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Abstract
We present a framework for Nesterov’s accelerated gradient flows in probability space to
design efficient mean-fieldMarkov chainMonte Carlo algorithms for Bayesian inverse prob-
lems.Here four examples of informationmetrics are considered, including Fisher-Raometric,
Wasserstein-2 metric, Kalman-Wasserstein metric and Stein metric. For both Fisher-Rao and
Wasserstein-2 metrics, we prove convergence properties of accelerated gradient flows. In
implementations, we propose a sampling-efficient discrete-time algorithm for Wasserstein-
2, Kalman-Wasserstein and Stein accelerated gradient flows with a restart technique. We also
formulate a kernel bandwidth selection method, which learns the gradient of logarithm of
density from Brownian-motion samples. Numerical experiments, including Bayesian logis-
tic regression and Bayesian neural network, show the strength of the proposed methods
compared with state-of-the-art algorithms.

Keywords Nesterov’s accelerated gradient method · Bayesian inverse problem · Optimal
transport · Information geometry

1 Introduction

Optimization problems in probability space, arising fromBayesian inference [17] and inverse
problems [33], attract increasing attentions in machine learning communities [4,15,41]. One
typical example here is to draw samples from an intractable target distribution. Such sampling
problem is important in providing exploration in distribution of interest and quantifying
uncertainty among data. From an optimization viewpoint, this problem suffices to minimize
an objective functional, such as Kullback-Leibler (KL) divergence, which is to measure the
closeness between current density and the target distribution.
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Gradient descent methods play essential roles in solving these optimization problems.
Here the gradient direction relies on the information metric in probability space. In literature,
two important metrics, such as Fisher-Rao metric and Wasserstein-2 (in short, Wasserstein)
metric, are of great interests [1,13,26]. The information gradient direction in terms of density
corresponds to the update rule in a set of samples. This is known as sampling formula-
tion or particle implementation of gradient flow, which yields various sampling algorithms.
For Fisher-Rao metric, its gradient flow relates to birth-death dynamics, which is impor-
tant in model selection and modeling population games [2]. The Fisher-Rao gradient, also
known as natural gradient, is also useful in designing fast and reliable algorithms in prob-
ability models [1,12,21,23]. For Wasserstein metric, the gradient flow of KL divergence is
the Fokker-Planck equation of overdamped Langevin dynamic. In sampling algorithms, the
time discretization of overdamped Langevin dynamics yields the classical Langevin Markov
chain Monte Carlo (MCMC) method and the proximal Langevin algorithm [4,41]. In recent
years, various first-order sampling methods via generalized Wasserstein gradient direction
are proposed. For example, the Stein variational gradient descent [17] formulates kernelized
interacting Langevin dynamics. The Kalman-Wasserstein gradient, also known as ensemble
Kalman sampling [11], induces covariance-preconditioned mean-field interacting Langevin
dyanmics.

For classical optimization problems in Euclidean space, the Nesterov’s accelerated gra-
dient method [25] is a wide-applied optimization method and it accelerates gradient descent
methods. The continuous-time limit of this method is known as the accelerated gradient flow
[34]. Natural questions arise:What is the accelerated gradient flow in probability space under
general information metrics? What is the corresponding discrete-time sampling algorithm?
For optimization problems on a Riemannian manifold, accelerated gradient methods are
studied in [18,44]. The probability space embedded with information metric can be viewed
as a Riemannian manifold, known as density manifold [13]. Several previous works explore
accelerated methods in this manifold under Wasserstein metric. An acceleration framework
of particle-based variational inference (ParVI) methods is proposed in [14,15] based on man-
ifold optimization. Taghvaei and Mehta [35] introduce accelerated flows from an optimal
control perspective. Similar dynamics has been studied from a fluid dynamics viewpoint [5].
Underdamped Langevin dynamics is another way to accelerate on MCMC [7,19].

In this paper, we present a unified framework of accelerated gradient flows in probability
space embedded with information metrics, named Accelerated Information Gradient (AIG)
flows. From a transport-information-geometry perspective, we derive AIG flows by damping
Hamiltonian flows. Examples include Fisher-Rao metric, Wasserstein-2 metric, Kalman-
Wasserstein metric and Stein metric. In Gaussian families, we verify the existence of AIG
flows. Here we show that the AIG flow corresponds to a well-posed ODE system in the space
of symmetric positive definite matrices. We rigorously prove the convergence rate of AIG
flows based on the geodesic convexity of the loss function under both Fisher-Rao metric and
Wasserstein metric. Besides, we handle two difficulties in numerical implementations of AIG
flows under Wasserstein metric for sampling. On the one hand, as pointed out in [14,35], the
logarithm of density term (gradient of KL divergence) is difficult to approximate in particle
formulations. We propose a novel kernel selection method, whose bandwidth is learned by
sampling fromBrownianmotions.We call it theBMmethod.On the other hand,we notice that
theAIGflow can be a numerically stiff system, especially in high-dimensional sample spaces.
This is because the solution of AIG flows can be close to the boundary of the probability
space. To handle this issue, we propose an adaptive restart technique, which accelerates and
stabilizes the discrete-time algorithm. Numerical results in Bayesian Logistic regression and
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Bayesian neural networks indicate the validity of the BMmethod and the acceleration effects
of proposed AIG flows.

This paper is organized as follows. Sect. 2 briefly reviews gradient flows and accelerated
gradient flows inEuclidean space. Then, the informationmetrics in probability space and their
corresponding gradient and Hamiltonian flows are introduced. In Sect. 3, we formulate AIG
flows, under Fisher-Rao metric, Wasserstein metric, Kalman-Wasserstein metric and Stein
metric.We theoretically prove the convergence rate ofAIGflows in Sect. 4. Section 5 presents
the discrete-time algorithm for W-AIG flows, including the BM method and the adaptive
restart technique. Section 6 provides numerical experiments. In supplementary materials,
we also provide discrete-time algorithms for both Kalman-Wasserstein AIG and Stein AIG
flows.

2 Reviews

In this section, we review gradient flows and accelerated gradient flows in Euclidean space.
Then, we introduce the optimization problems in probability spaces, and review several
definitions of information metrics therein. Based on these metrics, we demonstrate gradient
and Hamiltonian flows in probability space. These formulations serve necessary preparations
for us to derive accelerated gradient flows in probability space. See detailed analysis on
metrics in probability space in [3,30,32].

2.1 Accelerated Gradient Flows in Euclidean Space

Consider an optimization problem in Euclidean space:

min
x∈Rn

f (x),

where f (x) is a given convex function with L-Lipschitz continuous gradient. Here 〈·, ·〉 and
‖ · ‖ are the Euclidean inner product and norm in R

n . The gradient descent method has the
update rule

xk+1 = xk − τk∇ f (xk),

where τk > 0 is a step size. With the limit τk → 0, the continuous-time limit of gradient
descent method is the gradient flow (GF)

ẋt = −∇ f (xt ).

To accelerate the gradient descent method, Nesterov introduced an accelerated method [25]:{
xk = yk−1 − τk∇ f (yk−1),

yk = xk + αk(xk − xk−1).

here αk depends on the convexity of f (x). If f (x) is β-strongly convex, then αk =
√
L−√

β√
L+√

β
;

otherwise, αk = k−1
k+2 . [34] show that the continuous-time limit of Nesterov’s accelerated

method satisfies an ODE, which is known as the accelerated gradient flow (AGF):

ẍt + αt ẋt + ∇ f (xt ) = 0. (1)

Here αt = 2
√

β if f (x) is β-strongly convex; αt = 3/t for general convex f (x).
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An important observation in [20] is that the accelerated gradient flow (1) can be formulated
as a damped Hamiltonian flow:[

ẋt
ṗt

]
+

[
0

αt pt

]
−

[
0 I

−I 0

] [∇x H E (xt , pt )
∇pH E (xt , pt )

]
= 0.

where x is the state variable and p is the momentum variable. The Hamiltonian function

satisfies HE (x, p) = ‖p‖2
2 + f (x), which consists of Euclidean kinetic function ‖p‖2

2 and
potential function f (x). In other words, one can formulate an accelerated gradient flow by
adding a linear momentum term into the Hamiltonian flow. Later on, we follow this damped
Hamiltonian perspective and derive related accelerated gradient flows in probability space.

2.2 Metrics in Probability Space

In practice, machine learning problems, especially Bayesian sampling problems, can be
formulated as optimization problems in probability space. In other words, consider

min
ρ∈P(Ω)

E(ρ),

where Ω ⊂ R
n is a region and the set of probability density is denoted by P(Ω) = {ρ ∈

F(Ω) : ∫
Ω

ρdx = 1, ρ ≥ 0}. Here F(Ω) represents the set of smooth functions on Ω . In
practice, E(ρ) is often chosen as a divergence or metric functional between ρ and a target
density ρ∗ ∈ P(Ω).

In literature, it has been shown that various sampling algorithms correspond to gradient
flows of E(ρ), depending on the metrics in probability space. We brief review the definition
of metrics in probability space as follows.

Definition 1 (Metric in probability space) Denote the tangent space at ρ ∈ P(Ω) by
TρP(Ω) = {

σ ∈ F(Ω) : ∫
σdx = 0.

}
. The cotangent space at ρ, T ∗

ρ P(Ω), can be treated
as the quotient spaceF(Ω)/R. A metric tensor G(ρ) : TρP(Ω) → T ∗

ρ P(Ω) is an invertible
mapping from TρP(Ω) to T ∗

ρ P(Ω). This metric tensor defines the metric (inner product) on
tangent space TρP(Ω):

gρ(σ1, σ2) =
∫

σ1G(ρ)σ2dx =
∫

Φ1G(ρ)−1Φ2dx, σ1, σ2 ∈ TρP(Ω)

where Φi is the solution to σi = G(ρ)−1Φi , i = 1, 2.

Along with a given metric, the probability space P(Ω) can be viewed as an infinite-
dimensional Riemannian manifold, which is known as the density manifold [13]. We review
four examples of metrics in P(Ω): the Fisher-Rao metric from information geometry, the
Wasserstein metric from optimal transport, the Kalman-Wasserstein metric from ensemble
Kalman sampling and the Steinmetric from Stein variational gradient method. For simplicity,
we denote Eρ[Φ] = ∫

Φρdx .

Example 1 (Fisher-Rao metric) The inverse of Fisher-Rao metric tensor is defined by

GF (ρ)−1Φ = ρ
(
Φ − Eρ[Φ]) , Φ ∈ T ∗

ρ P(Ω).

Example 2 (Wasserstein metric) The inverse of Wasserstein metric tensor writes

GW (ρ)−1Φ = −∇ · (ρ∇Φ), Φ ∈ T ∗
ρ P(Ω).
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Example 3 (Kalman-Wasserstein metric, [11]) The inverse of metric tensor is defined by

GKW (ρ)−1Φ = −∇ · (ρCλ(ρ)∇Φ), Φ ∈ T ∗
ρ P(Ω).

here λ ≥ 0 is a given regularization constant and Cλ(ρ) ∈ R
n×n follows

Cλ(ρ) =
∫

(x − m(ρ))(x − m(ρ))T ρdx + λI , m(ρ) =
∫

xρdx .

Example 4 (Stein metric, [10,16]) The inverse of Stein metric tensor is defined by

GS(ρ)−1Φ(x) = −∇x ·
(

ρ(x)
∫

k(x, y)ρ(y)∇yΦ(y)dy

)
.

here k(x, y) is a given positive kernel function.

2.3 Gradient Flows and Hamiltonian Flows in Probability Space

The gradient flow for E(ρ) in (P(Ω), gρ) takes the form

∂tρt = −G(ρt )
−1 δE

δρt
.

here δE
δρt

is the L2 first variation w.r.t. ρt . For example, the Wasserstein gradient flow writes

∂tρt = − GW (ρt )
−1 δE

δρt
= ∇ ·

(
ρt∇ δE

δρt

)
.

We then briefly review Hamiltonian flows in probability space. Given a metric G(ρ),
denote the density function ρt as a state variable while function Φt as a momentum variable.
The Hamiltonian flow in probability space follows

∂t

[
ρt
Φt

]
−

[
0 1

−1 0

][
δ

δρt
H(ρt , Φt )

δ
δΦt

H(ρt , Φt )

]
= 0, (2)

with respect to the Hamiltonian in density space by

H(ρt , Φt ) = 1

2

∫
Φt G(ρt )

−1Φt dx + E(ρt ).

Similar to the Euclidean Hamiltonian function, the Hamiltonian functional in density space
consists of a kinetic energy 1

2

∫
ΦG(ρ)−1Φdx and a potential energy E(ρ).

3 Accelerated Information Gradient Flow

We introduce the accelerated gradient flow in probability density space as follows. Let αt ≥ 0
be a scalar function of t . We add a damping term αtΦt to the Hamiltonian flow (2):

∂t

[
ρt
Φt

]
+

[
0

αtΦt

]
−

[
0 1

−1 0

][
δ

δρt
H(ρt , Φt )

δ
δΦt

H(ρt , Φt )

]
= 0. (3)

We call dynamics (3) Accelerated Information Gradient (AIG) flow.
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Proposition 1 The accelerated information gradient flow satisfies⎧⎪⎨
⎪⎩

∂tρt − G(ρt )
−1Φt = 0,

∂tΦt + αtΦt + 1

2

δ

δρt

(∫
Φt G(ρt )

−1Φt dx

)
+ δE

δρt
= 0,

(AIG)

with initial values ρt |t=0 = ρ0 and Φt |t=0 = 0.

We give examples of AIG flows under several metrics, such as Fisher-Rao metric, Wasser-
stein metric, Kalman-Wasserstein metric and Stein metric. See detailed derivations in the
supplementary material.

Example 5 (Fisher-Rao AIG flow)⎧⎨
⎩

∂tρt − (
Φt − Eρt [Φt ]

)
ρt = 0,

∂tΦt + αtΦt + 1

2
Φ2

t − Eρt [Φt ]Φt + δE

δρt
= 0.

(F-AIG)

Example 6 (Wasserstein AIG flow, [5,35])⎧⎨
⎩

∂tρt + ∇ · (ρt∇Φt ) = 0,

∂tΦt + αtΦt + 1

2
‖∇Φt‖2 + δE

δρt
= 0.

