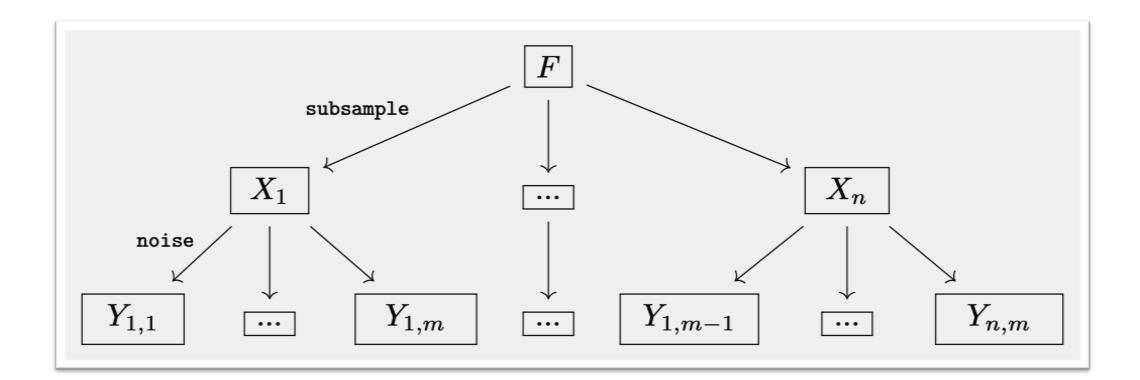
Beyond the Best: Distribution Functional Estimation in Infinite-Armed Bandits

Yifei Wang¹, Tavor Baharav¹, Yanjun Han², Jiantao Jiao³, David Tse¹ ¹Department of Electrical Engineering, Stanford ²Statistics and Data Science Center, MIT IDSS ³Department of EECS and Department of Statistics, UC Berkeley

Introduction

Goal: estimate some functional g(F) of an underlying distribution F



Setting

- Level 0: underlying distribution F(x)
- Level 1: unobserved samples $X_1, \ldots, X_n, \cdots \sim F(x)$
- Level 2: noisy observations $Y_{i,j} \sim \mathcal{N}(X_i, 1)$

Action

At each time instance, the learner can:

- Either sample an arm that has been already observed in the past,
- Or draw and sample from a new arm, whose average reward is drawn from an underlying distribution F(x).

Examples

- Mean estimation in single-cell RNA-sequencing
- Benjamini-Hochberg (BH) threshold in multiple hypothesis testing
- Personalized recommendation in large-scale distributed learning

Connection to multi-armed bandits

- Classical multi-armed bandits (Level 1 2) Arms: X_1, \ldots, X_n , Observations: $Y_i = X_{a_i} + Z_i$.
- Infinite-armed bandit (Level 0 2) Arms: $X_1, \ldots, X_i, \cdots \sim F(x)$ Observations: $Y_i = X_{a_i} + Z_i$.
- The objective of infinite-armed bandit is minimizing simple or cumulative regret, while we are interested in estimating the distribution functional.

Sampling algorithms

• Offline sampling algorithm: uniformly sample each arm

 $\hat{X}_i \sim \mathcal{N}(X_i, 1/m).$

• Online sampling algorithm: requires continual interactions with the environment $Y_{t+1} \sim \mathcal{N}(X_{A_{t+1}}, 1), \quad A_{t+1} = \pi(Y_{1:t}, A_{1:t}).$

Difficulty

- Mixture model / density deconvolution
- Statistical complexity of online sampling algorithms

Our Contribution

- Adaptivity helps in functional estimation: offline and online sample complexity of Mean / Median / Trimmed mean / Maximum
- Achieve the upper bound by a unified meta algorithms
- General lower bounds for both offline and online sampling

Background

Structure of the functional

• The functional g(F) can be represented as

 $g(F) = \mathbb{E}\left[X|F(X) \in [\alpha_1, \alpha_2]\right]$

where $0 \leq \alpha_1 \leq \alpha_2 \leq 1$.

• This essentially encompasses all "nice" functionals.

Functional	g(F)	α_1	$lpha_2$	Comment
Mean	$\mathbb{E}[X]$	0	1	
Quantile	$F^{-1}(\alpha)$	lpha	α	$\alpha \in (0,1)$, e.g. $\alpha = 1/2$ for median
Maximum	$F^{-1}(1)$	1	1	$\alpha_1 = \alpha_2 = 0$ for minimum
Trimmed mean	$\mathbb{E}[X F(X) \in [\alpha_1, \alpha_2]]$	α	$1 - \alpha$	$lpha\in(0,1/2)$

Indicator-based functionals

Sample complexity of different functionals

· ·	•		
	Offline	Online	
Functional	complexity	complexity	Comments
Mean	$\Theta(\epsilon^{-2})$	$\Theta(\epsilon^{-2})$	No gain from online sampling
Median	$\Theta(\epsilon^{-3})$	$ ilde{\Theta}(\epsilon^{-2.5})$	Holds for quantile too
Maximum	$\Theta(\epsilon^{-(2+\beta)})$	$ ilde{\Theta}(\epsilon^{-\max(eta,2)})$	Depends on the tail regularity β
Trimmed mean	$ ilde{\Theta}(\epsilon^{-3})$	$ ilde{\Theta}(\epsilon^{-2.5})$	$g(F) = \mathbb{E}\{X F(X) \in [\alpha, 1 - \alpha]\}$

Offline Algorithms

Definition: For $\varepsilon > 0, \delta \in (0, 1)$, we call an estimator \hat{G} an (ε, δ) - PAC approximation of g(F) if $P(|\hat{G} - g(F)| > \varepsilon) \leq \delta$.

