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1 Preliminaries

The first question to get our hands on is, what is a polytope? The most handwavy definition
is that it’s an n-dimensional version of a polygon or polyhedron. Here’s a definition that is
somewhat less handwavy:

Definition 1.0.1. A subset A ⊆ Rn is convex if for any two points x, y in A, the line segment
from x to y is also contained in A.

Definition 1.0.2. A convex polytope in Rn is the convex hull of finitely many points in Rn,
or the smallest convex set containing finitely many points in Rn. It is n-dimensional or a
convex n-polytope if it’s not contained in a copy of Rn−1.

In this class, all polytopes will be convex and connected. The boundary of an n-polytope
is a collection of (n− 1)-polytopes.

Examples. · Point. Boundary is a point.

· Line segment. Boundary is two points.

· Polygons (convex hulls of sets points in R2, including one example where one of the
points isn’t a vertex). Boundary is a collection of line segments.

· Polyhedra. Boundary is a collection of polygons.

· n-simplex. Boundary is the union of (n+ 1) many (n− 1)-simplices.

The collection of maximal (n− 1)-polytopes on the boundary of an n-polytope is the set
of its (n−1)-facets. Those facets are polytopes in their own right, so they have (n−2)-facets;
these are also considered to be (n− 2)-facets of the original polytope. By induction, we get
k-facets for every k ≤ n. The 0-facets are the vertices of the polytope.

Looking at the vertices and facets of a polytope gives us a fairly combinatorial intuition
for looking at symmetries. There’s a set of geometric symmetries of the polytope, called
its automorphism group (I promise no group theory, only that one word). One way for a
polytope to be very symmetric is if we can pick any two k-facets, and there’s a symmetry
taking one to the other.
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Example. Hexagons vs. hexagons with three sides big and three sides small (truncated
triangle). In the first case, there’s a symmetry taking any edge to any other, and taking
any vertex to any other. In the second, we can take any vertex to any other, but there’s no
symmetry that takes short edges to long edges. TODO: Add tikZ here.
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But we can do even better, if we want our polytope to be super-symmetric, by looking
at flags.

2 Regular Polytopes

Definition 2.0.1. A flag in an n-polytope P is a sequence of facets a0, a1, . . . , an−1, where
ai is an i-facet and ai ⊆ ai+1.

Definition 2.0.2. A polytope is regular if there’s a symmetry taking any flag to any other
flag.

Examples. · Line segments and points!

· Polygons (regular vs. non)

· Platonic solids

· n-simplex, n-cube

An important concept for us when discussing regular polytopes is going to be the dual
of a polytope. If we start with an n-polytope, the dual polytope is constructed by placing a
vertex in the center of every (n− 1)-facet, then taking the convex hull. Any two vertices in
the dual polytope are contained in a k-facet if and only if the corresponding (n − 1)-facets
in the original shared a common (n− k − 1)-facet.

Example. Cube - Octahedron; Dodecahedron - Icosahedron. Add tikZ!
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Definition 2.0.3. The n-crosspolytope is the dual of the n-dimensional cube.

So the big shiny question is, what regular polytopes are there? And the big shiny answer
is this theorem.

Theorem 2.0.4. · In 3D, there are five regular polytopes (tetrahedron, cube, octahedron,
dodecahedron, icosahedron).

· In 4D, there are six regular polytopes (5-cell, 8-cell, 16-cell, 24-cell, 120-cell, 600-cell).

· If n ≥ 5, there are precisely three n-dimensional polytopes. These are the n-simplex,
the n-cube, and the n-crosspolytope (dual to the n-cube).
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This one, we prove!

Proof: 3- and 4- dimensional cases. (add pictures) First, let’s talk briefly about three di-
mensions. Say we’re trying to build a regular 3-polytope. Well, the facets have to be regular
2-polytopes, or regular polygons. For starters, let’s pick equilateral triangles. Our next
choice is then how many to fit around a vertex. If we pick three, four, or five, we automat-
ically get distinct platonic solids. If we try to fit six, we get a flat tiling, which will never
curve around to close up, and we can’t fit more than six. So these are our only options for
triangles.

Now if we pick squares, we can fit three around a vertex, giving us a cube, but four will
tile and five or more wont’ fit. If we pick pentagons, we can fit three around a vertex, but
no more. And if we pick hexagons or bigger, we can’t even fit three around a vertex (in th
case of hexagons, we end up tiling the plane). So our facets have to be pentagons or smaller,
and we’ve exhausted the possibilities there. See the chart for a summary!

sides per facet facets per vertex polyhedron
3 3 tetrahedron
3 4 octahedron
3 5 icosahedron
4 3 cube
5 3 dodecahedron

Remark. Swapping the first two columns of this table dualizes the table.