(W-AIG)

Example 7 (Kalman-Wasserstein AIG flow)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∂tρt + ∇ · (ρtC
λ(ρt )∇Φt ) = 0,

∂tΦt + αtΦt + 1

2

(
(x − m(ρt ))

T Bρt (Φt )(x − m(ρt ))

+ ∇Φt (x)
T Cλ(ρt )∇Φt (x)

)
+ δE

δρt
= 0.

(KW-AIG)

here we denote Bρ(Φ) = ∫ ∇Φ∇ΦT ρdx .

Example 8 (Stein AIG flow)⎧⎪⎪⎨
⎪⎪⎩

∂tρt (x) + ∇x ·
(

ρt (x)
∫

k(x, y)ρt (y)∇yΦt (y)dy

)
= 0,

∂tΦt (x) + αtΦt (x) +
∫

∇Φt (x)
T∇Φt (y)k(x, y)ρt (y)dy + δE

δρt
(x) = 0.

(S-AIG)

To design fast sampling algorithms, we need to reformulate the evolution of probability in
term of samples. In other words, PDEs in term of (ρ,Φ) is the Eulerian formulation in fluid
dynamics, while the particle formulation is the flow map equation, known as the Lagrangian
formulation. We present examples for W-AIG flow, KW-AIG flow and S-AIG flow, which
have particle formulations. We suppose that Xt ∼ ρt and Vt = ∇Φt (Xt ) are the position
and the velocity of a particle at time t .

Example 9 (ParticleW-AIGflow) The particle dynamical system for the flow (W-AIG)writes⎧⎪⎪⎨
⎪⎪⎩

d

dt
Xt = Vt ,

d

dt
Vt = −αt Vt − ∇

(
δE

δρt

)
(Xt ).

(4)

123



Journal of Scientific Computing (2022) 90 :11 Page 7 of 47 11

Example 10 (Particle KW-AIG flow) The particle dynamical system for the flow (KW-AIG)
writes ⎧⎪⎪⎨

⎪⎪⎩
dXt

dt
= Cλ(ρt )Vt ,

dVt
dt

= −αt Vt − E[VtV T
t ](Xt − E[Xt ]) − ∇

(
δE

δρt

)
(Xt ).

(5)

here the expectation is taken over the particle system.

Example 11 (Particle S-AIG flow) The particle dynamical system for the flow (S-AIG) writes⎧⎪⎪⎨
⎪⎪⎩

dXt

dt
=

∫
k(Xt , y)∇Φt (y)ρt (y)dy,

dVt
dt

= −αt Vt −
∫

V T
t ∇Φt (y)∇x k(Xt , y)ρt (y)dy − ∇

(
δE

δρt

)
(Xt ).

(6)

We notice that dynamics in examples 9 to 11 are mean-field dynamics. Here the mean-
field represents that the dynamics evolves its own probability density function in its path.
In addition, they are also mean field Markov process. Here the Markov property holds in
the sense that the update of dynamics only depends on the current time probability density.
Shortly, we will design a finite dimensional particle dynamical system to simulate these
proposed dynamics.

In later on algorithm and convergence analysis, the choice of αt is important. Similar as
the ones in Euclidean space, αt depends on the convexity of E(ρ) w.r.t. given metrics.

Definition 2 (Convexity in probability space) For a functional E(ρ) defined on the probability
space, we say that E(ρ) is β-strongly convex w.r.t. metric gρ if there exists a constant β ≥ 0
such that for any ρ ∈ P(Ω) and any σ ∈ TρP(Ω), we have

gρ(Hess E(ρ)σ, σ ) ≥ βgρ(σ, σ ).

here Hess is the Hessian operator w.r.t. gρ . If β = 0, we say that E(ρ) is convex w.r.t. metric
gρ .

Again, if E(ρ) is β-strongly convex for β > 0, then αt = 2
√

β; if E(ρ) is convex, then
αt = 3/t .

We can also formulate W-AIG flows in probability models. For instance, the W-AIG flow
in Gaussian families becomes an ODE system, which corresponds to updates of covariance
matrices.

Proposition 2 (W-AIG flows in Gaussian families) Suppose that ρ0, ρ∗ are Gaussian distri-
butions with zero means and their covariance matrices are Σ0 and Σ∗. E(Σ) evaluates the
KL divergence from ρ to ρ∗:

E(Σ) = 1

2

[
tr(Σ(Σ∗)−1) − log det(Σ(Σ∗)−1) − n

]
, (7)

Let (Σt , St ) be the solution to{
Σ̇t − 2(StΣt + Σt St ) = 0,

Ṡt + αt St + 2S2t + ∇Σt E(Σt ) = 0,
(W-AIG-G)
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with initial values Σt |t=0 = Σ0 and St |t=0 = 0. Here Σt and St are symmetric matrices.
Then, for any t ≥ 0, Σt is well-defined and stays positive definite. Furthermore, we denote

ρt (x) = (2π)−n/2

√
det(Σt )

exp

(
−1

2
xTΣ−1

t x

)
, Φt (x) = xT St x + C(t),

where C(t) = −t + 1
2

∫ t
0 log det(Σs(Σ

∗)−1)ds. Then, (ρt , Φt ) is the solution to (W-AIG)
with initial values ρt |t=0 = ρ0 and Φt |t=0 = 0.

Remark 1 If the means of ρ0, ρ
∗ are μ0 and μ∗ instead of 0, the objective function turns to

be

E(Σ,μ) =1

2
[tr(Σ(Σ∗)−1) − log det(Σ(Σ∗)−1) − n]

+ 1

2
(μ − μ∗)T (Σ∗)−1(μ − μ∗)].

It is separable in terms of μ and σ . For simplicity and clarity, we focus on the case with zero
means.

Remark 2 AIG flows can be formulated into general probability models, such as Gaussian
mixturemodels and generativemodels.We leave the systematic study of AIG flows inmodels
in future works.

4 Convergence Rate Analysis on AIG Flows

In this section, we prove the convergence rates of AIG flows under either the Wasserstein
metric or the Fisher-Rao metric. This validates the acceleration effect. The proof is motivated
by Lyapunov functions of Euclidean accelerated gradient flows in Sect. 2.1.

Theorem 1 Suppose that E(ρ) is β-strongly convex for β > 0. The solution ρt to (F-AIG)
or (W-AIG) with αt = 2

√
β satisfies

E(ρt ) ≤ C0e
−√

βt = O
(
e−√

βt
)

.

If E(ρ) is convex, then the solution ρt to (F-AIG) or (W-AIG) with αt = 3/t satisfies

E(ρt ) ≤ C ′
0t

−2 = O(t−2).

here the constants C0,C ′
0 only depend on ρ0.

Remark 3 For β-strongly convex E(ρ) under theWasserstein metric, [5] study a compressed
Euler equation. They prove similar results with a constant damping coefficient αt . For convex
E(ρ) under the Wasserstein metric, [35] prove similar results with a technical assumption.

Remark 4 Compared to underdamped Langevin dynamics, W-AIG has the accelerated con-
vergence rate guarantee compared to W-GF and it has a closer relation with the Euclidean
accelerated gradient flow.

Remark 5 The Fisher metric and the Wasserstein metric are two popular metrics to consider
in the probability space. Therefore, we focus on deriving the convergence analysis for these
two metrics. The convergence results for other general information metrics are interesting
problems for future studies.
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In Euclidean case, the convergence rate of accelerated gradient flow is based on the con-
struction of Lyapunov functions. Namely, for β-strongly convex f (x), consider a Lyapunov
function:

E(t) = e
√

βt

2
‖√β(xt − x∗) + ẋt‖2 + e

√
βt ( f (xt ) − f (x∗)).

For general convex f (x), consider a Lyapunov function

E(t) = 1

2

∥∥∥∥(xt − x∗) + t

2
ẋt

∥∥∥∥
2

+ t2

4
( f (xt ) − f (x∗)).

Based on different assumptions on the convexity of f (x), we can prove that these Lyapunov
function are not increasing w.r.t. t . Hence, the convergence rates are obtained.

Remark 6 Our choices of the damping parameter αt are analogous to these in the Euclidean
case. In the Euclidean case, the damped Hamiltonian system and the related Lyapunov func-
tions are derived from the Bregman Lagrangian introduced in [42,43]. For simplicity, we
only focus on two specific choices of the damping parameters αt , based on the convexity of
the energy functional.

Following Lyapunov functions in Euclidean space, we provide a sketch of the proof for
Theorem 1. We first consider the case where E(ρ) is β-strongly convex for β > 0. Let Tt
denote the optimal transport plan from ρt to ρ∗. Consider a Lyapunov function

E(t) =e
√

βt

2

∫ ∥∥∥−√
β(Tt (x) − x) + ∇Φt (x)

∥∥∥2 ρt (x)dx

+ e
√

βt (E(ρt ) − E(ρ∗)).
(8)

here the −(Tt (x)− x) term can be viewed as xt − x∗ and ∇Φt can be viewed as ẋt . Different
from the Euclidean case, we introduce an important lemma in proving that E(t) is non-
increasing.

Lemma 1 Denote ut = ∂t (Tt )−1 ◦ Tt . Then,ut satisfies

∇ · (ρt (ut − ∇Φt )) = 0.

We also have
∂t Tt (x) = −∇Tt (x)ut (x).

More importantly, we have∫
〈∇Φt − ut ,∇Tt∇Φt 〉 ρt dx ≥ 0,∫
〈∇Φt − ut ,∇Tt (x)(Tt (x) − x)〉 ρt = 0.

We then demonstrate that E(t) is not increasing w.r.t. t .

Proposition 3 Suppose that E(ρ) satisfies Hess(β) for β > 0. ρt is the solution to (W-AIG)
with αt = 2

√
β. Then, E(t) defined in (8) satisfies Ė(t) ≤ 0. As a result,

E(ρt ) ≤ e−√
βtE(t) ≤ e−√

βtE(0) = O(e−√
βt ).
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Note that E(0) only depends on ρ0. This proves the first part of Theorem 1.
We now focus on the case where E(ρ) is convex. Similarly, we construct the following

Lyapunov function.

E(t) =1

2

∫ ∥∥∥∥−(Tt (x) − x) + t

2
∇Φt (x)

∥∥∥∥
2

ρt (x)dx

+ t2

4
(E(ρt ) − E(ρ∗)).

(9)

Proposition 4 Suppose that E(ρ) satisfies Hess(0). ρt is the solution to (W-AIG) with αt =
3/t . Then, E(t) defined in (9) satisfies Ė(t) ≤ 0. As a result,

E(ρt ) ≤ 4

t2
E(t) ≤ 4

t2
E(0) = O(t−2).

Because E(0) only depends on ρ0, we complete the proof.

5 Discrete-Time Algorithms for AIG Flows

In this section, we present the discrete-time particle implementation of the flow (W-AIG)
based on the particle W-AIG flow (4). Similar discrete-time algorithms of (KW-AIG) and
(S-AIG) are provided in the supplementary material. Here we mainly introduce a kernel
bandwidth selection method and an adaptive restart technique to deal with difficulties in
numerical implementations.

A typical choice of E(ρ) for sampling is the KL divergence

DKL(ρ‖ρ∗) =
∫

ρ log
ρ

e− f
dx − log Z ,

where the target density ρ∗(x) ∝ exp(− f (x)) and Z = ∫
exp(− f (x))dx . Then, (4) is

equivalent to {
dXt = Vtdt,

dVt = −αt Vtdt − ∇ f (Xt )dt − ∇ log ρt (Xt )dt .
(10)

Consider a particle system {Xi
0}Ni=1 and let V i

0 = 0. In k-th iteration, the update rule
follows {

Xi
k+1 = Xi

k + √
τkV

i
k+1,

V i
k+1 = αkV

i
k − √

τk(∇ f (Xi
k) + ξk(X

i
k)),

(11)

for i = 1, 2 . . . N . If E(ρ) is β-strongly convex, then αk = 1−√
βτk

1+√
βτk

; if E(ρ) is convex or β

is unknown, then αk = k−1
k+2 . Here ξk(x) is an approximation of ∇ log ρk(x). For a general

distribution, we use the kernel density estimation (KDE) [31], ρ̃k(x) = 1
N

∑N
i=1 K (x, Xi

k)

to approximate ρk(x). Here K (x, y) is a positive kernel function. Then, ξk writes

ξk(x) = ∇ log ρ̃k(x) =
∑N

i=1 ∇x K (x, Xi
k)∑N

i=1 K (x, Xi
k)

. (12)

A common choice of K (x, y) is a Gaussian kernel with the bandwidth h, K (x, y) =
(2πh)−n/2 exp

(−‖x − y‖2/(2h)
)
. Such approximation can also be found in information-

theoretic learning [28] and independent component analysis (ICA) [9].

123



Journal of Scientific Computing (2022) 90 :11 Page 11 of 47 11

There are two difficulties in the time discretization. For one thing, the bandwidth h strongly
affects the estimation of∇ log ρt , so we propose the BMmethod to learn the bandwidth from
Brownian-motion samples. For another, the second equation in (W-AIG) is the Hamilton-
Jacobi equation, which usually has strong stiffness. In numerical trials, we observe that the
densities from the particles may collapse in certain dimensions followingW-AIG flows, even
for Gaussian target density. Therefore, we propose an adaptive restart technique to deal with
this problem.

Remark 7 Using symplectic integrators for the particle implementation ofW-AIG could help
improve the performance. It is important to study the time-discretization of the (damped)
Hamiltonian flow in the future.

5.1 Learn the Bandwidth via BrownianMotion

SVGD uses a median (MED) method to choose the bandwidth, i.e.,

hk = 1

2 log(N + 1)
median

({∥∥∥Xi
k − X j

k

∥∥∥2}N

i, j=1

)
. (13)

Liu et al. [15] propose a Heat Equation (HE) method to adaptively adjust bandwidth. Moti-
vated by the HEmethod, we introduce the Brownianmotion (BM)method to adaptively learn
the kernel bandwidth based on Brownian-motion samples generated in each iteration.

