv(P, Q)

log HK( f (P))
= lim inf

P∈C(K),P→vQ

log | f (P)− f (Q)|v
e log HK( f (P))

=
1
e

lim inf
(

log (HK( f (P))τ| f (P)− f (Q)|v)
log HK( f (P))

− τ

)
.

Setting τ = 2 + ε for arbitrary ε > 0, Roth’s theorem implies that

HK( f (P))τ| f (P)− f (Q)|v ≥ 1

for almost all P ∈ C(K). Thus

lim inf
log dv(P, Q)

log HK( f (P))
≥ −τ

e
≥ −2 + ε

e
,

but e ≥ 1 and ε is arbitrary, so this is the desired result. �

4. SIEGEL’S THEOREM

We’ll now jump in with a statement of Siegel’s Theorem, discuss the proof, and then talk
about some consequences.

Theorem 4.1 (Siegel). Let E/K be an elliptic curve with |E(K)| = ∞. Fix a point Q ∈ E(K̄), a
nonconstant even function f ∈ K(E), and an absolute value v ∈ MK(Q). Then

lim
P∈E(K)h f (P)→∞

log dv(P, Q)

h f (P)
= 0.

Remark 4.2. We’ll prove this when f is even, but f doesn’t have to be even.

Proof. Since dv(P, Q) ≤ 1 and h f (P) ≥ 0 for all points P ∈ E(K), we have

lim sup
P∈E(K)h f (P)→∞

log dv(P, Q)

h f (P)
≤ 0.

We will prove that the lim inf is greater than or equal to 0, which suffices.
Let Pi ∈ E(K) be a sequence of distinct points Pi with

lim
i→∞

log dv(Pi, Q)

h f (Pi)
= L = lim inf

P∈E(K)h f (P)→∞

log dv(P, Q)

h f (P)
.

Let m ∈N. We’ll ultimately be sending m→ ∞, so think of m as large. The weak Mordell-
Weil theorem says that the quotient group E(K)/mE(K) is finite. Thus, some coset contains
infinitely many Pi. Let’s then pass to the subsequence contained in that coset, so that we
have

Pi = [m]P′i + R,
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with P′i , R ∈ E(K), and R independent of i. Then

m2h f (P′i ) = h f ([m]P′i ) + O(1)

= h f (Pi − R) + O(1)

≤ 2h f (Pi) + O(1),

where this uses properties of height functions that are outside the scope of this talk. Note
that O(1) is independent of i, and that this relies on Proposition VIII.6.4 in Silverman,
which requires that f be even.

We now proceed with the analogous computation for distance functions. If Pi is v-
adically bounded away from Q, then log dv(Pi, Q) is bounded, so L = 0. Otherwise, we
pass to a subsequence with Pi →v Q, and correspondingly [m]P′i →v Q− R. There are m2

possible mth roots of Q− R, so P′i must accumulate to at least one; we can pass to this
subsequence again, to get a point Q′ ∈ E(K̄) with

P′i →v Q′ and Q = [m]Q′ + R.

The map E→ E with P 7→ [m]P + R is everywhere unramified, so by Proposition 3.4,

lim
i→∞

log dv(Pi, Q)

log dv(P′i , Q′)
= 1.

Combining this and the height inequality, we get

L = lim
i→∞

log dv(Pi, Q)

h f (Pi)
≥ lim

i→∞

log dv(P′i , Q′)
1
2 m2h f (P′i ) + O(1)

.

Applying Roth’s Theorem in the distance setting (proposition 3.5) to P′i ⊆ E(K) which
converges v-adically to Q′ ∈ E(K̄), we get

lim inf
i→∞

log dv(P′i , Q′)
[K : Q]h f (P′i )

≥ −2.

Combining these last two yields

L ≥ −4[K : Q]

m2 .

Sending m→ ∞ gives L ≥ 0, as desired. �

5. MANY COROLLARIES, SOME PROVEN

Here, we put a bunch of consequences, so that you can see how cool Siegel’s Theorem is.
We’ll also put some extensions that are not consequences. But let’s start with consequences.

Corollary 5.1. Let E/K be an elliptic curve with Weierstrass coordinates x and y, and let S ⊆ MK
be a finite set of places containing M∞

K . Let RS be the ring of S-integers of K. Then

|{P ∈ E(K) : x(P) ∈ RS}| < ∞.