OK, so now for the 4-dimensional case. Now, instead of asking how many regular polygons
each vertex is contained in, we can increase all dimensions, and ask how many regular
polyhedra each edge is contained in.

In order to do this, we need to determine for each polyhedron the dihedral angle.

Definition 2.0.5. The dihedral angle in a regular polytope is the angle between two faces
around and (n− 2)-face. (Draw picture)

This is a (rote) exercise in geometry, so at least for now I’m just going to drop this table
here.

polyhedron dihedral angle
tetrahedron cos−1(1

3
) ≈ 1.23

cube π
2

octahedron π − cos−1(1
3
) ≈ 1.91

dodecahedron π − tan−1(2) ≈ 2.03

icosahedron π − cos−1(
√
5
3

) ≈ 2.41

Now, we want to fit at least three polyhedra around each edge, but the sum of all dihedral
angles around each edge should be less than 2π; if it’s equal, that’s a perfect tiling that will
not close up, and if it’s more, those polyhedra just won’t fit. We have six options, and they
all end up being geometrically realizable.
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polyhedral facets facets per edge polytope
tetrahedron 3 5-cell (simplex)
tetrahedron 4 16-cell (crosspolytope)
tetrahedron 5 600-cell

cube 3 8-cell (cube)
octahedron 3 24-cell

dodecahedron 3 120-cell

Bring pictures! Maybe go through argument for why they’re all realizable, but I’m
comfortable black boxing that and saying that like listing out the 4-vectors constituting the
vertices of this thing has been done.

OK! So now that we’ve addressed the 4-polytope case, we have an idea of where to go in
general. Our strategy for classifying n-polytopes is basically:

· Classify n− 1 polytopes.

· Find dihedral angles (angles around an (n− 3)-facet in the (n− 1)-polytopes).

· We have to fit at least 3 (n − 1)-polytopes around an (n − 3)-facet, and not so many
that the total dihedral angle exceeds 2π.

Tackling n-polytopes for n ≥ 5 smells a lot like induction. And it is! Let’s do the inductive
step first.

Inductive Step. Assume that the only (n− 1)-polytopes are an (n− 1)-simplex, an (n− 1)-
cube, and an (n− 1)-crosspolytope, or the dual to an (n− 1)-cube, for n ≥ 5. We will show
that the only n-polytopes are an n-simplex, an n-cube, and an n-crosspolytope.

First of all, we need some dihedral angles. The dihedral angle for an n-cube is always
π
2
. Considering the crosspolytope, we can imagine an n-cube with vertices at each of the

points with all ±1 coordinates in Rn. Those vertices are the centers of the facets in the
crosspolytope, and two of these facets are adjacent if they differ by exactly one coordinate.
In that case, the dot product of these vectors gives us (add drawing here, to clarify) that

n− 2 = n cos θ,

where θ is the central angle, so the dihedral angle is π − cos−1(n−2
n

).
Lastly, for the n-simplex, the dihedral angle is cos−1( 1

n
). You can see this by standing an

n-simplex on one of its facets as a base and looking at it from above (agh, this really needs
a tikZ picture too). The total volume of this picture from above is V , the (n − 1)-volume
of one facet. But we’ve split it into n portions, each of which contributes V cos θ, for θ the
dihedral angle. So

nV cos θ = V,

and thus θ = cos−1( 1
n
).

Great! So, now we have some dihedral angles. Building an n-polytope with an (n− 1)-
cube, then, we always have dihedral angle π

2
, so we can fit three but not four around an
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(n − 3)-facet. This is the n-cube. If we start with an (n − 1)-crosspolytope, for n ≥ 5, the
dihedral angle π − cos−1(n−3

n−1) satisfies

π − cos−1(
n− 3

n− 1
) ≥ 2π

3
,

so it is too large to use as a facet.
Meanwhile, cos−1( 1

n−1) > 2π
5

for n ≥ 5, but it approaches π
2

from below as n approaches
infinity. So we can always build an n-polytope with 3 (n− 1)-simplices around each vertex
(an n-simplex), and one with 4 (n − 1)-simplices around each vertex (an n-crosspolytope),
but no more.