Given the bandwidth h, {Xi
k}Ni=1 and a step size s, we can compute two particle systems:

Y i
k (h) = Xi

k − sξk(x; h), Zi
k = Xi

k + √
2sBi , i = 1, . . . N

where Bi is the standard Brownian motion. Denote the empirical distributions of {Xi
k}Ni=1,

{Y i
k }Ni=1 and {Zi

k}Ni=1 by ρ̂X , ρ̂Y and ρ̂Z . With n → ∞, we shall have ρ̂Y = ρ̂Z = ρt |t=s ,
where ρ̂t satisfies ∂t ρ̂t = Δρ̂t = ∇ · (ρ̂t∇ log ρ̂t ) with initial value ρ̂t |t=0 = ρ̂X . With an
appropriate bandwidth h, we shall also have ρ̂Y = ρt |t=s . Hence, we consider the following
optimization problem

min
h

MMD(ρ̂Y , ρ̂Z ) =
∫ ∫

(ρ̂Y (y) − ρ̂Z (y))k(y, z)(ρ̂Y (z) − ρ̂Z (z))dydz. (14)

where MMD (maximum mean discrepancy) evaluates the similarity between {Y i
k }Ni=1 and

{Zi
k}Ni=1. Here, the kernel k(y, z) in MMD is chosen as a Gaussian kernel with bandwidth

1. So we optimize (14) using the bandwidth hk−1 from the last iteration as the initialization.
For simplicity we denote

BM(hk−1, {Xi
k}Ni=1, s)

as the minimizer of problem (14). It is the output of the BM method.

Remark 8 BesidesKDE, there are othermethods that approximate the term∇ log ρt (x) (com-
pute ξk) via a kernel function, such as the blob method [6] and the diffusion map [35]. The
BM method can also select the kernel bandwidth for these methods.
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5.2 Adaptive Restart

To enhance the practical performance, we introduce an adaptive restart technique, which
shares the same idea of gradient restart in [27,39] under the Euclidean case. Consider

ϕk = −
N∑
i=1

〈
V i
k+1,∇ f

(
Xi
k

)
+ ξk

(
Xi
k

)〉
, (15)

which can be viewed as discrete-time approximation of

−gWρt

(
∂tρt ,G

W (ρt )
−1 δE

δρt

)
= −∂t E(ρt ).

If ϕk < 0, then we restart the algorithm with initial values Xi
0 = Xi

k and V i
0 = 0. This

essentially keeps ∂t E(ρt ) negative along the trajectory. The overall algorithm is summarized
below.

Algorithm 1 Discrete-time particle implementation of W-AIG flow

Require: initial positions {Xi
0}Ni=1, step size τ , number of iteration L .

1: Set k = 0, V i
0 = 0, i = 1, . . . N . Set the bandwidth h0 by MED (13).

2: for l = 1, 2, . . . L do
3: Compute hl based on BM method: hl = BM(hl−1, {Xi

k }Ni=1,
√

τ).

4: Calculate ξk (X
i
k ) by (12) with bandwidth hl .

5: For i = 1, 2, . . . N , update V i
k+1 and Xi

k+1 by (11).
6: Compute ϕk by (15).
7: If ϕk < 0, set Xi

0 = Xi
k and V i

0 = 0 and k = 0; otherwise set k = k + 1.
8: end for

6 Numerical Experiments

In this section, we present several numerical experiments to demonstrate the effectiveness
of BM method, the acceleration effect of AIG flows, and the strength of adaptive restart
technique. Implementation details are provided in the supplementary material.

6.1 Toy Examples

We first generate samples from a toy bi-modal distribution in [29]. We compare sampling
algorithms based on gradient flows and accelerated gradient flows under Wasserstein metric,
Kalman-Wasserstein metric and Stein metric. The number of particles follow N = 200. The
initial distribution of the particle system follows N ([0, 10]′, I ).

For the approximation of ∇ log ρk , we use a Gaussian kernel and the kernel bandwidth
is selected by the BM method. We apply the restart technique for discrete-time algorithms
of AIG flows. For W-GF, W-AIG, SVGD and S-AIG, we take the step size τk = 0.1. For
KW-GF and KW-AIG, we set the regularization parameter λ = 1 and the step size τk = 0.02.
We choose a smaller step size for the Kalman-Wasserstein metric because the particle system
may blow up for a larger step size. For SVGD and S-AIG, we use a Gaussian kernel with
fixed bandwidth 1. The step size of SVGD is adjusted by Adagrad.
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From Fig. 1, the convergence rate of the particle system depends on the metric. For a fixed
metric, samples generated by accelerated gradient flows always converge faster than the ones
generated by gradient flows.

6.2 Effect of BMMethod

We first investigate the validity of the BMmethod in selecting the bandwidth. The target den-
sity ρ∗ is a toy bi-modal distribution [29]. We compare two types of particle implementations
of the Wasserstein gradient flow over KL divergence:

Xi
k+1 = Xi

k − τ∇ f (Xi
k) + √

2τ Bi
k,

Xi
k+1 = Xi

k − τ(∇ f (Xi
k) + ξk(X

i
k)).

here Bi
k ∼ N (0, 1) is the standard Brownian motion and ξk is estimated via KDE. The first

method is known as the Langevin MCMCmethod and the second method is called the ParVI
method. For ParVI methods, the bandwidth h is selected by MED/HE/BM respectively. The
initial distribution of the particle system follows the standardGaussianN (0, I ). The objective
density function follows

ρ∗(x) ∝ exp(−2(‖x‖ − 3)2)

× (exp(−2(x1 − 3)2) + exp(−2(x1 + 3)2)).

All methods run for 200 iterations using the same fixed step size τ = 0.1.
Figure 1 shows the distribution of 200 samples based on different methods. Samples

from MCMCmatch the target distribution in a stochastic way; samples from MED collapse;
samples from HE align tidily around contour lines; samples from BM arrange neatly and are
closer to samples fromMCMC. This indicates that the BMmethod makes the particle system
behave similar to MCMC, though in a deterministic way.

6.3 Bayesian Logistic Regression

We perform the standard Bayesian logistic regression experiment on the Covertype dataset,
following the same settings as [17]. Our methods are compared with MCMC, SVGD [17],
WNAG [15] and WNes [14]. SVGD is a gradient descent method based on the Stein metric,
which approximates W-GF, see [14, Theorem 2]. WNAG and WNes are two accelerated
methods based on W-GF.

We select the kernel bandwidth using either theMEDmethod or the proposed BMmethod.
Figure 3 indicates that the BM method accelerates and stabilizes the performance of GFs
and AIGs. The performance of MCMC and WGF are similar and they achieve the best log-
likelihood. For a given metric, AIG flows have better test accuracy and test log-likelihood
in first 2000 iterations. W-AIG and KW-AIG achieve 75% test accuracy in less than 500
iterations.

6.4 Bayesian Neural Network

We apply our proposed method on Bayesian neural network over the UCI datasets1, with the
same setting as [38].We compareW-AIG,W-GF and SVGD. For all methods, we use N = 10

1 https://archive.ics.uci.edu/ml/datasets.php.
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Fig. 1 Comparison of different AIG flows on a toy example
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Fig. 2 The effect of the BM method. Samples are plotted as blue dots. Left to right: MCMC, MED, HE and
BM. All methods are run for 200 iterations with the same initialization

Fig. 3 Results on Bayesian logistic regression, averaged over 10 independent trials. The shaded areas show
the variance. Top: BM; Bottom: MED. Left: Test accuracy; Right: Test log-likelihood

Table 1 Test root-mean-square-error (RMSE)

Dataset AIG WGF SVGD

Boston 2.871± 3.41e − 3 3.077± 5.52e − 3 2.775± 3.78e − 3

Combined 4.067± 9.27e − 1 4.077± 3.85e − 4 4.070± 2.02e − 4

Concrete 4.440± 1.34e − 1 4.883± 1.93e − 1 4.888± 1.39e − 1

Kin8nm 0.094± 5.56e − 6 0.096± 3.36e − 5 0.095± 1.32e − 5

Wine 0.606± 1.40e − 5 0.614± 3.48e − 4 0.604± 9.89e − 5

Year 8.876± 3.71e − 4 8.872± 2.81e − 4 8.873± 7.19e − 4

Bold values is the smallest among the entry in all rows

particles. The averaged results over 20 independent trials are collected in Tables 1 and 2. We
observe that on most datasets, W-AIG has better test root-mean-square-error and test log-
likelihood thanW-GF and SVGD. This indicates that W-AIG may have better generalization
than W-GF and SVGD.
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Table 2 Test log-likelihood

Dataset AIG WGF SVGD

Boston −2.609± 1.34e − 4 −2.694± 2.83e − 4 −2.611± 1.36e − 4

Combined −2.822± 5.72e − 3 −2.825± 2.36e − 5 −2.823± 1.24e − 5

Concrete −2.884± 8.84e − 3 −2.971± 8.93e − 3 −2.978± 6.05e − 3

Kin8nm 0.951± 6.43e − 4 0.923± 3.37e − 3 0.932± 1.43e − 3

Wine −0.961± 1.28e − 4 −0.961± 3.17e − 4 −0.952± 9.89e − 5

Year −3.654± 1.00e − 5 −3.655± 7.82e − 6 −3.652± 1.28e − 5

Bold values is the largest among the entry in all rows

7 Conclusion

In summary, we propose the framework of AIG flows by damping Hamiltonian flows with
respect to certain information metrics in probability space. In theory, we establish the con-
vergence rate of F-AIG and W-AIG flows. In algorithm, we propose particle formulations
for W-AIG flow, KW-AIG and S-AIG flows. Numerically, we propose discrete-time algo-
rithms and an adaptive restart technique to overcome numerical stiffness of AIG flows. To
efficiently approximate ∇ log ρk(x), we introduce a novel kernel selection method by learn-
ing from Brownian-motion samples. Numerical experiments verify the acceleration effect of
AIG flows and the strength of adaptive restart.

In future works, we intend to systematically explain the stiffness of AIG flows and effects
of adaptive restart. We shall apply our results to general information metrics, especially for
generalized Wasserstein metrics. We expect to study the related sampling efficient optimiza-
tion methods and discrete-time algorithms. We also plan to incorporate Hessian operators in
probability space [40] in designing higher-order accelerated algorithms. We shall compare
these information metrics induced methods in terms of both computational complexity and
sampling efficiency. We expect that the proposed accelerated algorithms will be useful in
scientific computing of Bayesian inverse problems.

Appendix

In this appendix, we formulate detailed derivations of examples and proofs of propositions.
We also design particle implementations ofKW-AIGflows, S-AIGflows and provide detailed
implementations of experiments.

A Euler-Lagrange Equation, Hamiltonian Flows and AIG Flows

In this section, we review and derive Euler-Lagrange equation, Hamiltonian flows and Euler-
Lagrange formulation of AIG flows in probability space.
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A.1 Derivation of the Euler-Lagrange Equation

In this subsection, we derive the Euler-Lagrange equation in probability space. For a given
metric gρ in probability space, we can define a Lagrangian by

L(ρt , ∂tρt ) = 1

2
gρt (∂tρt , ∂tρt ) − E(ρt ).

Proposition 5 The Euler-Lagrange equation for this Lagrangian follows

∂t

(
δL

δ(∂tρt )

)
= δL

δρt
+ C(t),

where C(t) is a spatially-constant function.

Proof For a fixed T > 0 and two given densities ρ0, ρT , consider the variational problem

I (ρt ) = inf
ρt

{∫ T

0
L(ρt , ∂tρt )dt

∣∣∣∣ ρt |t=0 = ρ0, ρt |t=T = ρT

}
.

Let ht ∈ F(Ω) be the smooth perturbation function that satisfies
∫
htdx = 0, t ∈ [0, T ]

and ht |t=0 = ht |t=T ≡ 0. Denote ρε
t = ρt + εht . Note that we have the Taylor expansion

I (ρε
t ) =

∫ T

0
L(ρt , ∂tρt )dt

+ ε

∫ T

0

∫ (
δL
δρt

ht + δL
δ(∂tρt )

∂t ht

)
dxdt + o(ε).

From d I (ρε
t )

dε

∣∣∣
ε=0

= 0, it follows that

∫ T

0

∫ (
δL
δρt

ht + δL
δ(∂tρt )

∂t ht

)
dxdt = 0.

Note that ht |t=0 = ht |t=T ≡ 0. Perform integration by parts w.r.t. t yields

∫ T

0

∫ (
δL
δρt

− ∂t
δL

δ(∂tρt )

)
htdxdt = 0.

Because
∫
htdx = 0, the Euler-Lagrange equation holds with a spatially constant function

C(t). ��

A.2 Derivation of Hamiltonian Flow

In this subsection, we derive the Hamiltonian flow in the probability space. Denote Φt =
δL/δ(∂tρt ) = G(ρt )∂tρt . Then, the Euler-Lagrange equation can be formulated as a system
of (ρt , Φt ), i.e., ⎧⎪⎨

⎪⎩
∂tρt − G(ρt )

−1Φt = 0,

∂tΦt + 1

2

δ

δρt

(∫
Φt G(ρt )

−1Φt dx

)
+ δE

δρt
= 0.
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First, we give a useful identity. Given a metric tensor G(ρ) : TρP(Ω) → T ∗
ρ P(Ω), we

have ∫
σ1G(ρ)σ2dx =

∫
G(ρ)σ1σ2dx

=
∫

Φ1G(ρ)−1Φ2dx =
∫

G(ρ)−1Φ1Φ2dx .
(16)

here Φ1 = G(ρ)−1σ1 and Φ2 = G(ρ)−1σ2. We then check that

δ

δρt

(∫
∂tρt G(ρt )∂tρt dx

)
= − δ

δρt

(∫
Φt G(ρt )

−1Φt dx

)
. (17)

Let ρ̃t = ρt + εh, where h ∈ TρtP(Ω). For all σ ∈ TρtP , it follows

G(ρt + εh)−1G(ρt + εh)σ = σ.

The first-order derivative w.r.t. ε of the left hand side shall be 0, i.e.,(
∂G(ρt )

−1

∂ρt
· h

)
G(ρt )σ + G(ρt )

−1
(

∂G(ρt )

∂ρt
· h

)
σ = 0.

Because ∂tρt = G(ρ)−1Φt , applying (16) yields∫
∂tρt

(
∂G(ρt )

∂ρt
· h

)
∂tρt dx =

∫
Φt G(ρt )

−1
(

∂G(ρt )

∂ρt
· h

)
∂tρt dx

= −
∫

Φt

(
∂G(ρt )

−1

∂ρt
· h

)
G(ρt )∂tρt dx

= −
∫

Φt

(
∂G(ρt )

−1

∂ρt
· h

)
Φt dx .

