
Stanford University Final Report for EE274 Page 1 of 5

Final Report for EE274

Bits-back coding and compression of data with

permutation invariance

Yifei Wang

1 Introduction

In this project, we will investigate the compression of multisets where the relative order of
the symbols are irrelevant, for instance, collections of files. Severo et al. (2022) proposes a new
compression algorithm which saves computational cost by avoiding encoding the order between
symbols. We follow this paper as the context and background.

2 Asymmetric Numeral Systems and Bits-Back Coding

We first briefly review asymmetric numeral systems (ANS), which serves as the basis for
bits-back coding. For a symbol x ∈ A with mass function D, the encode and decode functions
form an inverse pair:

encode :N×A → N, (s, x)→ s′,

decode :N→ N×A, s′ → (s, x).
(1)

Here log s′ ≈ log s+ log 1/D(x). To implement encode and decode, the quantized distribution
D must be specified by a precision parameter N together with two lookup functions:

forward lookup : x→ (cx, px),

reverse lookup : i→ (x, cx, px).
(2)

Here cx and px are quantized cumulative distribution function and probability mass satisfying

px
N

= D(x), cx =
∑
y<x

px. (3)

The reverse lookup takes the input i ∈ {0, . . . , N} and it must output (x, cx, px) such that
i ∈ [cx, cx + px).

The key to apply ANS to bits-back coding is the observation that we can use decode for a
quantized distribution D as an invertible sampler. To be specific, the ANS state s is thus used
as a random seed. By executing decode to s, it removes − logD(x) bits from the state s. In
short, the random seed is slowly consumed as symbols are sampled.

ANS can be directly applied to compress a multiset. Consider a multisetM = {x1, . . . , xm},
where m = |M|. We can view x1, . . . , xm as a sequence of i.i.d. symbols xm = x1 . . . xm
from a distribution D over alphabet A. We can compress xm by initializing the state s0 =
0 and recursively update sn = encode(sn−1, xn) with D. The finial ANS state sm will be
approximately

log sm ≈
m∑

n=1

log 1/D(xn).

Stanford University Final Report for EE274 Page 2 of 5

Now, we describe the algorithm of bits-back coding as follows. To encode, we store a
multiset of remaining symbolsMn. Firstly, we setM1 =M. In the n-th iteration, we sample
zn without replacement from Mn and encode it. Let zn−1 be the sequence of previously
sampled symbols. Then, we note that

P (zn|zn−1) =
Mn(zn)

|Mn|
. (4)

To sample zn decreases the state sn, while the encoding step increases sn. To be specific, the
number of bits of the state increase at the n-th round is approximately

∆n = log
D(zn)

P (zn|zn−1)
. (5)

The total increase in the state is

m∑
n=1

∆n =
m∑

n=1

log
D(zn)

P (zn|zn−1)
= log

∏
z∈M

D(z)M(z) − log
m!∏

z∈MM(z)!
= logP (M). (6)

This is exactly the negative information content of the multiset. Suppose that we start with
log s0 ≈

∑m
n=1 log 1/D(xn). Then, we have

log sm ≈ − log
m!∏

z∈MM(z)!
. (7)

In summary, by using the bits-back coding to compress multisets, we can save − logP (M) bits
compared to directly apply ANS to compress multisets.

To efficiently implement the invertible sampling without replacement, we utilizes the binary
search tree (BST). In summary, we describe the multiset encoder and decoder in Algorithm 1.

Algorithm 1 Multiset Encoder and Decoder for bits-back coding based on ANS.

1: function MultisetEncode(M)
2: Initiate a random state s0. Set m = |M| and M1 =M.
3: for n = 1, . . . ,m do
4: (s′n, zn) = decode(sn−1) with P (·|Mn) . O(logm)
5: Mn+1 =Mn/ {zn} . O(logm)
6: sn = encode(s′n, zn) with D(·) . O(DEncode)
7: end for
8: return sm
9: end function

10: function MultisetDecode(sm)
11: Initialize Mm+1 = ∅.
12: for n=m,. . . ,1 do
13: (s′n, zn) = decode(sn) with D(·) . O(DDecode)
14: Mn =Mn+1 ∪ {zn} . O(logm)
15: sn−1 = encode(s′n, zn) with P (·|Mn). . O(logm)
16: end for
17: returnM1

18: end function

Stanford University Final Report for EE274 Page 3 of 5

3 Bits back coding upon rANS

As ANS is not directly implemented in SCL, we implement the bits back coding upon
rANS, which require that the state before encoding / after decoding lies in the interval [L,H].
We briefly summarize the difference of rANS and ANS as follows. In each encoding iteration,
rANS has an additional shrink state operation on the state s before encoding the symbol x
into the state s. This operation streams out the lower bits of the state, until the state is below
some threshold. Then, it output bits to the stream to bring the state in the range for the next
encoding. Similarly, in each decoding iteration, we remap the state into the acceptable range
after the decoding step. Therefore, we summarize the bits back coding algorithm based on
rANS as follows.