This completes the proof.

Now, all that remains is checking that in 5 dimensions, we really only get the simplex, the
cube, and the crosspolytope. At this point, this comes down to checking dihedral angles for
our regular 4-polytopes. (I’d like to drop a table here, but I don’t have all the exact angles).
The above argument addresses the 5-polytopes with cubes, simplices, or crosspolytopes as
facets. The 600-, 120-, and 24-cells all have dihedral angles at least that of the crosspolytope,
so the above argument shows that there aren’t any 5-polytopes with any of these as facets.

3 Vertex-Transitive 3-Polytopes

So at this point we have a pretty good idea of what regular polytopes are out there. But there
aren’t so many, and there are still a lot of shapes that we’d like to call pretty symmetric that
aren’t regular. Going back to the definition of regular polytopes, we can relax our constraint
a bit. Instead of requiring that there be a symmetry taking each flag of a polytope to each
other flag, we’ll just require that a symmetry take each vertex to each other vertex.

Definition 3.0.1. A polytope is vertex-transitive if there is a symmetry taking any vertex
to any other vertex.

Examples. · All regular polytopes.

· 2n-gon with alternating long and short side lengths.

· Prisms:
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· Antiprisms:

· This thing (truncated octahedron):

This last one is also an example where it is *not* possible to swap any two vertices.

· Soccer ball!

Unlike with regular polytopes, there are infinitely many of these in three dimensions!
(For now, we’re going to be sticking to three dimensions). What are some ways we can make
really big vertex-transitive polytopes (where by really big, we mean ”having arbitrarily many
vertices”)?

Well, there’s prisms and antiprisms.

Theorem 3.0.2. All sufficiently large vertex-transitive 3-polytopes are either prisms or an-
tiprisms.

To prove this, we’re going to need a discrete version of Gauss-Bonnet.
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3.1 Discrete Gauss-Bonnet

Definition 3.1.1. The angle defect d(v) of a vertex v in a 3-polytope is the amount by
which the angles incident to v fail to add to 2π. For Fv the set of faces containing v and
αf (v) the interior angle of the face f at v, we have

d(v) = 2π −
∑
f∈Fv

αf (v).

Theorem 3.1.2 (Discrete Gauss-Bonnet). Let P be a 3-polytope, with V the set of vertices
of that polytope. Then ∑

v∈V

d(v) = 4π.

Proof. We’ll start by proving that the angle defect at a vertex v is equal to its discrete
Gaussian curvature, the area on the unit sphere bounded by a spherical polygon whose
vertice are the unit normals of the faces around v. To do that, we’re going to need a little
bit of spherical geometry.

Lemma 3.1.3. For a spherical triangle on the unit sphere with interior angles α1, α2, α3,
the area of the spherical triangle is A = α1 + α2 + α3 − π.

Proof of Lemma. Let A1 be the subset of the sphere swept out by the angle α1; let A2 and
A3 be defined similarly. (TikZ Picture). Then

2A1 + 2A2 + 2A3 = 4π + 4A.

But each Ai has area 2αi = 4π · αi

2π
; viewed from the top, the fraction Ai

4π
is going to be αi

2π
,

since it sweeps out that percentage of the total angle. Thus

4π + 4A = 2A1 + 2A2 + 2A3

= 4α1 + 4α2 + 4α3

⇒π + A = α1 + α2 + α3

⇒A = α1 + α2 + α3 − π.

Lemma 3.1.4. The area of a polygon with consecutive interior angles β1, . . . , βn on the unit
sphere is

A = (2− n)π +
n∑
i=1

βi.

Proof of Lemma. Triangulate the polygon (without adding extra vertices). This takes n− 2
triangles, and the total angle sum of these triangles is

∑n
i=1 βi. Then by the previous lemma,

the area of all these triangles is (
n∑
i=1

βi

)
− (n− 2)π.
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Now, consider a vertex v with faces N1, N4, and N5, as in the following picture; we can
treat this as an arbitrary vertex (we’ll never use that there are five faces).