(18)

Based on basic calculations, we can compute that∫
∂tρtG(ρ̃t )∂tρt dx −

∫
∂tρt G(ρt )∂tρt dx = ε

∫
∂tρt

(
∂G(ρt )

∂ρt
· h

)
∂tρt dx + o(ε), (19)

−
∫

Φt G(ρ̃t )
−1Φt dx +

∫
Φt G(ρt )

−1Φt dx

= −ε

∫
Φt

(
∂G(ρt )

−1

∂ρt
· h

)
Φt dx + o(ε).(20)

Combining (18), (19) and (20) yields (17). Hence, the Euler-Lagrange equation is equivalent
to

∂tΦt = 1

2

δ

δρt

(∫
∂tρt G(ρt )∂tρt dx

)
− δE

δρt
= −1

2

δ

δρt

(∫
Φt G(ρt )

−1Φt dx

)
− δE

δρt
.

This equation combining with ∂tρt = G(ρ)−1Φt recovers the Hamiltonian flow. In short,
the Euler-Lagrange equation is from the primal coordinates (ρt , ∂tρt ) and the Hamiltonian
flow is from the dual coordinates (ρt , Φt ). Similar interpretations can be found in [8].

A.3 The Euler-Lagrangian Formulation of AIG Flows

We can formulate the AIG flow as a second-order equation of ρt ,

D2

Dt2
ρt + αt∂tρt + G(ρt )

−1 δE

δρt
= 0.
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here D2/Dt2 is the covariant derivative w.r.t. metricG(ρ).We can also explicitly write D2

Dt2
ρt

as

D2

Dt2
ρt =∂t tρt − (∂tG(ρt )

−1)∂tρt + 1

2
G(ρt )

−1 δ

δρt

(∫
∂tρt G(ρt )∂tρt dx

)
.

B Derivation of Examples in Section 3

In this section, we present examples of gradient flows, Hamiltonian flows and derive particle
dynamics examples in Sect. 3.

B.1 Examples of Gradient Flows

We first present several examples of gradient flows w.r.t. different metrics.

Example 12 (Fisher-Rao gradient flow)

∂tρt = − GF (ρt )
−1 δE

δρt
= −ρt

(
δE

δρt
−

∫
δE

δρt
ρt dy

)
.

Example 13 (Wasserstein gradient flow)

∂tρt = − GW (ρt )
−1 δE

δρt
= ∇ ·

(
ρt∇ δE

δρt

)
.

Example 14 (Kalman-Wasserstein gradient flow)

∂tρt = − GKW (ρt )
−1 δE

δρt
= ∇ ·

(
ρtC

λ(ρt )∇
(

δE

δρt

))
.

Example 15 (Stein gradient flow)

∂tρt = − GS(ρt )
−1 δE

δρt
= ∇x ·

(
ρt (x)

∫
k(x, y)ρt (y)∇y

(
δE

δρt

)
dy

)
.

B.2 Examples of Hamiltonian Flows

We next present several examples of Hamiltonian flows w.r.t. different metrics. The deriva-
tions simply follow from the definition of the given information metric and the formulations
given in Appendix A.2.

Example 16 (Fisher-Rao Hamiltonian flow) The Fisher-Rao Hamiltonian flow follows⎧⎨
⎩

∂tρt − ρt
(
Φt − Eρt [Φt ]

) = 0,

∂tΦt + 1

2
Φ2

t − Eρt [Φt ]Φt + δE

δρt
= 0,

where the corresponding Hamiltonian is

HF (ρt , Φt ) = 1

2

(
Eρt [Φ2

t ] − (
Eρt [Φt ]

)2) + E(ρt ).
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The derivation comes from that

δ

δρt

∫
Φt G

F (ρt )Φt dx = δ

δρt

(
Eρt [Φ2

t ] − (
Eρt [Φt ]

)2)
= Φ2

t − 2Eρt [Φt ]Φt .

Example 17 (Wasserstein Hamiltonian flow) The Wasserstein Hamiltonian flow writes⎧⎨
⎩

∂tρt + ∇ · (ρt∇Φt ) = 0,

∂tΦt + 1

2
‖∇Φt‖2 + δE

δρt
= 0,

where the corresponding Hamiltonian is

HW (ρt , Φt ) = 1

2

∫
‖∇Φt‖2ρt dx + E(ρt ).

It is identical to the Wasserstein Hamiltonian flow introduced by [8]. The derivation simply
comes from that

δ

δρt

∫
ΦtG

W (ρt )Φt dx = δ

δρt

(∫
‖∇Φt‖22ρt dx

)
= ‖∇Φt‖2.

Example 18 (Kalman-Wasserstein Hamiltonian flow) The Kalman-Wasserstein Hamiltonian
flow writes⎧⎨
⎩

∂tρt + ∇ · (ρtC
λ(ρt )∇Φt ) = 0,

∂tΦt + 1

2

(
(x − m(ρt ))

T Bρt (Φt )(x − m(ρt )) + ∇Φt (x)
T Cλ(ρt )∇Φt (x)

)
+ δE

δρt
= 0,

where the corresponding Hamiltonian is

HKW (ρt , Φt ) = 1

2

∫
∇ΦT

t C
λ(ρt )∇Φtρt dx + E(ρt ).

The derivation comes from that

δ

δρt

∫
Φt G

KW (ρt )Φt dx = δ

δρt

(∫
∇ΦT

t C
λ(ρt )∇Φtρt dx

)
= x − m(ρt ))

T Bρt (Φt )(x − m(ρt ))

+ ∇Φt (x)
T Cλ(ρt )∇Φt (x).

here we recall that Bρt (Φt ) = ∫ ∇Φt∇ΦT
t ρt dx .

Example 19 (Stein Hamiltonian flow) The Stein Hamiltonian flow writes⎧⎪⎪⎨
⎪⎪⎩

∂tρt (x) = −∇x ·
(

ρt (x)
∫

k(x, y)ρt (y)∇yΦt (y)dy

)
,

∂tΦt (x) =
∫

∇Φt (x)
T∇Φt (y)k(x, y)ρt (y)dy − δE

δρt
(x),

where the corresponding Hamiltonian is

H(ρt , Φt ) = 1

2

∫ ∫
∇Φt (x)

T∇Φt (y)k(x, y)ρt (x)ρt (y)dxdy + E(ρt ).
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The derivation comes from that

δ

δρt

∫
Φt G

S(ρt )Φt dx = δ

δρt

(∫ ∫
∇Φt (x)

T∇Φt (y)k(x, y)ρt (x)ρt (y)dxdy

)

= 2
∫

∇Φt (x)
T∇Φt (y)k(x, y)ρt (y)dy.

B.3 The Derivation of Example 9 (Wasserstein Metric) in Section 3

We start with an identity. For a twice differentiable Φ(x), we have

1

2
∇‖∇Φ‖2 = ∇2Φ∇Φ = (∇Φ · ∇)∇Φ. (21)

From (W-AIG), it follows that

∂tρt + ∇ · (ρt∇Φt ) = 0. (22)

This is the continuity equation of ρt . Hence, on the particle level, Xt shall follows

dXt = ∇Φt (Xt )dt .

Let Vt = ∇Φt (Xt ). Then, by the material derivative in fluid dynamics and (W-AIG), we
have

dVt
dt

= d

dt
∇Φt (Xt ) = (∂t + ∇Φt (Xt ) · ∇)∇Φt (Xt )dt

=
(

−αt∇Φt (Xt ) − 1

2
∇‖∇Φ‖2 − ∇ δE

δρt

)
dt + (∇Φ · ∇)∇Φdt

= − αt∇Φt (Xt )dt − ∇ δE

δρt
(Xt )dt = −αt Vtdt − ∇ δE

δρt
(Xt )dt .

B.4 The Derivations of Examples 7 and 10 (Kalman-Wasserstein Metric) in Section 3

We first derive the Hamiltonian flow under the Kalman-Wasserstein metric. We fist show that

δ

δρ

{∫
ΦGKW (ρ)−1Φdx

}
= (x − m(ρ))T Bρ(Φ)(x − m(ρ)) + ∇Φ(x)T Cλ(ρ)∇Φ(x).

(23)
From the definition of Kalman-Wasserstein metric, we have∫

ΦGKW (ρ)−1Φdx =
∫

∇ΦT Cλ(ρ)∇Φρdx

=
〈
Cλ(ρ),

∫
∇ΦT∇Φρdx

〉
= 〈

Cλ(ρ), Bρ(Φ)
〉
.

Let ρ̂ = ρ + εh, where h ∈ TρP(Ω). Then, we can compute that〈
Cλ(ρ + εh), Bρ+εh(Φ)

〉 − 〈
Cλ(ρ), Bρ(Φ)

〉 = 〈
Cλ(ρ + εh) − Cλ(ρ), Bρ(Φ)

〉
+ 〈

Cλ(ρ), Bρ+εh(Φ) − Bρ(Φ)
〉
.
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We note that

Cλ(ρ + εh) − Cλ(ρ) = ε

∫
m(h)(x − m(ρ))T ρdx

+ ε

∫
(x − m(ρ))m(h)T ρdx

+ ε

∫
(x − m(ρ))(x − m(ρ))T hdx + O(ε2)

= ε

∫
(x − m(ρ))(x − m(ρ))T hdx + O(ε2).

Bρ+εh(Φ) − Bρ(Φ) = ε

∫
h∇Φ∇ΦT dx .

Hence, we can derive

〈
Cλ(ρ + εh), Bρ+εh(Φ)

〉 − 〈
Cλ(ρ), Bρ(Φ)

〉 = ε

∫
h

〈
∇Φ∇ΦT ,C(ρ)

〉
dx

+ ε

∫
h

〈
(x − m(ρ))(x − m(ρ))T , Bρ(Φ)

〉
dx

+ O(ε2).

This proves (23). Hence, the Hamiltonian flow under the Kalman-Wasserstein metric follows⎧⎨
⎩

∂tρt + ∇ · (ρtC
λ(ρt )∇Φt ) = 0,

∂tΦt + 1

2

(
(x − m(ρt ))

T Bρt (Φt )(x − m(ρt )) + ∇Φt (x)
T Cλ(ρt )∇Φt (x)

)
+ δE

δρt
= 0.

(24)
Adding a linear damping term αtΦt to the second equation in (24) yields Example 7.

For Example 10, suppose that Xt follows ρt and Vt = ∇Φt (Xt ). Then, we shall have

d

dt
Xt = Cλ(ρt )Vt ,

Note that Vt = ∇Φt (Xt ), we can establish that

d

dt
Vt = (∂t + (Cλ(ρt )∇Φt · ∇)∇Φt (Xt )

= ∇∂tΦt (Xt ) + ∇2Φt (Xt )C
λ(ρt )∇Φt (Xt ).

The last inequality can be established as follows. For i = 1, . . . , d , we have

(
Cλ(ρt )∇Φt · ∇)∇iΦt (Xt ) =

d∑
j=1

(
Cλ(ρt )∇Φt

)
j ∇ j∇iΦt (Xt )

=
d∑
j=1

∇i jΦt (Xt )
(
Cλ(ρt )∇Φt

)
j

= (∇2ΦtC
λ(ρt )∇Φt

)
i .

According to the chain rule, we also have

∇
(
∇Φt (x)

T Cλ(ρt )∇Φt (x)
)

= 2∇2Φt (x)C
λ(ρt )∇Φt (x)
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As a result, we can establish that

d

dt
Vt = − αt Vt − Bρt (Φt )(Xt − M(ρt )) − ∇δρt E

= − αt Vt − E[VtV T
t ](Xt − E[Xt ]) − ∇δρt E .

(25)

In summary, the KW-AIG flow in the particle formulation takes the form (5)

B.5 The Derivations of Examples 8 and 11 (Stein Metric) in Section 3

For an objective function E(ρ), the Hamiltonian follows

H(ρ,Φ) = 1

2

∫ ∫
∇Φ(x)T∇Φ(y)k(x, y)ρ(x)ρ(y)dxdy + E(ρ).

We note that

δ

δρ

[
1

2

∫ ∫
∇Φ(x)T∇Φ(y)k(x, y)ρ(x)ρ(y)dxdy

]
(x)

=
∫

∇Φ(x)T∇Φ(y)k(x, y)ρ(y)dy.

Hence, the Hamiltonian flow writes⎧⎪⎪⎨
⎪⎪⎩

∂tρt (x) = −∇x ·
(

ρt (x)
∫

k(x, y)ρt (y)∇yΦt (y)dy

)
,

∂tΦt (x) = −
∫

∇Φt (x)
T∇Φt (y)k(x, y)ρt (y)dy − δE

δρt
(x).

(26)

Adding a linear damping term αtΦt to the second equation in (26) yields Example 8.
For Example 11, similarly, suppose that Xt follows ρt and Vt = ∇Φt (Xt ). Then, we shall

have

d

dt
Xt =

∫
k(Xt , y)∇Φt (y)ρt (y)dy.

We note that

∇
(∫

∇Φ(x)T∇Φ(y)k(x, y)ρ(y)dy

)
= ∇2Φ(x)

∫
∇Φ(y)k(x, y)ρ(y)dy

+
∫

∇Φ(x)T∇Φ(y)∇x k(x, y)ρ(y)dy.

Hence, we have

d

dt
Vt = ∂t∇Φt (Xt ) + ∇2Φt (Xt )

(∫
k(x, y)ρt (y)∇yΦt (y)dy

)

= −αt ∇Φt (Xt ) −
∫

∇Φt (Xt )
T∇Φt (y)∇x k(Xt , y)ρ(y)dy − ∇

(
δE

δρt

)
(Xt )

= −αt Vt −
∫

V T
t ∇Φt (y)∇x k(Xt , y)ρ(y)dy − ∇

(
δE

δρt

)
(Xt ).

This derives Example 11.
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C Wasserstein Metric in Gaussian Families

In this section, we first introduce the Wasserstein metric, gradient flows and Hamiltonian
flows in Gaussian families. Then, we validate the existence of (W-AIG) in Gaussian families.
DenoteN 0

n to the multivariate Gaussian densities with zero means. Namely, if ρ0, ρ
∗ ∈ N 0

n ,
then we show that (W-AIG) has a solution (ρt , Φt ) and ρt ∈ N 0

n .
LetPn and Sn represent symmetric positive definitematrix and symmetricmatrix with size

n×n respectively. Each ρ ∈ N 0
n is uniquely determined by its covariancematrixΣ ∈ P

n . The
Wasserstein metric GW (ρ) on P(Rn) induces the Wasserstein metric GW (Σ) on Pn , which
is also known as the Bures metric, see [22,24,36]. For Σ ∈ P

n , the tangent and cotangent
space follow TΣP

n � T ∗
ΣP

n � S
n .

