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Introduction

Goal: estimate some functional g(F") of an underlying distribution
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Setting
« Level O: underlying distribution F'(x)
 Level 1: unobserved samples Xi,..., X,, - - ~ F(x)

* Level 2: noisy observations Y; ; ~ N (X;,1)

Action

At each time instance, the learner can:

« Either sample an arm that has been already observed in the past,

* Ordraw and sample from a new arm, whose average reward is drawn
from an underlying distribution F'(x).

Examples

* Mean estimation in single-cell RNA-sequencing

« Benjamini-Hochberg (BH) threshold in multiple hypothesis testing
» Personalized recommendation in large-scale distributed learning

Connection to multi-armed bandits

« Classical multi-armed bandits (Level 1 - 2)
Arms: Xq,...,X,, Observations: Y; = X,. + Z;.

 Infinite-armed bandit (Level O - 2)
Arms: Xq,...,X;,---~ F(x) Observations: Y, = X,, + Z;.

« The objective of infinite-armed bandit is minimizing simple or cumulative
regret, while we are interested in estimating the distribution functional.

Sampling algorithms
« Offline sampling algorithm: uniformly sample each arm
X, ~ N(X;,1/m).
* Online sampling algorithm: requires continual interactions with the
environment Yii1 ~ N (Xa,.,,1), A1 =7V, A1)

Difficulty
* Mixture model / density deconvolution
« Statistical complexity of online sampling algorithms

Our Contribution

« Adaptivity helps in functional estimation: offline and online sample
complexity of Mean / Median / Trimmed mean / Maximum

« Achieve the upper bound by a unified meta algorithms

* General lower bounds for both offline and online sampling

Background

Structure of the functional
 The functional g( F') can be represented as
g(F) = E|X|F(X) € [aq, az]]
where 0 < a1 < as < 1.
« This essentially encompasses all "nice" functionals.
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Theorem (Meta algorithm)
Our online meta algorithm provides an (e, §) - PAC estimate of g(F) with M
samples when given the requisite inputs. The expected sample complexity is

bounded by - _
_ nlk [min [ m o8t/
IE[M]—O< - | < ’ [dist(X,as)]Z)_> |

where S = [F~(a;), F~(as)].

Lower bound via Wasserstein distance

Mean and Maximum

Lemma For any offline algorithm 77, it holds that

mn
Pr, o) < 7W22(F1»F2)-
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For any online algorithm 7 which queries ' samples, it holds that

T
Dx1(pr Fy |Pr Fy) < §W30(F1,F2)-

Here W22(P, Q) = inf E(X,y),\,p[(X — Y)2] , Woo (P,Q) = inf esssup | X — Y|
vel el (x,y)~T

and I is the class of all couplings between P and ().

Functional g(F) Qg Qg Comment
Mean E[X] 0 1
Quantile F~1(a) Q Q a€ (0,1), e.g. @ =1/2 for median
Maximum F~1(1) 1 1 a1 = ag = 0 for minimum
Trimmed mean | E[X|F(X) € [a,a3]] | o | 1—« a € (0,1/2)
Indicator-based functionals
Sample complexity of different functionals
Offline Online
Functional complexity complexity Comments
Mean O(e?) O(e?) No gain from online sampling
Median O(e3) O(e29) Holds for quantile too
Maximum O(e= (M) | @(e~ ™2x(5:2)) | Depends on the tail regularity
Trimmed mean O(e?) O(e29) g(F) =E{X|F(X) € [a,1 — ]}

Offline Algorithms

Definition: For € > 0,0 € (0, 1), we call an estimator G an (,0)-PAC
approximation of g(F) if P(|G — g(F)| > ¢) < 6.

Theorem (Offline PAC sample complexity)

An (8, 5)- PAC offline uniform-sampling-based algorithm for estimating
g(F') requires ©.(nm) samples where (7, m) are chosen based on (€, 9),
the functional g(F"), and information about F.

« The sample complexity of offline algorithms
Q(1/ min{W5 (F1, Fp) : F1, Fy € F,|g(F1) — g(F2)| > 2¢})

* The sample complexity of online algorithms
Q(1/ min{ W2, (F1, F») : Fi, Fz € F,|g(F1) — g(F2)| > 2¢})

Lower bound via thresholding phenomenon

Median and Trimmed mean
A key quantity to prove lower bounds for median estimation is

KL, (¢) := min{ Dk, (F1*N (0, 0%) || Fo*+N(0,02)) : Fy, Fy € F,|F7 1 (1/2)—F; 1 (1/2)] > 2¢}.

Functional number of samples per point m | number of points n
Mean O(1) O(e?)
Median O(e) O(e?)
Maximum O(e™?) O(e= ")
Trimmed mean O (e tlog (e 1)) O(e?)
Online Algorithms

Intuition

 Find (n,m) such that the plug-in estimator @n,m will be an
(/2,9/2) - PAC approximation of g(F').

« Adaptively compute an (¢/2,6/2) - PAC approximation of C?nm using
significantly fewer samples by constructing confidence intervals.

Lemma (offline) For ¢ € (0,1/4), the following characterization of KL (¢)
holds as a function of O:

KL, () | € (2] o<
<C(0,r)e"  ifo>el/2P,
where 6 € (0,1/4).
Lemma (online) Fixany €,60 € (0,1/4) and k € N. There exists two
distributions Fy, Fy, € F with |F; 1(0.5) — F; *(0.5)| > ¢, and
€ [c163/2,c0e3/?] if 0 < cel/?,

Dict (Fy + N(0,0%)[Fy + N(0, %) {< CORer o> el

Theorem (Median adaptive lower bound)
The (€,0.1) - PAC sample complexity for median estimation is 9(5_2'5) for
any online algorithm.




