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Structure of the functional
• The functional          can be represented as

where 
• This essentially encompasses all "nice" functionals.

Indicator-based functionals

g(F ) = E [X|F (X) ∈ [α1,α2]]

0 ≤ α1 ≤ α2 ≤ 1.

Functional g(F ) ↵1 ↵2 Comment

Mean E[X] 0 1

Quantile F�1(↵) ↵ ↵ ↵ 2 (0, 1), e.g. ↵ = 1/2 for median

Maximum F�1(1) 1 1 ↵1 = ↵2 = 0 for minimum

Trimmed mean E[X|F (X) 2 [↵1,↵2]] ↵ 1� ↵ ↵ 2 (0, 1/2)

Sample complexity of different functionals

Functional
O✏ine

complexity
Online

complexity Comments

Mean ⇥(✏�2) ⇥(✏�2) No gain from online sampling

Median ⇥(✏�3) ⇥̃(✏�2.5) Holds for quantile too

Maximum ⇥(✏�(2+�)) ⇥̃(✏�max(�,2)) Depends on the tail regularity �

Trimmed mean ⇥̃(✏�3) ⇥̃(✏�2.5) g(F ) = E{X|F (X) 2 [↵, 1� ↵]]}

Offline Algorithms
ε > 0, δ ∈ (0, 1)Definition: For                           , we call an estimator     an           - PAC  

approximation of           if

Theorem (Offline PAC sample complexity)
An          - PAC offline uniform-sampling-based algorithm for estimating                 

requires              samples where            are chosen based on          , 
the functional          , and information about    .

Ĝ (ε, δ)
P (|Ĝ− g(F )| > ε) ≤ δ.

Θε(nm)

Functional number of samples per point m number of points n
Mean ⇥(1) ⇥(✏�2)
Median ⇥(✏�1) ⇥(✏�2)

Maximum ⇥(✏�2) ⇥(✏��)

Trimmed mean ⇥
�
✏�1 log

�
✏�1

��
⇥(✏�2)

Online Algorithms

• Adaptivity helps in functional estimation: offline and online sample 
complexity of Mean / Median / Trimmed mean / Maximum

• Achieve the upper bound by a unified meta algorithms
• General lower bounds for both offline and online sampling

Our Contribution

Background

Intuition
• Find           such that the plug-in estimator           will be an                          

- PAC approximation of          .
• Adaptively compute an                - PAC approximation of            using 

significantly fewer samples by constructing confidence intervals.

(n,m)

(n,m) Ĝn,m

(ε/2, δ/2)

g(F )

g(F )

F

g(F )
(ε/2, δ/2) Ĝn,m

Theorem (Meta algorithm)
Our online meta algorithm provides an           - PAC estimate of            with      
samples when given the requisite inputs. The expected sample complexity is 
bounded by

where                                            .

g(F ) M

E[M ] = O

(

nE

[

min

(

m,
log(n/δ)

[dist(X, ∂S)]2

)])

,

S = [F−1(α1), F
−1(α2)]

Lower bound via Wasserstein distance
Mean and Maximum
Lemma For any offline algorithm    , it holds that

For any online algorithm      which queries      samples, it holds that

Here ,

and     is the class of all couplings between      and     .
• The sample complexity of offline algorithms 

• The sample complexity of online algorithms

π

DKL(pπ,F1,n‖pπ,F2,n) ≤
mn

2
W2

2 (F1, F2).

π T

DKL(pπ,F1
‖pπ,F2

) ≤
T

2
W2

∞
(F1, F2).

W
2
2 (P,Q) = inf

γ∈Γ
E(X,Y )∼Γ[(X − Y )2] W∞(P,Q) = inf

γ∈Γ
esssup
(X,Y )∼Γ

|X − Y |

Γ P Q

Ω(1/min{W2

2 (F1, F2) : F1, F2 ∈ F , |g(F1)− g(F2)| ≥ 2ε})

Ω(1/min{W2

∞
(F1, F2) : F1, F2 ∈ F , |g(F1)− g(F2)| ≥ 2ε})

Lower bound via thresholding phenomenon
Median and Trimmed mean
A key quantity to prove lower bounds for median estimation is

Lemma (offline) For                     , the following characterization of              
holds as a function of     :

where

Lemma (online) Fix any                         and           . There exists two 
distributions                       with                                               , and   

Theorem (Median adaptive lower bound)
The             - PAC sample complexity for median estimation is                 for 
any online algorithm.

KLσ(ε) := min{DKL(F1∗N (0,σ2)‖F2∗N (0,σ2)) : F1, F2 ∈ F , |F−1

1
(1/2)−F−1

2
(1/2)| ≥ 2ε}.

ε ∈ (0, 1/4) KLσ(ε)

σ

KLσ(ε)

{

∈ [c1ε2, c2ε2] if σ ≤ cε1/2,

≤ C(θ,κ)εκ if σ ≥ ε1/2−θ,

θ ∈ (0, 1/4).

ε, θ ∈ (0, 1/4) κ ∈ N

F1, F2 ∈ F |F−1

1
(0.5)− F

−1

2
(0.5)| ≥ ε

DKL(F1 ∗N (0,σ2)‖F2 ∗N (0,σ2))

{

∈ [c1ε3/2, c2ε3/2] if σ ≤ cε1/2,

≤ C(θ,κ)εκ if σ ≥ ε1/2−θ,

(ε, 0.1) Ω(ε−2.5)

Goal: estimate some functional          of an underlying distribution 

Setting
• Level 0: underlying distribution 
• Level 1: unobserved samples
• Level 2: noisy observations

Action
At each time instance, the learner can:
• Either sample an arm that has been already observed in the past, 
• Or draw and sample from a new arm, whose average reward is drawn 

from an underlying distribution          .  

Examples
• Mean estimation in single-cell RNA-sequencing
• Benjamini-Hochberg (BH) threshold in multiple hypothesis testing
• Personalized recommendation in large-scale distributed learning

Connection to multi-armed bandits
• Classical multi-armed bandits (Level 1 - 2)

• Infinite-armed bandit (Level 0 - 2)

• The objective of infinite-armed bandit is minimizing simple or cumulative 
regret, while we are interested in estimating the distribution functional.

Sampling algorithms
• Offline sampling algorithm: uniformly sample each arm

• Online sampling algorithm: requires continual interactions with the 
environment

Difficulty
• Mixture model / density deconvolution
• Statistical complexity of online sampling algorithms

Introduction

X1, . . . , Xn, · · · ∼ F (x)

Arms: X1, . . . , Xn, Observations: Yi = Xai
+ Zi.

Arms: X1, . . . , Xi, · · · ∼ F (x) Observations: Yi = Xai
+ Zi.

F (x)

Yi,j ∼ N (Xi, 1)

X̂i ∼ N (Xi, 1/m).

g(F ) F

Yt+1 ∼ N (XAt+1
, 1), At+1 = π(Y1:t, A1:t).

F (x)

(ε, δ)

g(F )
(ε, δ)g(F )

(ε, δ)
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