Definition 3 (Wasserstein metric in Gaussian families) For Σ ∈ P
n , the metric tensor

GW (Σ) : Sn → S
n is defined by

GW (Σ)−1S = 2(ΣS + SΣ).

The Wasserstein metric on S
n follows

gWΣ (A1, A2) = tr(A1G(Σ)A2) = 4 tr(S1ΣS2),

where Si ∈ S
n is the solution to

Ai = 2(ΣSi + SiΣ), i = 1, 2.

C.1 Gradient Flows and Hamiltonian Flows in Gaussian Families

We derive the Wasserstein gradient flow and the Wasserstein Hamiltonian flow in Gaussian
families as follows.

Proposition 6 The Wasserstein gradient flow in Gaussian families writes

Σ̇t = −2(Σt∇Σt E(Σt ) + ∇Σt E(Σt )Σt ).

here ∇Σt is the standard matrix derivative.
The Wasserstein Hamiltonian flow satisfies{

Σ̇t − 2(StΣt + Σt St ) = 0,

Ṡt + 2S2t + ∇Σt E(Σt ) = 0,
(27)

where St ∈ S
n. The corresponding Hamiltonian satisfies

HW (Σt , St ) = 2 tr(StΣt St ) + E(Σt ).

The derivation of the gradient flow simply follows the definition of Wasserstein metric in
Gaussian families.

We then derive the Hamiltonian flow as follows. For A ∈ S
n , we define the linear operator

MA : Sn → S
n by

MAB = AB + BA, B ∈ S
n .

It is easy to verify that if A ∈ P
n , then M−1

A is well-defined. For a flow Σt ∈ P
n, t ≥ 0,

we define the Lagrangian L(Σt , Σ̇t ) = 1
2 gΣt (Σ̇t , Σ̇t ) − E(Σt ). The corresponding Euler-

Lagrange equation writes
d

dt

dL

dΣ̇t
= dL

dΣ
. (28)
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Let St = 1
2M

−1
Σt

Σ̇t , i.e., Σ̇t = 2(StΣt + Σt St ). Then, it follows

gΣt (Σ̇t , Σ̇t ) = 4 tr(StΣt St ) = 2 tr((StΣt + Σt St )St )

= tr(Σ̇t St ) = 1

2
tr

(
Σ̇t M

−1
Σt

Σ̇t

)
.

This leads to dL
dΣ̇t

= 1
2M

−1
Σt

Σ̇t = St . For simplicity, we denote g = gΣt (Σ̇t , Σ̇t ). First, we
show that

dg

dΣt
= −4S2t .

Because St = 1
2M

−1
Σt

Σ̇t . Given Σ̇t , St can be viewed as a continuous function of Σt . For
any A ∈ S

n , define lA = tr((Σt St + StΣt )A).

0 = dlA
dΣt

= ∂St
∂Σt

∂lA
∂St

+ ∂lA
∂Σt

= ∂St
∂Σt

(AΣt + Σt A) + (ASt + St A).

here we view ∂ST /∂Σt as a linear operator on Sn . Let B = AΣt + Σt A, then A = M−1
Σt

B.
∂St
∂Σt

B+MSt M
−1
Σt

B = 0 holds for all B ∈ Sn . Therefore, we have ∂St
∂Σt

= −MSt M
−1
Σt

. Hence,

dg

dΣt
= ∂St

∂Σt

∂g

∂St
+ ∂g

∂Σt

= − 4MSt M
−1
Σt

(StΣt + Σt St ) + 4S2t

= − 4MSt St + 4S2t = −4S2t .

As a result, the Euler-Lagrange equation (28) is equivalent to

Ṡt = d

dt

dL

dΣ̇t
= dL

dΣt
= −2S2t − ∇E(Σt ). (29)

Combining (29) with Σ̇t = StΣt +Σt St renders the Hamiltonian flow in Gaussian families.

C.2 Proof of Proposition 2

By adding a damping term αt St , we derive (W-AIG-G), i.e., the Wasserstein AIG flow in
Gaussian families.Wepresent the proof ofProposition2 as follows.Wefirst show thatΣt stays
inPn . Suppose thatΣt ∈ Pn for 0 ≤ t ≤ T . Define Ht = H(Σt , St ) = 2 tr(StΣt St )+E(Σt ).
We observe that (W-AIG-G) is equivalent to

Σ̇t = ∂Ht

∂St
, Ṡt = −αt St − ∂Ht

∂Σt
. (30)
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We show that Ht is decreasing with respect to t .

dHt

dt
= tr

(
∂Ht

∂St
Ṡt + ∂Ht

∂Σt
Σ̇t

)

= tr

(
∂Ht

∂St

(
−αt St − ∂Ht

∂Σt

)
+ ∂Ht

∂Σt

∂Ht

∂St

)

= − αt tr

(
St

∂Ht

∂St

)
= −2αt tr(St (Σt St + StΣt ))

= − 4αt tr(StΣt St ) ≤ 0.

For simplicity, we denote W ∗ = (Σ∗)−1. Let λt be the smallest eigenvalue of Σt . Then,
log det(ΣtW ∗) = log detW ∗ + log det(Σt ) ≥ log detW ∗ + n log λt . Therefore,

−n

2
(log λt + 1) − 1

2
log detW ∗ ≤ −1

2

[
log det(ΣtW

∗) + n
]

≤ E(Σt ) ≤ H(t) ≤ H(0),

which yields that

λt ≥ exp

(
−2

n
H(0) − 1 − 1

n
log detW ∗

)
. (31)

This means that as long asΣt ∈ Pn , the smallest eigenvalue ofΣt has a positive lower bound.
If there exists T > 0 such that ΣT /∈ Pn . Because Σt is continuous with respect to t , there
exists T1 < T , such that Σt ∈ Pn , 0 ≤ t ≤ T1 and λT1 < exp (−2H(0)/n − 1), which
violates (31).

We then reveal the relationship between (W-AIG) in P(Rn) and P
n . We observe that

∂

∂t
det(Σt ) = det(Σt ) tr(Σ

−1
t Σ̇t ),

∂

∂t
Σ−1

t = −Σ−1
t Σ̇tΣ

−1
t .

Combining with Σ̇t = 2(Σt St + StΣt ), we obtain

tr
(
Σ−1

t Σ̇t
) = 2 tr(St + Σ−1

t StΣt ) = 4 tr(St ),

tr
(
xΣ−1

t Σ̇tΣ
−1
t x

) = 2 tr(xTΣ−1
t St x + xT StΣ

−1
t x) = 4 tr(StΣ

−1
t x xT ).

Therefore, it follows

∂tρt (x) = ∂

∂t

(
1√

det(Σt )

)√
det(Σt )ρt (x) + 1

2
tr(xTΣ−1

t Σ̇tΣ
−1
t x)ρt (x)

= − 1

2
tr(Σ−1

t Σ̇t )ρt (x) + 2 tr(StΣ
−1
t x xT )ρt (x)

= − 2 tr(St (I − Σ−1
t x xT ))ρt (x).
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Note that ∇Φt (x) = 2St x . Hence, we have

−∇ · (ρt∇Φt ) = −2
n∑

i=1

∂i (ρt (x)St x)i

= −2
n∑

i=1

[ρt (x)∂i (St x)i + (St x)i∂iρt (x)]

= −2ρt (x)
[
tr(St ) + (St x)

T (−Σ−1
t x)

]
= −2ρt (x) tr(St (I − Σ−1

t x xT )) = ∂tρt (x).

The first equation of (W-AIG) holds. Because ∂tΦt (x) = xT Ṡt x + Ċ(t),

∂tΦt (x) + αtΦt (x) + 1

2
‖∇Φt (x)‖2 = xT Ṡt x + αt x

T St x + 2xT S2t x + Ċ(t)

= −xT∇Σt E(Σt )x + Ċ(t)

= 1

2
xT (Σ−1

t − W ∗)x + Ċ(t).

Note that ρ∗ is the Gaussian density with the covariance matrix Σ∗. Because Ċ(t) =
1
2 log det(ΣtW ∗) − 1, we can compute

δE

δρt
= log ρt (x) − log ρ∗(x) + 1

= − 1

2
xT (Σ−1

t − W ∗)x − 1

2
log det(ΣtW

∗) + 1

= − 1

2
xT (Σ−1

t − W ∗)x − Ċ(t)

= − (∂tΦt (x) + αtΦt (x) + 1

2
‖∇Φt (x)‖2).

Therefore, the second equation of (W-AIG) holds. Because Σt |t=0 = Σ0, St |t=0 = 0 and
C(0) = 0, we have ρt |t=0 = ρ0 and Φt |t=0 = 0. This completes the proof.

D Proof of Convergence Rate UnderWasserstein Metric

In this section, we briefly review the Riemannian structure of probability space and present
proofs of propositions in Sect. 4 under Wasserstein metric.

D.1 A Brief Review on the Geometric Properties of the Probability Space

Suppose that we have a metric gρ in probability spaceP(Ω). Given two probability densities
ρ0, ρ1 ∈ P(Ω), we define the distance as follows

D(ρ0, ρ1)
2 = inf

ρ̂s

{∫ 1

0
gρ̂s (∂s ρ̂s, ∂s ρ̂s)ds : ρ̂s |s=0 = ρ0, ρ̂s |s=1 = ρ1

}
.

The minimizer ρ̂s of the above problem is defined as the geodesic curve connecting ρ0 and
ρ1. An exponential map at ρ0 ∈ P(Ω) is a mapping from the tangent space Tρ0P(Ω) to
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P(Ω). Namely, σ ∈ Tρ0P(Ω) is mapped to a point ρ1 ∈ P(Ω) such that there exists a
geodesic curve ρ̂s satisfying ρ̂s |s=0 = ρ0, ∂s ρ̂s |s=0 = σ, and ρ̂s |s=1 = ρ1.

D.2 The Inverse of Exponential Map

In this subsection, we characterize the inverse of exponential map in the probability space
with the Wasserstein metric.

Proposition 7 Denote the geodesic curve γ (s) that connects ρt and ρ∗ by γ (s) = (sTt +
(1− s) Id)#ρt , s ∈ [0, 1]. Here Id is the identity mapping fromR

n to itself. Then, ∂sγ (s)|s=0

corresponds to a tangent vector −∇ · (ρt (x)(Tt (x) − x)) ∈ TρtP(Ω).

For simplicity, we denote T s
t = (sTt + (1 − s) Id)−1, s ∈ [0, 1]. Based on the theory of

optimal transport [37], we can write the explicit formula of the geodesic curve γ (s) by

γ (s) = T s
t #ρt = det(∇T s

t )ρt ◦ T s
t .

Through basic calculations, we can compute that

d

ds
T s
t

∣∣∣∣
s=0

= − d

ds
(sTt + (1 − s) Id)

∣∣∣∣
s=0

= Id−Tt .

d

ds
det(∇T s

t )

∣∣∣∣
s=0

= d

ds
det(I + s(I − DTt ) + o(s))

∣∣∣∣
s=0

= tr(I − DTt ).

Therefore, we have

∂sγ (s)|s=0 (x) = tr(I − ∇Tt )ρt (x) + 〈∇ρt (x), x − ϕt (x)〉
= ∇ · (x − Tt (x))ρt (x) + 〈∇ρt (x), x − Tt (x)〉
= −∇ · (ρt (x)(Tt (x) − x)),

which completes the proof.

D.3 The Proof of Proposition 4 and 5

The main goal of this subsection is to prove the Lyapunov function E(t) is non-increasing.
Preparations We first give a better characterization of the optimal transport plan Tt . We

can write Tt = ∇Ψt , where Ψt is a strictly convex function, see [37]. This indicates that ∇Tt
is symmetric. We then introduce the following proposition.

Proposition 8 Suppose that E(ρ) satisfies Hess(β) for β ≥ 0. Let Tt (x) be the optimal
transport plan from ρt to ρ∗, then

E(ρ∗) ≥E(ρt ) +
∫ 〈

Tt (x) − x,∇ δE

δρt

〉
ρdx + β

2

∫
‖Tt (x) − x‖2ρt dx .

This is a direct result of β-displacement convexity of E(ρ) based on Proposition 7.

Lemma 2 Denote ut = ∂t (Tt )−1 ◦ Tt . Then,ut satisfies

∇ · (ρt (ut − ∇Φt )) = 0. (32)

We also have
∂t Tt (x) = −∇Tt (x)ut (x). (33)
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Proof Because (Tt )−1#ρ∗ = ρt , let ut = ∂t (Tt )−1 ◦Tt and Xt = (Tt )−1X0, where X0 ∼ ρ∗.
This yields d

dt Xt = ut (Xt ). The distribution of Xt follows ρt . By the Euler’s equation, ρt
shall follows

∂tρt + ∇ · (ρt ut ) = 0.

Combining this with the continuity equation (22) yields (32).
Then, we formulate ∂t Tt (x) with ut . By the Taylor expansion,

Tt+s(x) = Tt (x) + s∂t Tt (x) + o(s).

Let y = (Tt )−1x . it follows

(Tt+s)
−1(x) =(Tt )

−1(x) + sut ((Tt )
−1(x)) + o(s) = y + sut (y) + o(s).

Therefore, we have

0 = Tt+s((Tt+s)
−1(x)) − x

= Tt+s(y + sut (y) + o(s)) − x

= Tt (y + sut (y)) + s∂t Tt (y + sut (y)) − x + o(s)

= Tt (y) + s∇Tt (y)ut (y) + s∂t Tt (y) − x + o(s)

= s [∇Tt (y)ut (y) + ∂t Tt (y)] + o(s).

We shall have ∇Tt (y)ut (y) + ∂t Tt (y) = 0. Replacing y by x yields (33). ��
The following lemma illustrates two important properties of ut and ∂t Tt .

Lemma 3 For ut satisfying (32), we have∫
〈∇Φt − ut ,∇Tt∇Φt 〉 ρt dx ≥ 0,∫
〈∇Φt − ut ,∇Tt (x)(Tt (x) − x)〉 ρt = 0.

Proof We first notice that ut −∇Φt is divergence-free in term of ρt . From−∇Ttut = ∂t Tt =
∇∂tΨt , we observe that −∇Ttut is the gradient of ∂tΨt . Therefore,∫

〈∇Φt − ut ,∇Ttut 〉 ρt = −
∫

〈∂tΨt ,∇ · (ρt (∇Φt − ut ))〉 = 0.