The reason why we use remapLocal and shrinkLocal is that we start with the decoding
step in bits back coding. We don’t know about the bitarray for remap in rANS. Therefore, we
simply use local information to implement remapLocal and shrinkLocal memorilessly.

4 Numerical implementation

For simplicity, we write our implementation of bits-back coding based on rANS as rBBC.
As rBBC does not compress the order information, the decoded data block may not be identical
to the raw data block. Therefore, we evaluate the correctness of rBBC by comparing the KL
divergence between the empirical distributions of the raw data block and the decoded block.
In Figure 1, we present the description of our test cases. The first five test cases use the same
data distribution and we aim to study under which the range factor and number of bits, rBBC
outperforms rANS. The last two test cases study under which distribution rBBC has better
performance than rANS.

Figure 1: Quote of test cases.

The results in Figure 2 validate the correctness of our implementation. In Figure 3, we
numerically compare the improvement of rBBC for compressing a multiset compared to directly
apply rANS to compress it. From the first five cases, we note that using 8 number of bits out
and a range factor of 28 makes rBBC compress more compared to rANS. From the last test
cases, we note that rBBC has better compress performance for data distribution which is close
to a uniform distribution.

Stanford University Final Report for EE274 Page 4 of 5

Figure 2: Terminal output for evaluating the correctness
of rBBC.

Figure 3: Terminal
output for comparing
rBBC and rANS.

5 Conclusion

The bits back coding is a interesting randomized data-compression scheme based on ANS
which neglect the order information. Therefore, it can compress multi-set to the information
limit. In this work, we extend bits back coding to rBBC which is based on rANS. Our numerical
experiment shows that rBBC has better performance if the data distribution is close to a
uniform distribution. This also coincide with the theory where BBC can compress the multi-
set to the information limit.

References

Severo, D., Townsend, J., Khisti, A., Makhzani, A., and Ullrich, K. (2022). Compressing
multisets with large alphabets. In 2022 Data Compression Conference (DCC), pages 322–
331. IEEE.

Stanford University Final Report for EE274 Page 5 of 5

Algorithm 2 Multiset Encoder and Decoder for bits-back coding based on rANS.

1: function MultisetEncode(M)
2: Initiate a random state s0. Set m = |M|, M1 =M, b0 = 0 and B0 = b0.
3: for n = 1, . . . ,m do

4: (s
(1)
n , zn) = decode(sn−1) with P (·|Mn) . O(logm)

5: s
(2)
n = remapLocal(s

(1)
n).

6: Mn+1 =Mn/ {zn} . O(logm)

7: s
(3)
n , bn = shrink(s

(2)
n).

8: sn = encode(s
(3)
n , zn) with D(·) . O(DEncode)

9: Bn = Bn−1 + bn.
10: end for
11: return sm, Bm

12: end function
13: function MultisetDecode(sm, Bm)
14: Initialize Mm+1 = ∅.
15: for n=m,. . . ,1 do
16: Bn, bn+1 = Bn+1.

17: (s
(3)
n , zn) = decode(sn) with D(·) . O(DDecode)

18: s
(2)
n = remap(s

(3)
n , bn+1).

19: Mn =Mn+1 ∪ {zn} . O(logm)

20: s
(1)
n = shrinkLocal(s

(2)
n).

21: sn−1 = encode(s
(1)
n , zn) with P (·|Mn). . O(logm)

22: end for
23: returnM1

24: end function
25: function remapLocal(s)
26: while s < L do
27: s = 2s.
28: end while
29: return s
30: end function
31: function shrinkLocal(s)
32: while s > H do
33: s = s//2.
34: end while
35: return s
36: end function

	Introduction
	Asymmetric Numeral Systems and Bits-Back Coding
	Bits back coding upon rANS
	Numerical implementation
	Conclusion