Let T54 be a tangent vector to the sphere at N5 pointing towards N4, and let T51 be
a tangent vector to the sphere at N5 pointing towards N1. Then the angle between T54
and T51 is precisely the interior angle at N5 on the spherical polygon. Both T54 and T51
are orthogonal to N5, so they can be interpreted as lying on the face containing N5. Note
that E54 is orthogonal to both N4 and N5, so T54, which is in the span of N5 and N4, is
orthogonal to E54. Similarly T51 is orthogonal to E51. So we have in the face of N5 the
following quadrilateral:

8



T54 T51

E54 E51

The angle at the top is α1, and the two side angles are each π/2, so the angle at the bottom
- or the angle of the spherical polygon - is π − α1. Thus the discrete Gaussian curvature at
v is given by

(2− n)π +
∑
f∈Fv

(π − αf (v)) = 2π − nπ + nπ −
∑
f∈Fv

αf (v)

= 2π −
∑
f∈Fv

αf (v)

= d(v),

so the angle defect at a vertex v is equal to its discrete Gaussian curvature.
But, now let’s consider adding up the total discrete Gaussian curvature across the whole

polytope. Well, (ADD TIKZ HERE) imagine placing a unit ball within the polytope. Then
the spherical polygons with area the discrete Gaussian curvature at each vertex span the
surface of the sphere, so the total discrete Gaussian curvature over all vertices must be 4π,
the surface area of a unit sphere.
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Thus ∑
v∈V

d(v) =
∑
v∈V

(2π − α(v)) = 4π.

3.2 Proof of Theorem 3.0.2

So, equipped with discrete Gauss-Bonnet, let’s talk about vertex-transitive polyhedra. We’ll
use one last couple of observations. First, the fact that the average angle in an n-gon is n−2

n
π.

For the second observation, for any angle θ in a face of our vertex-transitive polyhedron, let
θ be the average angle in that face. So, if θ is an angle in a pentagon, then θ = 3π

5
. For each

face, the sum of all angles θ is the same as the sum of all angles θ. So then∑
θ any angle in P

θ =
∑

θ any angle in P

θ.

Let’s fix a vertex x in our polytope. Then we can list the polygonal faces around x. We’ll
say that x is contained in an n1-gon, an n2-gon, . . . , and an nk-gon, where

n1 ≥ n2 ≥ · · · ≥ nk.

If αi is the angle in the ni-gon at v, then by the above angle equation, we get

|V |
k∑
i=1

αi = |V |
k∑
i=1

ni − 2

ni
π

⇒
k∑
i=1

αi =
k∑
i=1

ni − 2

ni
π.

An important comment is that k < 6. Why? Well, the total angle sum around a vertex
must be strictly less than 2π, and each ni−2

ni
π ≥ π

3
. So, we can have at most five of these

terms.
By discrete Guass-Bonnet, ∑

v∈V

d(v) = 4π

⇒
∑
v∈V

(
2π −

k∑
i=1

ni − 2

ni
π

)
= 4π

⇒

(
2π −

k∑
i=1

ni − 2

ni
π

)
|V | = 4π

⇒
k∑
i=1

ni − 2

ni
π = 2π − 4π

|V |
< 2π.
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Yes, it’s a little frustrating that we needed all that with Gauss Bonnet for this little
thing (nb: this means we need discrete Gauss-Bonnet for the reg polytopes thing, if this
is something we really wanna prove (but, maybe dGB is cool and worth doing?); if not we
should sweep it under the rug here as well).

Our goal is to classify the tuples (n1, . . . , nk). Note that for any fixed tuple, we know
exactly how many vertices are on our polyhedron by Gauss-Bonnet. Similarly, for any fixed
n1, we get a bound on the number of vertices per Gauss-Bonnet. So as our polyhedra become
large, the number n1 must approach infinity. But as n1 grows quite large, n1−2

n1
approaches

1. So for large n1,
k∑
i=2

ni − 2

ni
π < π + ε.

Each ni−2
ni

term is bounded below by 1
3
, so here are our options in terms of k:

k = 5: Not possible for sufficiently large n1, since 4
3
π > π + 1

3
π, so there are ε’s small

enough that this doesn’t work.
k = 4: Our only choice is n2 = n3 = n4 = 3; everything else is larger, and in fact larger

than π + 1
6
π.

k = 3: The options that are small enough are n2 = n3 = 4, n2 = 4 and n3 = 3, and
n2 = n3 = 3.

So we have four options for our choice of (n1, . . . , nk): namely (n1, 3, 3, 3), (n1, 4, 4),
(n1, 4, 3), and (n1, 3, 3). The last two are not physically constructible (homework). The first
forms an antiprism (drawing), and the second forms a prism (drawing). This completes the
proof.