Based on our previous characterization on the optimal transport plan Tt , ∇Tt = ∇2Ψt is
symmetric positive definite. This yields that∫

〈∇Φt − ut ,∇Tt∇Φt 〉 ρt dx =
∫

〈∇Φt − ut ,∇Tt∇Φt 〉 ρt dx −
∫

〈∇Φt − ut ,∇Ttut 〉 ρt

=
∫

〈∇Φt − ut ,∇Tt (∇Φt − ut )〉 ρt dx ≥ 0.

The last inequality utilizes that∇Tt is positie definite and ρt is non-negative. Then, we prove
the equality in Lemma 3. Because ∇Tt (x)(Tt (x) − x) = 1

2∇(‖Tt (x) − x‖2 + Tt (x) − ‖x‖2)
is a gradient. Similarly, it follows∫

〈∇Φt − ut ,∇Tt (x)(Tt (x) − x)〉 ρt = 0.

��
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Lemma 3 and the relationship (33) gives

−
∫

〈∂t Tt ,∇Φt 〉 ρt dx =
∫

〈ut ,∇Tt∇Φt 〉 ρt dx ≤
∫

〈∇Φt ,∇Tt∇Φt 〉 ρt dx, (34)∫
〈∂t Tt , Tt (x) − x〉 ρt dx = −

∫
〈∇Φt ,∇Tt (x)(Tt (x) − x)〉 ρt dx . (35)

Proof of Proposition 4. Based on the definition of the Wasserstein metric, we have

∂t E(ρt ) = −
∫

δE

δρt
∇ · (ρt∇Φt )dx .

Differentiating E(t) w.r.t. t renders

Ė(t)e−√
βt = β

∫
〈∂t Tt , Tt (x) − x〉 ρt dx − β

2

∫
‖Tt (x) − x‖2∇ · (ρt∇Φt )dx

− √
β

∫
〈∂t Tt ,∇Φt 〉 ρt dx − √

β

∫
〈Tt (x) − x, ∂t∇Φt 〉 ρt dx

+ √
β

∫
〈Tt (x) − x,∇Φt 〉 ∇ · (ρt∇Φt )dx +

∫
〈∇Φt , ∂t∇Φt 〉 ρt dx

− 1

2

∫
‖∇Φt‖2∇ · (ρt∇Φt ) −

∫
δE

δρt
∇ · (ρt∇Φt )dx

+
√

β

2

∫
‖∇Φt‖2ρt dx − β

∫
〈Tt (x) − x,∇Φt (x)〉 ρt dx

+
√

β3

2

∫
‖Tt (x) − x‖2ρt dx + √

β(E(ρt ) − E(ρ∗)). (36)

For the part (36), Proposition 8 renders

√
β3

2

∫
‖Tt (x) − x‖2ρt dx + √

βE(ρt ) ≤ −√
β

∫ 〈
Tt (x) − x,∇ δE

δρt

〉
ρt dx . (37)

We first compute the terms with the coefficient β0 in Ė(t)e−√
βt . We observe that

∫
〈∇Φt , ∂tΦt 〉 ρt dx − 1

2

∫
‖∇Φt‖2∇ · (ρt∇Φt )dx

−
∫

δE

δρt
∇ · (ρt∇Φt )ρt dx

=
∫ 〈

∂t∇Φt + 1

2
∇‖∇Φt‖2 + ∇ δE

δρ
,∇Φt

〉
ρt dx

= −2
√

β

∫
‖∇Φt‖2ρt dx,

(38)
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where the last equality uses (W-AIG) with αt = 2
√

β. Substituting (37) and (38) into the
expression of Ė(t)e−√

βt yields

Ė(t)e−√
βt ≤ β

∫
〈∂t Tt , Tt (x) − x〉 ρt dx − β

2

∫
‖Tt (x) − x‖2∇ · (ρt∇Φt )dx

− β

∫
〈Tt (x) − x,∇Φt 〉 ρt dx − √

β

∫
〈∂t Tt ,∇Φt 〉 ρt dx

− √
β

∫
〈Tt (x) − x, ∂t∇Φt 〉 ρt dx − √

β

∫ 〈
Tt (x) − x,∇ δE

δρt

〉
ρt dx

+ √
β

∫
〈Tt (x) − x,∇Φt 〉 ∇ · (ρt∇Φt )dx − 3

√
β

2

∫
‖∇Φt‖2ρt dx .

(39)

Then, we deal with the terms with ∇ · (ρt∇Φt ). We have the following two identities

∫
〈Tt (x) − x,∇Φt 〉 ∇ · (ρt∇Φt )dx

= −
∫

〈∇ 〈Tt (x) − x,∇Φt 〉 ,∇Φt 〉 ρt dx

= −
∫ 〈∇Φt ,∇2Φt (x)(Tt (x) − x) + (∇Tt − I )∇Φt

〉
ρt dx

= −1

2

∫ 〈
Tt (x) − x,∇‖∇Φt‖2

〉
ρt dx −

∫
〈∇Φt ,∇Tt∇Φt 〉 ρt dx +

∫
‖∇Φt‖2ρt dx .

(40)

− 1

2

∫
‖Tt (x) − x‖2∇ · (ρt∇Φt )dx

=
∫

〈(∇Tt (x) − I )(Tt (x) − x),∇Φt 〉 ρt dx

=
∫

〈Tt (x) − x,∇Tt∇Φt 〉 ρt dx −
∫

〈Tt (x) − x,∇Φt 〉 ρt dx . (41)

Hence, we can proceed to compute the terms with the coefficient
√

β. (34) and (40) yields

− √
β

∫
〈∂t Tt ,∇Φt 〉 ρt dx − √

β

∫ 〈
Tt (x) − x, ∂t∇Φt + ∇ δE

δρt

〉
ρt dx

− 3
√

β

2

∫
‖∇Φt‖2ρt dx + √

β

∫
〈Tt (x) − x,∇Φt 〉 ∇ · (ρt∇Φt )dx

= −√
β

∫
〈∂t Tt + ∇Tt∇Φt ,∇Φt 〉 ρt dx −

√
β

2

∫
‖∇Φt‖2ρt dx

− √
β

∫ 〈
Tt (x) − x, ∂t∇Φt + ∇ δE

δρ
+ 1

2
∇‖∇Φt‖2

〉
ρt dx

≤ −
√

β

2

∫
‖∇Φt‖2ρt dx + 2β

∫
〈Tt (x) − x,∇Φt 〉 ρt dx .

(42)
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Substituting (41) and (42) into (39) gives

Ė(t)e−√
βt +

√
β

2

∫
‖∇Φt‖2ρt dx

≤ β

∫
〈∂t Tt , Tt (x) − x〉 ρt dx − β

2

∫
‖Tt (x) − x‖2∇ · (ρt∇Φt )dx

− β

∫
〈Tt (x) − x,∇Φt 〉 ρt dx + 2β

∫
〈Tt (x) − x,∇Φt 〉 ρt dx

= β

∫
〈∂t Tt + ∇Tt∇Φt , Tt (x) − x〉 ρt dx = 0,

where the last equality uses (35). In summary, we have

Ė(t)e−√
βt ≤ −

√
β

2

∫
‖∇Φt‖2ρt dx ≤ 0.

Proof of Proposition 5. Differentiating E(t) w.r.t. t , we compute that

Ė(t) =
∫

〈∂t Tt , Tt (x) − x〉 ρt dx − 1

2

∫
‖Tt (x) − x‖2∇ · (ρt∇Φt )dx

−
∫ 〈

∂t Tt ,
t

2
∇Φt

〉
ρt dx −

∫ 〈
Tt (x) − x,

1

2
∇Φt + t

2
∂t∇Φt

〉
ρt dx

+
∫ 〈

Tt (x) − x,
t

2
∇Φt

〉
∇ · (ρt∇Φt )dx +

∫ 〈
t

2
∇Φt ,

1

2
∇Φt + t

2
∂t∇Φt

〉
ρt dx

− 1

2

∫ ∥∥∥∥ t

2
∇Φt

∥∥∥∥
2

∇ · (ρt∇Φt )dx − t2

4

∫
δE

δρt
∇ · (ρt∇Φt )dx + t

2
(E(ρt ) − E(ρ∗)).

(43)
Because E(ρ) is Hess(0), Proposition 8 yields

E(ρt ) = E(ρt ) − E(ρ∗) ≤ −
∫ 〈

Tt (x) − x,∇ δE

δρt

〉
ρt dx . (44)

Utilizing the inequality (44) and substituting the expressions of terms involving ∂t Tt and
∇ · (ρt∇Φt ) in (43) with the expressions in (34) (35) and (40) (41), we obtain

Ė(t) ≤ −
∫

〈∇Φt ,∇Tt (x)(Tt (x) − x)〉 ρt dx +
∫

〈Tt (x) − x,∇Tt∇Φt 〉 ρt dx

−
∫

〈Tt (x) − x,∇Φt 〉 ρt dx + t

2

∫
〈∇Φt ,∇Tt∇Φt 〉 ρt dx

− 1

2

∫
〈Tt (x) − x,∇Φt 〉 ρt dx − t

2

∫
〈∂t∇Φt , Tt (x) − x〉 ρt dx

− t

4

∫ 〈
Tt (x) − x,∇‖∇Φt‖2

〉
ρt dx − t

2

∫
〈∇Φt ,∇Tt∇Φt 〉 ρt dx

+ t

2

∫
‖∇Φt‖2ρt dx + t

4

∫
‖∇Φt‖2ρt dx + t2

4

∫
〈∇Φt , ∂t∇Φt 〉 ρt dx

+ t2

8

∫ 〈∇Φt ,∇‖∇Φt‖2
〉
ρt dx + t2

4

∫ 〈
∇Φt ,∇ δE

δρt

〉
ρt dx

− t

2

∫ 〈
Tt (x) − x,∇ δE

δρt

〉
ρt dx .

(45)
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The expression of (45) can be reformulated into

Ė(t) ≤ − 3

2

∫
〈Tt (x) − x,∇Φt 〉 ρt dx + 3t

4

∫
‖∇Φt‖2ρt dx

− t

2

∫ 〈
Tt (x) − x, ∂t∇Φt + 1

2
∇‖∇Φt‖2 + ∇ δE

δρt

〉
ρt dx

+ t2

4

∫ 〈
∇Φt , ∂t∇Φt + 1

2
∇‖∇Φt‖2 + ∇ δE

δρt

〉
ρt dx .

From (W-AIG) with αt = 3/t , we have the following equalities.

t2

4

∫ 〈
∇Φt , ∂t∇Φt + 1

2
∇‖∇Φt‖2 + ∇ δE

δρt

〉
ρt dx = −3t

4

∫
‖∇Φt‖2ρt dx,

− t

2

∫ 〈
Tt (x) − x, ∂t∇Φt + 1

2
∇‖∇Φt‖2 + ∇ δE

δρt

〉
ρt dx = 3

2

∫
〈Tt (x) − x,∇Φt 〉 ρt dx .

As a result, Ė(t) ≤ 0. This completes the proof. ��

D.4 Comparison with the Proof in [35]

The accelerated flow in [35] is given by

dXt

dt
= eαt−γt Yt ,

dYt
dt

= −eαt+βt+γt ∇
(

δE

δρt

)
(Xt ). (46)

here the target distribution satisies ρ∞(x) = ρ∗(x) ∝ exp(− f (x)). Suppose that we take
αt = log p − log t , βt = p log t + logC and γt = p log t . Here we specify p = 2 and
C = 1/4. Then the accelerated flow (46) recovers the particle formulation of W-AIG flows
if we replace Yt by 2t−3Vt . The Lyapunov function in [35] follows

V (t) = 1

2
E

[
‖Xt + e−γt Yt − T ρ∗

ρt
(Xt )‖2

]
+ eβt (E(ρ) − E(ρ∗))

= 1

2
E

[
‖Xt + t

2
Vt − T ρ∗

ρt
(Xt )‖2

]
+ t2

4
(E(ρt ) − E(ρ∗))

= 1

2

∫ ∥∥∥∥−(Tt (x) − x) + t

2
∇Φt (x)

∥∥∥∥
2

ρt (x)dx + t2

4
(E(ρt ) − E(ρ∗)).

The last equality is based on the fact that Vt = ∇Φt (Xt ) and Tt = T ρ∗
ρt is the optimal

transport plan from ρt to ρ∗. This indicates that the Lyapunov function in [35] is identical to
ours. The technical assumption in [35] follows

0 = E

[(
Xt + e−γt Yt − T ρ∗

ρt
(Xt )

)
· d

dt
T ρ∗

ρt
(Xt )

]

= E

[(
Xt + t

2
Vt − Tt (Xt )

)
· d

dt
Tt (Xt )

]

= E

[(
Xt + t

2
Vt − Tt (Xt )

)
· ((∂t Tt )(Xt ) + ∇TtVt )

]

=
∫ 〈

x − Tt (x) + t

2
∇Φt (x), ∂t Tt + ∇Tt∇Φt

〉
ρt dx .
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Based on ∂t Tt = −∇Ttut and Lemma 3, we have∫
〈x − Tt (x), ∂t Tt + ∇Tt∇Φt 〉 ρt dx =

∫
〈x − Tt (x),∇Tt (∇Φt − ut )〉 ρt dx = 0.∫

〈∇Φt , ∂t Tt + ∇Tt∇Φt 〉 ρt dx =
∫

〈∇Φt ,∇Tt (∇Φt − ut )〉 ρt dx

=
∫

〈∇Φt − ut ,∇Tt (∇Φt − ut )〉 ρt dx ≥ 0.

As a result, we have

E

[(
Xt + e−γt Yt − T ρ∞

ρt
(Xt )

) · d

dt
T ρ∞

ρt
(Xt )

]
= t

2

∫
〈∇Φt − ut ,∇Tt (∇Φt − ut )〉 ρt dx ≥ 0.

In 1-dimensional case, because∇ ·(ρt (ut − ∇Φt )) = 0 indicates that ρt (ut −∇Φt ) = 0. For
ρt (x) > 0, we have ut (x)−∇Φt (x) = 0. So the technical assumption holds. In general cases,
although ut = ∂t (Tt )−1 ◦ Tt satisfies ∇ · (ρt (ut − ∇Φt )) = 0, but this does not necessary
indicate that ut = ∇Φt . Hence, E

[(
Xt + e−γt Yt − T ρ∞

ρt (Xt )
) · d

dt T
ρ∞
ρt (Xt )

] = 0 does not
necessary hold except for 1-dimensional case.

