Beyond the Best: Distribution Functional Estimation in Infinite-Armed Bandits

Yifei Wang

Department of Electrical Engineering, Stanford University

Nov. 29th, Neurips 2022

Yifei Wang (Stanford)

Tavor Baharav (Stanford)

Yanjun Han (MIT)

Jiantao Jiao (UC Berkeley)

David Tse (Stanford)

★ ∃ >

æ

• Goal: estimate some functional g(F) of an underlying distribution F.

æ

- $\bullet\,$ Goal: estimate some functional g(F) of an underlying distribution F.
- Setting:

F

• Level 0: distribution F

Setting

- Goal: estimate some functional g(F) of an underlying distribution F.
- Setting:

- Level 0: distribution F
- Level 1: unobserved samples $X_1, \ldots, X_n, \cdots \sim F$

Setting

- Goal: estimate some functional g(F) of an underlying distribution F.
- Setting:

- Level 0: distribution F
- Level 1: unobserved samples $X_1, \ldots, X_n, \cdots \sim F$
- Level 2: noisy observations: $Y_{i,j} \sim \mathcal{N}(X_i, 1)$

Examples

- Mean estimation in single-cell RNA-sequencing
- Benjamini-Hochberg (BH) threshold in multiple hypothesis testing
- Personalized recommendation in large-scale distributed learning

Connection to multi-armed bandits

Classical multi-armed bandits (Level 1-2):

Arms: X_1, \ldots, X_n , Observations: $Y_i = X_{a_i} + Z_i$.

• Infinite-armed bandit¹ (Level 0-2):

Arms: $X_1, \ldots, X_i, \cdots \sim F(x)$ Observations: $Y_i = X_{a_i} + Z_i$.

 The objective of infinite-armed bandit is minimizing simple or cumulative regret, while we are interested in estimating the distribution functional.

¹Berry, D. A. et al. Bandit problems with infinitely many arms. The Annals of Statistics (1997).

Sampling algorithms

• Offline sampling algorithm: uniformly sample each arm

$$\hat{X}_i \sim \mathcal{N}(X_i, 1/m).$$

 Online sampling algorithm: requires continual interactions with the environment

$$Y_{t+1} \sim \mathcal{N}(X_{A_{t+1}}, 1), \quad A_{t+1} = \pi(Y_{1:t}, A_{1:t}).$$

• Difficulty:

- Mixture model / density deconvolution
- Statistical complexity of online sampling algorithms

Our contribution

- Offline and online sample complexity of
 - Mean
 - Median
 - Trimmed mean
 - Maximum
- Unified meta algorithms
- General lower bounds for both offline and online sampling

Structure of the functional

• The functional g can be represented as

$$g(F) = \mathbb{E}[X|F(X) \in [\alpha_1, \alpha_2]]$$

for $0 \leq \alpha_1 \leq \alpha_2 \leq 1$.

• This essentially encompasses all "nice" functionals.

Table: Indicato	r-based functionals.
-----------------	----------------------

Functional	g(F)	α_1	α_2	Comment
Mean	$\mathbb{E}[X]$	0	1	
Quantile	$F^{-1}(\alpha)$	α	α	$lpha\in(0,1)$, e.g. $lpha=1/2$ for median
Maximum	$F^{-1}(1)$	1	1	$\alpha_1 = \alpha_2 = 0$ for minimum
Trimmed mean	$\mathbb{E}[X F(X) \in [\alpha_1, \alpha_2]]$	α	$1 - \alpha$	$\alpha \in (0, 1/2)$

Table: Sample complexity of estimating different functionals g(F), where F is the cumulative distribution function (CDF) of the distribution to estimate.

Functional	Offline complexity	Online complexity	Comments
Mean	$\Theta(\epsilon^{-2})$	$\Theta(\epsilon^{-2})$	No gain from online sampling
Median	$\Theta(\epsilon^{-3})$	$\tilde{\Theta}(\epsilon^{-2.5})$	Holds for quantile too
Maximum	$\Theta(\epsilon^{-(2+\beta)})$	$\tilde{\Theta}(\epsilon^{-\max(\beta,2)})$	Depends on the tail regularity eta
Trimmed mean	$ ilde{\Theta}(\epsilon^{-3})$	$\tilde{\Theta}(\epsilon^{-2.5})$	$g(F) = \mathbb{E}\{X F(X) \in [\alpha, 1-\alpha]]\}$

Offline algorithm

• For $\epsilon > 0$ and $\delta \in (0, 1)$, we call an estimator \hat{G} an (ϵ, δ) -PAC approximation of g(F) if $P(|\hat{G} - g(F)| > \epsilon) \leq \delta$.

Theorem (Offline PAC sample complexity)

An (ϵ, δ) -PAC offline uniform-sampling-based algorithm for estimating g(F) requires $\Theta_{\epsilon}(nm)$ samples where n, m are chosen based on ϵ, δ , the functional g, and information about F.

Functional	number of samples per point m	number of points n
Mean	$\Theta(1)$	$\Theta(\epsilon^{-2})$
Median	$\Theta(\epsilon^{-1})$	$\Theta(\epsilon^{-2})$
Maximum	$\Theta(\epsilon^{-2})$	$\Theta(\epsilon^{-eta})$
Trimmed mean	$\Theta\left(\epsilon^{-1}\log\left(\epsilon^{-1} ight) ight)$	$\Theta(\epsilon^{-2})$

Yifei Wang (Stanford)

Online algorithm

- Find n, m such that the plug-in estimator $G_{n,m}$ will be an $(\epsilon/2, \delta/2)$ -PAC approximation of g(F).
- **2** Adaptively compute an $(\epsilon/2, \delta/2)$ -PAC approximation of $G_{n,m}$ using significantly fewer samples based on confidence intervals.

Theorem (Meta algorithm)

Our online meta algorithm provides an (ϵ, δ) -PAC estimate of g(F) with M samples when given the requisite inputs. The expected sample complexity is bounded by

$$\mathbb{E}[M] = O\left(n\mathbb{E}\left[\min\left(m, \frac{\log(n/\delta)}{\left[\mathsf{dist}(X, \partial S)\right]^2}\right)\right]\right),$$

where $S = [F^{-1}(\alpha_1), F^{-1}(\alpha_2)].$

イロト イポト イヨト イヨト

3

Conclusion

- Offline and online algorithms for estimating functionals of distributions
- Unified algorithms for estimating
 - Mean
 - Median
 - Trimmed mean
 - Maximum
- Information theoretic lower bounds
 - mean and maximum: different Wasserstein distances
 - median and trimmed mean: an interesting thresholding phenomenon of the noise level