4 Vertex-Transitive Simplicial Polytopes

So that’s a healthy discussion of vertex-transitive 3-polytopes. But, what about in higher
dimensions? Well, to help our approach, we’re going to need to talk about Euler character-
istic.

4.1 Euler Characteristic

Let’s start by thinking in 3D. The Euler characteristic of a polyhedron with V vertices, E
edges, and F faces is χ = V − E + F .

Now, for convex polyhedra, the Euler characteristic is always χ = 2. Why? Well, if we
pump up our polyhedra with extra air to make them spherical, they just become graphs on
the sphere. Then after that we can fold them out around one face, so this becomes Euler’s
formula for planar graphs V − E + F , but with an extra face for the outside face. (Add
drawing!)

Lemma 4.1.1 (Euler’s formula for connected graphs). Given a connected planar graph G,
with V vertices, E edges, and F planar faces, V − E + F = 1.
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Proof. We can build up the graph from nothing, while keeping it connected at every step.
We begin with a graph that is just one vertex; in this case E = F = 0, and V = 1, so Euler’s
formula holds. Then to expand the graph we either add a vertex and an edge connecting it
to the rest of the graph, or add an edge between existing vertices.

Adding a vertex and an edge: In this case, we’re not closing up a new face, but we are
adding an edge and a vertex. So if V,E, and F were the old vertex, edge, and face numbers,
with V−E+F = 1, the new ones are V+1, E+1, and F , and V+1−E−1+F = V−E+F = 1.

Adding an edge between existing vertices: In this case, we’ve either created a new face
or split an old face in two. So the number of edges increases by one and the number of faces
increase by one, whereas the number of vertices remains constant. But V −E− 1 +F + 1 =
V − E + F = 1.

So on the sphere, we always get V − E + F = 2 for any polytope.
This is a much harder result, which we will black-box, but it turns out that this holds in

all dimensions. If we have an n-polytope P , where the number of i-faces is fi, then

n−1∑
i=0

(−1)ifi

is a constant depending only on n. Moreover (I can talk about this in terms of cell complexes
a bit, but I don’t know if it’s worth it), if n is odd, this number is 2, and if n is even, this
number is 0.

4.2 Vertex-transitive simplicial polytopes

So, using the concept of this generalized Euler characteristic, we can prove the following
result.

Definition 4.2.1. An n-polytope is simplicial if all of its (n−1)-facets are simplices. These
are not necessarily regular simplices; a simplex is a polytope in which every subset of vertices
are the vertices of some face.

Theorem 4.2.2. For n odd, the number of vertices in a vertex-transitive simplicial n-
polytope is bounded by a function of n. In other words, an odd-dimensional vertex-transitive
simplicial n-polytope can’t have arbitrarily many vertices.

Proof. We consider the Euler characteristic. Let P be a vertex-transitive simplicial n-
polytope, for n odd. Let fi be the number of i-faces of P . Let v be an arbitrary vertex
of P . Let vi be the number of i-faces containing v. So, v0 = 1, and v1 is the number of edges
with v as an endpoint, and so on.

Now, we’ll count “the number of pairs (x, f) of vertices x and i-faces f , where x ∈ f” in
two ways. In the first way, for each vertex, we can count the number of i-faces containing
that vertex. There are vi i-faces containing v by definition; by vertex transitivity, there are
vi i-faces containing each vertex x.
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In the second way, for each face, we can count the number of vertices it contains. There
are fi i-face total, and each one is a simplex, so it must contain i+ 1 vertices. Thus

vif0 = fi(i+ 1),

so
fi = f0

vi
i+ 1

.

Now let’s look at the Euler characteristic. Since this is an n-polytope for n odd,

n∑
i=0

(−1)ifi = 2

⇒
n∑
i=0

(−1)if0
vi

i+ 1
= 2

⇒f0

(
n∑
i=0

(−1)i
vi

i+ 1

)
= 2

⇒f0

(
n∑
i=0

(−1)ivi
n!

i+ 1

)
= 2n!

Every term in the sum on the LHS is an integer, so the sum on the LHS is an integer. But
then f0 divides 2n!, so it must be bounded.

Homework exercises: What’s the largest number of vertices on a vertex-transitive sim-
plicial 3-polytope? 5-polytope (omg is this possible)? Can you prove the same statement
weakened to vertex-regular (i.e. all vertices have the same star, or all vertices “look the
same”)? Can you prove the same statement weakening simplicial to the condition that the
number of vertices per facet is bounded by a constant? What fails in even dimensions?
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