E Proof of Convergence Rate Under Fisher-RaoMetric

In this section, we present proofs of propositions in Sect. 4 under Fisher-Rao metric.

E.1 Geodesic Curve Under the Fisher-RaoMetric

We first investigate on the explicit solution of geodesic curve under the Fisher-Rao metric in
probability space. The geodesic curve shall satisfy⎧⎨

⎩
∂tρt − (Φt − Eρt [Φt ])ρt = 0,

∂tΦt + 1

2
Φ2

t − Eρt [Φt ]Φt = 0.
(47)

with initial values ρt |t=0 = ρ0 and Φt |t=0 = Φ0. The Hamiltonian follows

H(ρ,Φ) = 1

2
(Eρt [Φ2

t ] − (
Eρt [Φt ]

)2
).

We reparametrize ρt by ρt = R2
t with Rt > 0 and

∫
R2
t dx = 1. Then,⎧⎪⎨

⎪⎩
∂t Rt − 1

2
(Φt − ER2

t
[Φt ])Rt = 0,

∂tΦt + 1

2
Φ2

t − ER2
t
[Φt ]Φt = 0.

Proposition 9 The solution to (47) with initial values ρt |t=0 = ρ0 and Φt |t=0 = Φ0 follows

R(x, t) = A(x) sin(Ht) + B(x) cos(Ht), (48)

where

A(x) = 1

2H
R0(x)

(
Φ0(x) − ER2

0
[Φ0]

)
, B(x) = R0(x), (49)
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and

H = 1

2

√
ER2

0
[Φ2

0 ] −
(
ER2

0
[Φ0]

)2
.

We also have
∫
R2
t dx = 1 for t ≥ 0.

Proof We can compute that

2∂t t Rt =
(

∂tΦt − 2
∫

RtΦt∂t Rtdx − ER2
t
[∂tΦt ]

)
Rt + ∂t Rt (Φt − ER2

t
[Φt ])

=
(

−1

2
Φ2

t + 1

2
ER2

t
[Φ2

t ] + ER2
t
[Φt ]Φt − ER2

t
[Φt ]2

)
Rt

− ER2
t
[Φt (Φt − ER2

t
[Φt ])]Rt + 1

2
Rt (Φt − ER2

t
[Φt ])2

=
(

−1

2
ER2

t
[Φ2

t ] + 1

2

(
ER2

t
[Φt ]

)2)
Rt .

In other words,

∂t t Rt =
(

−1

4
ER2

t
[Φ2

t ] + 1

4
ER2

t
[Φt ]2

)
Rt .

We observe that 1
2ER2

t
[Φ2

t ] − 1
2ER2

t
[Φt ]2 = H(ρt , Φt ) is the Hamiltonian, which is

invariant along the geodesic curve. Denote

H =
√
1

2
H(ρt , Φt ) = 1

2

√
ER2

0
[Φ2

0 ] −
(
ER2

0
[Φ0]

)2
.

Then, we have

∂t t Rt = −H2Rt ,

which is a wave equation. We also notice that

Rt (x)|t=0 = R0(x), ∂t Rt (x)|t=0 = R0(x)(Φ0(x) − ER2
0
[Φ0]).

Hence, Rt is uniquely determined by

Rt (x) = A(x) sin(Ht) + B(x) cos(Ht),

where A(x) and B(x) are given in (49). Finally, we verify that
∫
R2
t dx = 1. Actually, we

can compute that ∫
A2(x)dx = 1

4H2ER2
0
[(Φ0(x) − ER2

0
[Φ0])2] = 1,∫

B2(x)dx =
∫

R2
0(x)dx = 1,∫

A(x)B(x)dx = 1

2H
ER2

0
[Φ0(x) − ER2

0
[Φ0]] = 0.
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Hence, ∫
Rt (x)

2dx = sin2(Ht)
∫

A2(x)dx + cos2(Ht)
∫

B2(x)dx

+ 2 sin(Ht) cos(Ht)
∫

A(x)B(x)dx = 1.

��
Proposition 10 Suppose that ρ0, ρ1 > 0, ρ0 �= ρ1. Then, there exists a geodesic curve ρ(t)
with ρt |t=0 = ρ0 and ρt |t=1 = ρ1.

Proof We denote R0(x) = √
ρ0(x) and R1(x) = √

ρ1(x). We only need to solve A(x) and
H > 0 such that

R1(x) = A(x) sin(H) + R0(x) cos(H),

We shall have ∫
R1(x)R0(x)dx = cos(H),

which indicates H = cos−1
(∫

R1(x)R0(x)dx
) ∈ (0, π/2]. Hence, we have

A(x) = R1(x) − R0(x) cos(H)

sin(H)
.

We can examine that ∫
A2(x)dx = 1 − 2 cos2(H) + cos2(H)

sin2(H)
= 1.

On the other hand, we shall examine that

Rt (x) > 0, t ∈ [0, 1].
Indeed,

Rt (x) = A(x) sin(Ht) + R0(x) cos(Ht)

= sin(Ht)(R1(x) − R0(x) cos(H)) + R0(x) cos(Ht) sin(H)

sin(H)

= 1

sin H
(sin(Ht)R1(x) + (cos(Ht) sin(H) − sin(Ht) cos(H))R0(x))

= 1

sin H
(sin(Ht)R1(x) + sin(H(1 − t))R0(x)) > 0.

Hence, ρt (x) = R2
t (x) is the geodesic curve. ��

A direct derivation is the Fisher-Rao distance between ρ0 and ρ1. Namely, we can recover
Φ0 by

Φ0(x) = 2H A(x)

R0(x)
.

We note that H(ρt , Φ0) = 4H2. Hence, we have(
DFR(ρ0, ρ1)

)2 =
∫ 1

0
4H2dt = 4H2.
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Remark 9 We note that the manifold (P+(Ω),GFR(ρ)) is homeomorphic to the mani-
fold (S+(Ω),GE (R)), where S+(Ω) = {R ∈ F(Ω) : R > 0,

∫
R2dx = 1}. Here

(S+(Ω),GE (R)) is the submanifold to L
2(Ω) equiped with the standard Euclidean met-

ric.

E.2 Convergence Analysis

We consider accelerated Fisher-Rao gradient flows⎧⎨
⎩

∂tρt − (Φt − Eρt [Φt ])ρt = 0,

∂tΦt + αtΦt + 1

2
Φ2

t − Eρt [Φt ]Φt + δE

δρt
= 0.

(50)

In the sense of Rt , we have⎧⎪⎪⎨
⎪⎪⎩

∂t Rt − 1

2
(Φt − ER2

t
[Φt ])Rt = 0,

∂tΦt + αtΦt + 1

2
Φ2

t − ER2
t
[Φt ]Φt + δE

δρt
= 0.

(51)

Then, we prove the convergence results forβ-strongly convex E(ρ). Herewe takeαt = 2
√

β.
Consider the Lyapunov function

E(t) =e
√

βt

2

∫
|Φt − ER2

t
[Φt ] − √

βTt |2ρt dx

+ e
√

βt (E(ρt ) − E(ρ∗)).

Here we define

Tt (x) = 2Ht

sin(Ht )

R∗(x) − Rt (x) cos(Ht )

Rt (x)
, Ht = cos−1

(∫
Rt (x)R

∗(x)dx
)

.

We can rewrite the Lyapunov function as

E(t) =e
√

βt

2

∫
(Φt − ER2

t
[Φt ])2ρt dx − √

βe
√

βt
∫

(Φt − ER2
t
[Φt ])Ttρt dx

+ βe
√

βt

2

∫
T 2
t ρt dx + e

√
βt (E(ρt ) − E(ρ∗)).

Remark 10 Here it may be problematic if Rt (x) = 0 for some x . But in total,∫
T 2
t ρt dx =

∫
(RtTt )

2dx .

is well-defined.

From the definition of convexity in probability space, we derive the following proposition.

Proposition 11 The β-convexity of E(ρ) indicates that

E(ρ∗) ≥ E(ρt ) +
∫ (

δE

δρt
− Eρt

[
δE

δρt

])
Ttρt dx + β

2

∫
T 2
t ρt dx .
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For simplicity, we define

Ft [Ψ ] = Ψ − ER2
t
[Ψ ].

We have

∂t (Ft [Ψ ]) =∂tΨ − ER2
t
[∂tΨ ] −

∫
R2
t Ft [Φt ]Ψ dx = Ft [∂tΨ ] −

∫
R2
t Ft [Φt ]Ψ dx .

Before we perform computations, we establish several identities.

∫
Ft [Ψ ]R2

t dx = 0.∫
Ft [Ψ1]Ft [Ψ2]R2

t dx =
∫

Ft [Ψ1]Ψ2R
2
t dx =

∫
Ft [Ψ2]Ψ1R

2
t dx .

Lemma 4 We have the following observations:

∫
(∂t Tt )Ft [Φt ]R2

t dx + 1

2

∫
Tt (Ft [Φt ])2R2

t dx ≥ −
∫

(Ft [Φt ])2R2
t dx, (52)∫

(∂t Tt )Tt R
2
t dx = −

∫
TtΦt R

2
t dx − 1

2

∫
T 2
t Ft [Φt ]R2

t dx . (53)

Proof We note that

∫
T 2
t R

2
t dx = 4H2

t ,

and

∫
(Ft [R∗R−1

t ])2R2
t dx = sin2(Ht )

4H2
t

∫
T 2
t R

2
t dx = sin(H2

t ).

We compute the derivatives as follows:

∂t Ht = − 1

sin Ht
∂t

∫
Rt R

∗dx = − 1

2 sin Ht

∫
Rt R

∗Ft [Φt ]dx .

∂t Tt = − 1

sin Ht

(∫
Rt R

∗Ft [Φt ]dx
)
sin(Ht ) − Ht cos(Ht )

sin2(Ht )
(R∗R−1

t − cos(Ht ))

+ 2Ht

sin(Ht )

(
−1

2
R∗R−1

t Ft [Φt ] − 1

2

∫
Rt R

∗Ft [Φt ]dx
)

= − 1

sin Ht

(∫
R∗RtFt [Φt ]dx

)
sin(Ht ) − Ht cos(Ht )

sin2(Ht )
Ft [R∗R−1

t ]

− Ht

sin(Ht )

(
R∗R−1

t Ft [Φt ] +
∫

Rt R
∗Ft [Φt ]dx

)
.
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For the first inequality, we have

∫
(∂t Tt )Ft [Φt ]R2

t dx = − 1

sin(Ht )

(∫
R∗RtFt [Φt ]dx

)
sin(Ht ) − Ht cos(Ht )

sin2(Ht )

∫
Ft [R∗R−1

t ]Ft [Φt ]R2
t dx

− Ht

sin(Ht )

∫
(R∗R−1

t Ft [Φt ])Ft [Φt ]R2
t dx

= − sin(Ht ) − Ht cos(Ht )

sin3(Ht )

(∫
Ft [R∗R−1

t ]Ft [Φt ]R2
t dx

)2

− 1

2

2Ht

sin(Ht )

∫
R∗R−1

t Ft [Φt ]Ft [Φt ]R2
t dx

≥ − sin(Ht ) − Ht cos(Ht )

sin3(Ht )

(∫
(Ft [Φt ])2R2

t dx

)(∫
(Ft [R∗R−1

t ])2R2
t dx

)

− 1

2

2Ht

sin(Ht )

∫
(R∗R−1

t − cos(Ht ))(Ft [Φt ])2R2
t dx

− 1

2

2Ht

sin(Ht )

∫
cos(Ht )(Ft [Φt ])2R2

t dx

= − sin(Ht ) − Ht cos(Ht )

sin(Ht )

(∫
(Ft [Φt ])2R2

t dx

)
− 1

2

∫
Tt (Ft [Φt ])2R2

t dx

− Ht cos(Ht )

sin(Ht )

∫
R2
t (Ft [Φt ])2dx

= − 1

2

∫
Tt (Ft [Φt ])2R2

t dx −
∫

(Ft [Φt ])2R2
t dx .

The inequality is based on Cauchy inequality. For the second inequality, we have

∫
(∂t Tt )Tt R

2
t dx = − 1

sin Ht

(∫
R∗RtFt [Φt ]dx

)
sin(Ht ) − Ht cos(Ht )

sin2(Ht )

∫
TtFt [R∗R−1

t ]R2
t dx

− Ht

sin(Ht )

∫
Tt R

∗R−1
t Ft [Φt ]R2

t dx

= − 1

sin Ht

(∫
R∗RtFt [Φt ]dx

)
sin(Ht ) − Ht cos(Ht )

2 sin(Ht )Ht

∫
T 2
t R

2
t dx

− 1

2

2Ht

sin(Ht )

∫
(R∗Rt − cos(Ht ))TtFt [Φt ]R2

t dx − 1

2

2Ht cos(Ht )

sin(Ht )

∫
TtFt [Φt ]R2

t dx

= − 1

2Ht

(∫
TtΦt R

2
t dx

)
sin(Ht ) − Ht cos(Ht )

2 sin(Ht )Ht

∫
T 2
t R

2
t dx

− 1

2

∫
T 2
t Ft [Φt ]R2

t dx − Ht cos(Ht )

sin(Ht )

∫
TtΦt R

2
t dx

= −
(
sin(Ht ) − Ht cos(Ht )

sin(Ht )
+ Ht cos(Ht )

sin(Ht )

)∫
TtΦt R

2
t dx − 1

2

∫
T 2
t Ft [Φt ]R2

t dx

= −
∫

TtΦt R
2
t dx − 1

2

∫
T 2
t Ft [Φt ]R2

t dx .

