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Infinite-Armed Bandit Introduction

Setting

Goal: estimate some functional g(F ) of an underlying distribution F .
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Setting

Goal: estimate some functional g(F ) of an underlying distribution F .

Setting:

F

X1 ... Xn

Y1,1 Y1,2 ... Yn,m−1 Yn,m

subsample

noise

Level 0: distribution F
Level 1: unobserved samples X1, . . . , Xn, · · · ∼ F
Level 2: noisy observations: Yi,j ∼ N (Xi, 1)
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Examples

Mean estimation in single-cell RNA-sequencing

Benjamini-Hochberg (BH) threshold in multiple hypothesis testing

Personalized recommendation in large-scale distributed learning
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Connection to multi-armed bandits

Classical multi-armed bandits (Level 1-2):

Arms: X1, . . . , Xn, Observations: Yi = Xai + Zi.

Infinite-armed bandit1 (Level 0-2):

Arms: X1, . . . , Xi, · · · ∼ F (x) Observations: Yi = Xai + Zi.

The objective of infinite-armed bandit is minimizing simple or
cumulative regret, while we are interested in estimating the
distribution functional.

1Berry, D. A. et al. Bandit problems with infinitely many arms. The Annals of Statistics (1997).
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Sampling algorithms

Offline sampling algorithm: uniformly sample each arm

X̂i ∼ N (Xi, 1/m).

Online sampling algorithm: requires continual interactions with the
environment

Yt+1 ∼ N (XAt+1 , 1), At+1 = π(Y1:t, A1:t).

Difficulty:

Mixture model / density deconvolution
Statistical complexity of online sampling algorithms
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Our contribution

Offline and online sample complexity of

Mean
Median
Trimmed mean
Maximum

Unified meta algorithms

General lower bounds for both offline and online sampling
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Structure of the functional

The functional g can be represented as

g(F ) = E [X|F (X) ∈ [α1, α2]]

for 0 ≤ α1 ≤ α2 ≤ 1.

This essentially encompasses all ”nice” functionals.

Table: Indicator-based functionals.

Functional g(F ) α1 α2 Comment

Mean E[X] 0 1

Quantile F−1(α) α α α ∈ (0, 1), e.g. α = 1/2 for median

Maximum F−1(1) 1 1 α1 = α2 = 0 for minimum

Trimmed mean E[X|F (X) ∈ [α1, α2]] α 1− α α ∈ (0, 1/2)
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Sample complexity

Table: Sample complexity of estimating different functionals g(F ), where
F is the cumulative distribution function (CDF) of the distribution to
estimate.

Functional
Offline

complexity
Online

complexity Comments

Mean Θ(ϵ−2) Θ(ϵ−2) No gain from online sampling

Median Θ(ϵ−3) Θ̃(ϵ−2.5) Holds for quantile too

Maximum Θ(ϵ−(2+β)) Θ̃(ϵ−max(β,2)) Depends on the tail regularity β

Trimmed mean Θ̃(ϵ−3) Θ̃(ϵ−2.5) g(F ) = E{X|F (X) ∈ [α, 1− α]]}
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Offline algorithm

For ϵ > 0 and δ ∈ (0, 1), we call an estimator Ĝ an (ϵ, δ)-PAC
approximation of g(F ) if P (|Ĝ− g(F )| > ϵ) ≤ δ.

Theorem (Offline PAC sample complexity)

An (ϵ, δ)-PAC offline uniform-sampling-based algorithm for estimating
g(F ) requires Θϵ(nm) samples where n,m are chosen based on ϵ, δ, the
functional g, and information about F .

Functional number of samples per point m number of points n

Mean Θ(1) Θ(ϵ−2)

Median Θ(ϵ−1) Θ(ϵ−2)

Maximum Θ(ϵ−2) Θ(ϵ−β)

Trimmed mean Θ
(
ϵ−1 log

(
ϵ−1

))
Θ(ϵ−2)

Yifei Wang (Stanford) Infinite-Armed Bandit Nov. 29th 10 / 12



Infinite-Armed Bandit Introduction

Online algorithm

1 Find n,m such that the plug-in estimator Gn,m will be an
(ϵ/2, δ/2)-PAC approximation of g(F ).

2 Adaptively compute an (ϵ/2, δ/2)-PAC approximation of Gn,m using
significantly fewer samples based on confidence intervals.

Theorem (Meta algorithm)

Our online meta algorithm provides an (ϵ, δ)-PAC estimate of g(F ) with
M samples when given the requisite inputs. The expected sample
complexity is bounded by

E[M ] = O

(
nE

[
min

(
m,

log(n/δ)

[dist(X, ∂S)]2

)])
,

where S = [F−1(α1), F
−1(α2)].
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Conclusion

Offline and online algorithms for estimating functionals of distributions

Unified algorithms for estimating

Mean
Median
Trimmed mean
Maximum

Information theoretic lower bounds

mean and maximum: different Wasserstein distances
median and trimmed mean: an interesting thresholding phenomenon of
the noise level
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