Proof. We apply Siegel’s Theorem with f = x, which is even by the explicit coordinates for
−P in the group law.
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Let P1, P2, · · · ∈ E(K) be a sequence of distinct points with x(Pi) ∈ RS and hx(Pi)→ ∞.
Then

hx(Pi) =
1

[K : Q] ∑
v∈S

log max {1, |x(Pi)|nv
v } ,

where we ignore terms with v 6∈ S since for those, |x(Pi)|v ≤ 1. Since S is finite, there
exists v ∈ S such that the vth term in this sum is the biggest infinitely often; we pass to
this subsequence, which we relabel as the original Pi’s. Thus for this v ∈ S, we have

hx(Pi) ≤
#S

[K : Q]
log max{1, |x(Pi)|nv

v }.

There are only finitely many points at height 0 by a result of chapter VIII, so again we can
pass to the infinite subsequence where max{1, |x(Pi)|nv

v } = |x(Pi)|nv
v to get our sequence

Pi with

hx(Pi) ≤ #S
nv

[K : Q]
log |x(Pi)|v.

In particular, |x(Pi)|v → ∞. The only pole of x is O, so dv(Pi, O) → 0. Moreover, O is a
pole of x ∈ K(E) of order 2, so let’s define our distance function

dv(Pi, O) = min
{
|x(Pi)|−1/2

v , 1
}

.

Then for sufficiently large i, we have

− log dv(Pi, O)

hx(Pi)
=
− log |x(Pi)|−1/2

v

hx(Pi)
=

log |x(Pi)|v
2hx(Pi)

≥ 1
2#S

.

But this contradicts Siegel’s Theorem, which says that this logarithmic expression should
approach 0 as i becomes large. �

Example 5.2 (Diophantine Equations but way more hardcore this time). I’m agnostic about
whether or not to prove this example here, and it’ll probably come down to how much time
I have, but Siegel’s theorem says something about solutions to Diophantine equations that
is much stronger than just the fact that there are finitely many integral points. Consider
the Diophantine equation

y2 = x3 + Ax + B,

with A, B ∈ Z and 4A3 + 27B2 6= 0. The above corollary says that this only has finitely
many solutions x, y ∈ Z. But what if we actually just apply Siegel’s theorem with Q = 0,
f = x, and v the archimedean absolute value on Q? Let’s label the nonzero rational points
P1, P2, · · · ∈ E(Q) in order of nondecreasing height, and write x(Pi) =

ai
bi
∈ Q in lowest

terms. What we end up getting after a medium-length computation is that

lim
i→∞

log |ai|
log |bi|

= 1.

In other words, when looking at the x-coordinates of rational points on an elliptic curve,
the numerators and denominators tend to have about the same number of digits.

Theorem 5.3 (Shafarevich’s Theorem). Let S ⊆ MK be a finite set of places containing M∞
K .

Then up to isomorphism over K, there are only finitely many elliptic curves E/K having good
reduction at all primes not in S.
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Corollary 5.4 (Corollary to Shafarevich). For a fixed elliptic curve E/K there are only finitely
many elliptic curves E′/K that are K-isogenous to E.

Corollary 5.5 (Serre). Let E/K be an elliptic curve with no complex multiplication. For almost
all primes l, E[l] has no nontrivial GK̄/K-invariant subgroups, i.e. the representation of GK̄/K one
E[l] is irreducible.

Now let’s list some extensions. In general, the finiteness of S-integral points on elliptic
curves is a special case of Siegel’s general result that an affine curve C/K of genus at
least one has finitely many S-integral points. For curves of genus two or more, this is
superseded by Falting’s theorem, which says that the set of rational points C(K) is finite.

But Siegel also provided an alternative proof for a broader class of curves that includes
elliptic curves. Here are some of those results.

Theorem 5.6. Let S ⊆ MK be a finite set of places, and let a, b ∈ K∗. The equation ax + by = 1
has finitely many solutions in x, y ∈ R∗S.

Theorem 5.7 (Siegel). Let f (x) ∈ K[x] be a polynomial of degree at least 3 with distinct roots in
K̄. The equation y2 = f (x) has only finitely many solutions x, y ∈ RS.

Corollary 5.8. Let C/K be a curve of genus one with f ∈ K(C) a nonconstant function. There
are finitely many points P ∈ C(K) with f (P) ∈ RS.
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