This completes the proof. ��
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Hence, we can compute that

e−√
βt∂tE(t) =

√
β

2

∫
(Ft [Φt ])2R2

t dx +
∫

Ft [Φt ]
(
Ft [∂tΦt ] −

∫
R2
t Ft [Φt ]Φt dx

)
R2
t dx

+ 1

2

∫
(Ft [Φt ])2Ft [Φt ]R2

t dx − β

∫
(Φt − ER2

t
[Φt ])Ttρt dx

− √
β

∫ (
Ft [∂tΦt ] −

∫
R2
t Ft [Φt ]Φt dx

)
Tt R

2
t dx

− √
β

∫
∂t TtFt [Φt ]R2

t dx − √
β

∫
(F[Φt ])2Tt R2

t dx

+ β
√

β

2

∫
T 2
t R

2
t dx + β

∫
∂t Tt Tt R

2
t dx + β

2

∫
T 2
t Ft [Φt ]R2

t dx

+ √
β(E(ρt ) − E(ρ∗)) +

∫
Ft [Φt ]Ft

[
δE

δρt

]
R2
t dx .

From Proposition 11, we have

√
β(E(ρt ) − E(ρ∗)) + β

√
β

2

∫
T 2
t R

2
t dx ≤ −√

β

∫
Ft

[
δE

δρt

]
Ttρt dx .

We first compute terms with coefficient β0. We have

∫
Ft [Φt ]

(
Ft [∂tΦt ] −

∫
R2
t Ft [Φt ]Φt dx

)
R2
t dx

+ 1

2

∫
(Ft [Φt ])2Ft [Φt ]R2

t dx +
∫

Ft [Φt ]Ft

[
δE

δρt

]
R2
t dx

=
∫

Ft [Φt ]∂tΦt R
2
t dx + 1

2

∫
(Ft [Φt ])2Ft [Φt ]R2

t dx +
∫

Ft [Φt ] δE
δρt

R2
t dx

=
∫

Ft [Φt ]
(

−√
βΦt − 1

2
Φ2

t + ER2
t
[Φt ]Φt + 1

2
Ft [Φt ]2

)
R2
t dx

=
∫

Ft [Φt ]
(

−√
βΦt + 1

2
(ER2

t
[Φt ])2

)
R2
t dx

= −2
√

β

∫
Ft [Φt ]Φt R

2
t dx .
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We then proceed to compute terms with coefficient β1/2.
√

β

2

∫
(Ft [Φt ])2R2

t dx − √
β

∫ (
Ft [∂tΦt ] −

∫
R2
t Ft [Φt ]Φt dx

)
Tt R

2
t dx

− 2
√

β

∫
Ft [Φt ]Φt R

2
t dx − √

β

∫
∂t TtFt [Φt ]R2

t dx − √
β

∫
(F[Φt ])2Tt R2

t dx

− √
β

∫
Ft

[
δE

δρt

]
Ttρt dx

= −3
√

β

2

∫
(Ft [Φt ])2R2

t dx − √
β

∫
∂tΦt Tt R

2
t dx − √

β

∫
∂t TtFt [Φt ]R2

t dx

− √
β

∫
(F[Φt ])2Tt R2

t dx − √
β

∫
δE

δρt
Tt R

2
t dx

= −√
β

∫
Tt R

2
t

(
∂tΦt + δE

δρt
+ 1

2
(F[Φt ])2

)
− 3

√
β

2

∫
(Ft [Φt ])2R2

t dx

− √
β

∫
∂t TtFt [Φt ]R2

t dx −
√

β

2

∫
(F[Φt ])2Tt R2

t dx

≤ 2β
∫

TtΦt R
2
t −

√
β

2

∫
(Ft [Φt ])2R2

t dx .

The last inequality is based on Lemma 4. Finally, we compute terms with coefficient β:

2β
∫

TtΦt R
2
t dx − β

∫
Φt Tt R

2
t dx + β

∫
∂t Tt Tt R

2
t dx + β

2

∫
T 2
t Ft [Φt ]R2

t dx = 0.

In summary, we have

e−√
βt∂tE(t) ≤ −

√
β

2

∫
(Ft [Φt ])2R2

t dx ≤ 0.

For convex E(ρ), we let αt = 3/t . Consider

E(t) = 1

2

∫ (
−Tt + t

2
Φt

)2

R2
t dx + t2

4
(E(R2

t ) − E(ρ∗)).

We can compute that

Ė(t) =
∫

(∂t Tt )Tt R
2
t dx + 1

2

∫
T 2
t F[Φt ]R2

t dx − 1

2

∫
TtΦt R

2
t dx

− t

2

∫
Tt (∂tΦt ) R

2
t dx − t

2

∫
(∂t Tt )Φt R

2
t dx

− t

2

∫
Tt (Ft [Φt ])2R2

t dx + t

4

∫
(Ft [Φt ])2R2

t dx

+ t2

4

∫
(∂tFt [Φt ])Ft [Φt ]R2

t dx + t2

8

∫
(Ft [Φt ])3R2

t dx

− t2

4

∫
Ft

[
δE

δρt

]
Ft [Φt ]R2

t dx + t

2
(E(R2

t ) − E(ρ∗)).

Because E(ρ) is convex, we have

E(R2
t ) − E(ρ∗) ≤ −

∫
Ft

[
δE

δρt

]
Tt R

2
t dx .
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From Lemma 4, we have

Ė(t) ≤ − 3

2

∫
TtΦt R

2
t dx − t

2

∫
Tt (∂tΦt ) R

2
t dx

− t

4

∫
Tt (Ft [Φt ])2R2

t dx + 3t

4

∫
(Ft [Φt ])2R2

t dx

+ t2

4

∫
(∂tΦt )Ft [Φt ]R2

t dx + t2

8

∫
(Ft [Φt ])3R2

t dx

− t2

4

∫
δE

δρt
Ft [Φt ]R2

t dx − t

2

∫
Ft

[
δE

δρt

]
Tt R

2
t dx

= − 3

2

∫
TtΦt R

2
t dx − t

2

∫
Tt R

2
t

(
∂tΦt + 1

2
(Ft [Φt ])2 + δE

δρt

)

+ 3t

4

∫
(Ft [Φt ])2R2

t dx + t2

4

∫
Ft [Φt ]R2

t

(
∂tΦt + 1

2
(Ft [Φt ])2 + δE

δρt

)
dx = 0.

The last equality utilize the fact that ∂tΦt + 1
2 (Ft [Φt ])2 + δE

δρt
= − 3

t Φt .

F Discrete-Time Algorithm of AIG Flows

In this section, we introduce the discrete-time algorithm for Kalman-Wasserstein AIG flows
and Stein AIG flows. Here E(ρ) is the KL divergence from ρ to ρ∗ ∝ exp(− f ).

F.1 Discrete-Time Algorithm of KW-AIG Flows

For KL divergence, the particle formulation (5) of KW-AIG flows writes{
dXt = Cλ(ρt )Vtdt,

dVt = −αt Vtdt − E[VtV T
t ](Xt − E[Xt ])dt − ( f (Xt ) + ∇ log ρt (Xt ))dt .

(54)

Consider a particle system {Xi
0}Ni=1.In k-th iteration, the update rule follows: for i =

1, 2, . . . N ,⎧⎪⎪⎨
⎪⎪⎩

Xi
k+1 = Xi

k + √
τkC

λ
k Vk,

Vk+1 = αkVk − √
τk

[
N∑
i=1

(V i
k )(V i

k )T

]
(Xi

k − mk) − √
τk( f (X

i
k) + ξk(X

i
k)).

(55)

here ξk is an approximation of ∇ log ρk and we denote

mk = 1

N

N∑
i=1

Xi
k, Cλ

k = 1

N − 1

N∑
i=1

(Xi
k − mk)(X

i
k − mk)

T + λI .

The choice of αk is similar to the discrete-time algorithm of W-AIG flows. If E(ρ) is β-

strongly convex, then αk = 1−√
βτk

1+√
βτk

; if E(ρ) is convex or β is unknown, then αk = k−1
k+2 .

About the adaptive restart technique, the restarting criterion follows

ϕk = −
N∑
i=1

〈
Cλ
k V

i
k+1,∇ f (Xi

k) + ξk(X
i
k)

〉
. (56)
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The overall algorithm is summarized as follows.

Algorithm 2 Discrete-time particle implementation of KW-AIG flow

Require: initial positions {Xi
0}Ni=1, step size τk , number of iteration L .

1: Set k = 0, V i
0 = 0, i = 1, . . . N . Set the bandwidth h0 by MED.

2: for l = 1, 2, . . . L do
3: Compute hl based on BM method: hl = BM(hl−1, {Xi

k }Ni=1,
√

τ).

4: Calculate ξk (X
i
k ) as an approximation of ∇ log ρk (X

i
k ).

5: For i = 1, 2, . . . N , update V i
k+1 and Xi

k+1 by (55).
6: Compute ϕk by (56).
7: If ϕk < 0, set Xi

0 = Xi
k and V i

0 = 0 and k = 0; otherwise set k = k + 1.
8: end for

F.2 Discrete-Time Algorithm for S-AIG Flows

For KL divergence, the particle formulation of S-AIG flows writes⎧⎪⎪⎨
⎪⎪⎩

d

dt
Xt =

∫
k(Xt , y)∇Φt (y)ρt (y)dy,

d

dt
Vt = −αt Vt −

∫
V T
t ∇Φt (y)∇x k(Xt , y)ρt (y)dy − ∇ f (Xt ) − ∇ log ρt .

(57)

Consider a particle system {Xi
0}Ni=1. In k-th iteration, the update rule follows: for i =

1, 2, . . . N ,⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Xi
k+1 = Xi

k +
√

τk

N

N∑
j=1

k(Xi
k, X

j
k )V

j
k+1,

V i
k+1 = αkV

i
k −

√
τk

N

N∑
j=1

(V i
k )T V j

k ∇x k(X
i
k, X

j
k ) − √

τk(∇ f (Xi
k) + ξk(X

i
k)).

(58)

here ξk is an approximation of ∇ log ρk . The choice of αk is similar, depending on the
convexity of E(ρ) w.r.t. Stein metric.

About the adaptive restart technique, the restarting criterion follows

ϕk = −
N∑
i=1

N∑
j=1

k(X j
k , X

i
k)

〈
V j
k+1,∇ f (Xi

k) + ξk(X
i
k)

〉
. (59)

The overall algorithm is summarized as follows.

G Implementation Details in the Numerical Experiments

In this section, we provide extra numerical experiments and elaborate on the implementation
details in the numerical experiments.
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Algorithm 3 Discrete-time particle implementation of S-AIG flow

Require: initial positions {Xi
0}Ni=1, step size τk , number of iteration L .

1: Set k = 0, V i
0 = 0, i = 1, . . . N . Set the bandwidth h0 by MED.

2: for l = 1, 2, . . . L do
3: Compute hl based on BM method: hl = BM(hl−1, {Xi

k }Ni=1,
√

τ).

4: Calculate ξk (X
i
k ) as an approximation of ∇ log ρk (X

i
k ).

5: For i = 1, 2, . . . N , update V i
k+1 and Xi

k+1 by (58).
6: Compute ϕk by (59).
7: If ϕk < 0, set Xi

0 = Xi
k and V i

0 = 0 and k = 0; otherwise set k = k + 1.
8: end for

Table 3 Initial step sizes for
compared algorithms in Bayesian
logistic regression

Method MCMC WNAG WNes W-GF W-AIG

Step size τ0 1e-5 1e-6 1e-5 1e-5 1e-6

Method KW-GF KW-AIG SVGD S-AIG

Step size τ0 1e-7 1e-8 0.05 1e-5

Table 4 Averaged cpu time(s)
cost for algorithms in Bayesian
logistic regression

Method MCMC WNAG WNes W-GF W-AIG

BM 26.181 164.980 165.407 167.308 170.116

MED 27.200 7.585 7.688 7.501 7.719

Method KW-GF KW-AIG SVGD S-AIG

BM 168.711 173.670 7.193 200.016

MED 8.847 10.065 7.755 21.303

G.1 Details in Subsection 6.1

We follow the same setting as [17], which is also adopted by [14,15]. The dataset is split into
80% for training and 20% for testing. We use the stochastic gradient and the mini-batch size
is taken as 100. For MCMC, the number of particles is N = 1000; for other methods, the
number of particles is N = 100. The BM method is not applied to SVGD in selecting the
bandwidth.

The initial step sizes for the compared methods are given in Table 3, which are selected
by grid search over 1 × 10i with i = −3,−4, . . . ,−9. (For SVGD, we use the initial step
size in [17].) The step size of SVGD is adjusted by Adagrad, which is same as [17]. For
WNAG andWRes, the step size is give by τl = τ0/l0.9 for l ≥ 1. The parameters for WNAG
and Wnes are identical to [15] and [14]. For other methods, the step size is multiplied by 0.9
every 100 iterations. For methods under Kalman-Wasserstein metric, we require a smaller
step size (around 1e-8) to make the algorithm converge. For all discrete-time algorithms of
AIGs, we apply the restart technique.We record the cpu-time for eachmethod in Table 4. The
computational cost of the BMmethod is much higher than theMEDmethod because we need
to evaluate the MMD of two particle systems several times in optimizing the subproblem.
We may update the bandwidth using the BM method every 10 iterations to deal with the
high computation cost of the BM method. On the other hand, using the MED method for
bandwidth, the computational cost of S-AIG is much higher than other methods. This results
from the multiple times of computation of particle interacting in updating Xi

k and V i
k .
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Table 5 Number of epochs and
batch size in Bayesian neural
network

Dataset Boston Combined Concrete

Epochs 50 500 500

Batch size 100 100 100

Dataset Kin8nm Wine Year

Epochs 200 20 10

Batch size 100 100 1000

Table 6 Initial step sizes for
compared methods in Bayesian
neural network

Dataset Boston Combined Concrete

AIG 2e-5 2e-4 2e-5

WGF 1e-4 1e-3 2e-5

SVGD 5e-4 5e-3 5e-4

Dataset Kin8nm Wine Year

AIG 2e-5 5e-6 2e-7

WGF 1e-4 1e-4 2e-6

SVGD 5e-3 2e-3 5e-3

G.2 Details in Subsection 6.2

We follow the setting of Bayesian neural network as [38]. The kernel bandwidth is adjusted
by the MED method. We list the number of epochs and the batch size for each datasets in
Table 5. For each dataset, we use 90% of samples as the training set and 10% of samples
as the test set. The step size of SVGD is adjusted by Adagrad. For W-GF and W-AIG , the
step size is multiplied by 0.64 every 1/10 of total epochs. We select the initial step size by
grid search over {1, 2, 5} × 10i with i = −3,−4, . . . ,−7 to ensure the best performance of
compared methods. We list the initial step sizes for each dataset in Table 6. For W-AIG, we
apply the adaptive restart.
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