Theorem (Offline PAC sample complexity)

An (ε, δ) - PAC offline uniform-sampling-based algorithm for estimating g(F) requires $\Theta_{\varepsilon}(nm)$ samples where (n,m) are chosen based on (ε,δ) , the functional g(F), and information about F.

Functional	number of samples per point m	number of points n
Mean	$\Theta(1)$	$\Theta(\epsilon^{-2})$
Median	$\Theta(\epsilon^{-1})$	$\Theta(\epsilon^{-2})$
Maximum	$\Theta(\epsilon^{-2})$	$\Theta(\epsilon^{-eta})$
Trimmed mean	$\Theta\left(\epsilon^{-1}\log\left(\epsilon^{-1}\right)\right)$	$\Theta(\epsilon^{-2})$

Online Algorithms

Intuition

- Find (n,m) such that the plug-in estimator $G_{n,m}$ will be an $(\varepsilon/2, \delta/2)$ - PAC approximation of g(F).
- Adaptively compute an $(\varepsilon/2, \delta/2)$ PAC approximation of $G_{n,m}$ using significantly fewer samples by constructing confidence intervals.

Lower bound via Wasserstein distance

For any online algorithm π which queries T samples, it holds that

Lower bound via thresholding phenomenon

where (

 $D_{\mathrm{KL}}($

Theorem (Meta algorithm)

Our online meta algorithm provides an $(arepsilon,\delta)$ - PAC estimate of g(F) with Msamples when given the requisite inputs. The expected sample complexity is bounded by

$$\mathbb{E}[M] = O\left(n\mathbb{E}\left[\min\left(m, \frac{\log(n/\delta)}{\left[\operatorname{dist}(X, \partial S)\right]^2}\right)\right]\right),$$

where $S = [F^{-1}(\alpha_1), F^{-1}(\alpha_2)].$

Mean and Maximum

Lemma For any offline algorithm π , it holds that

$$D_{\mathrm{KL}}(p_{\pi,F_1,n} \| p_{\pi,F_2,n}) \le \frac{mn}{2} \mathcal{W}_2^2(F_1,F_2).$$

$$D_{\mathrm{KL}}(p_{\pi,F_1} \| p_{\pi,F_2}) \le \frac{T}{2} \mathcal{W}_{\infty}^2(F_1,F_2).$$

Here $\mathcal{W}_2^2(P,Q) = \inf_{\gamma \in \Gamma} \mathbb{E}_{(X,Y) \sim \Gamma}[(X-Y)^2]$, $\mathcal{W}_\infty(P,Q) = \inf_{\gamma \in \Gamma} \operatorname{esssup}_{(X,Y) \sim \Gamma} |X-Y|$

and Γ is the class of all couplings between P and Q. • The sample complexity of offline algorithms

 $\Omega(1/\min\{\mathcal{W}_2^2(F_1, F_2) : F_1, F_2 \in \mathcal{F}, |g(F_1) - g(F_2)| \ge 2\varepsilon\})$

• The sample complexity of online algorithms $\Omega(1/\min\{\mathcal{W}_{\infty}^{2}(F_{1},F_{2}):F_{1},F_{2}\in\mathcal{F},|g(F_{1})-g(F_{2})|\geq 2\varepsilon\})$

Median and Trimmed mean

A key quantity to prove lower bounds for median estimation is $\mathrm{KL}_{\sigma}(\varepsilon) := \min\{D_{\mathrm{KL}}(F_1 * \mathcal{N}(0, \sigma^2) || F_2 * \mathcal{N}(0, \sigma^2)) : F_1, F_2 \in \mathcal{F}, |F_1^{-1}(1/2) - F_2^{-1}(1/2)| \ge 2\varepsilon\}.$

Lemma (offline) For $\varepsilon \in (0, 1/4)$, the following characterization of $KL_{\sigma}(\varepsilon)$ holds as a function of σ :

$$\operatorname{KL}_{\sigma}(\varepsilon) \begin{cases} \in [c_1 \varepsilon^2, c_2 \varepsilon^2] & \text{if } \sigma \leq c \varepsilon^{1/2}, \\ \leq C(\theta, \kappa) \varepsilon^{\kappa} & \text{if } \sigma \geq \varepsilon^{1/2 - \theta}, \end{cases}$$

$$\theta \in (0, 1/4).$$

Lemma (online) Fix any $\varepsilon, \theta \in (0, 1/4)$ and $\kappa \in \mathbb{N}$. There exists two distributions $F_1, F_2 \in \mathcal{F}$ with $|F_1^{-1}(0.5) - F_2^{-1}(0.5)| \geq \varepsilon$, and $\int - [3/2 - 3/2] : c = - -1/2$

$$F_1 * \mathcal{N}(0, \sigma^2) \| F_2 * \mathcal{N}(0, \sigma^2)) \begin{cases} \in [c_1 \varepsilon^{\sigma/2}, c_2 \varepsilon^{\sigma/2}] & \text{if } \sigma \le c \varepsilon^{1/2}, \\ \le C(\theta, \kappa) \varepsilon^{\kappa} & \text{if } \sigma \ge \varepsilon^{1/2 - \theta}, \end{cases}$$

Theorem (Median adaptive lower bound)

The $(\varepsilon, 0.1)$ - PAC sample complexity for median estimation is $\Omega(\varepsilon^{-2.5})$ for any online algorithm.