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Optimal Neural Network approximation Introduction

Bayesian inference

A powerful tool in
Modeling complex data
Quantifying uncertainty

Of great interests in inverse problems, information science, physics
and scientific computing.
Main problem

Given a prior distribution p0 and the likelihood function f(x), generate
samples from the posterior distribution

π(x) = p0(x)f(x).
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Wasserstein gradient flow

Effective in drawing samples from a posterior distribution

∂tρt =∆ρt −∇ · (ρt∇ log π)

=∇ · (ρt(∇ log ρt −∇ log π)).

Corresponds to the continuous-time limit of the classical Langevin
Monte Carlo Markov Chain (MCMC) algorithm.

The Wasserstein gradient direction also provides a deterministic
update of the particle system,

Wasserstein gradient descent (WGD) with kernel density estimation
(KDE)1.
Stein variational gradient descent (SVGD)2.
Neural variational gradient descent3.

1Liu, C. et al., Understanding and accelerating particle-based variational inference, ICML 2019.
2Liu, Q. and Wang, D., Stein variational gradient descent: A general purpose bayesian inference algorithm, Neurips 2016.
3di Langosco et al., Neural variational gradient descent, 2021.
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Neural networks

Exhibit tremendous optimization and generalization performance in
learning complicated functions from data.

Wide applications in Bayesian inverse problems1.

Arbitrarily complicated functions can be learned by a two-layer neural
network with non-linear activations and a sufficient number of
neurons2.

Functions represented by neural networks can approximate the
Wasserstein gradient direction.

1Rezende, D. and Mohamed, S. Variational inference with normalizing flows, ICML 2015.
2The universal approximation theorem of neural networks
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Convex optimization formulation of neural networks

Directly training the neural network to miminize the loss may get the
neural network stuck at local minima or saddle points and it often
leads to biased sample distribution from the posterior.

In a line of works, the regularized training problem of two-layer neural
networks with ReLU12/polynomial3 activation can be formulated as a
convex program.

The optimal solution of the convex program renders a global optimum
of the nonconvex training problem.

1Pilanci, M. and Ergen, T. Neural networks are convex regularizers: Exact polynomial-time convex optimization formulations
for two-layer networks, ICML 2020.

2Sahiner, A. et al., Vector-output relu neural network problems are compositive programs: Convex analysis of two layer
networks and polynomial-time algorithms, ICLR 2021.

3Bartan, B. and Pilanci, M. Neural spectrahedra and semidefinite lifts: Global convex optimization of polynomial activation
neural networks in fully polynomial-time, 2021.
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Our contribution

Formulate the Wasserstein gradient direction as an optimal solution
of a variational problem.

Analyze the convex dual problem of the training problem and study
its semi-definite program (SDP) relaxation by analyzing the geometry
of dual constraints.

Present practical implementation and analyze the choice of the
regularization parameter.
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Why convex optimization formulations of NNs?

All globally optimal NNs can be found by solving the convex
program1.

Globally optimal NNs have great generalization property.

Figure: Two-layer CNN training on a subset of CIFAR-10 (n = 195 and filter
size 4× 4× 3). Alg1: convex program. Alg2 and Alg3: approximations.

1Wang, Y., Lacotte, J., Pilanci, M., The Hidden Convex Optimization Landscape of Two-Layer ReLU Neural Networks: an
Exact Characterization of the Optimal Solutions, International Conference on Learning Representations, ICLR 2022 Oral.
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Regularized training problem

Data: X ∈ Rn×d label: y ∈ Rn.

Consider the `2-regularized training problem with squared loss:

pnoncvx : = minW1∈Rd×m,w2∈Rm

{
1
2 ‖(XW1)+w2 − y‖2 + β

2 (‖W1‖2F + ‖W2‖2F )
}
.

Easy to extend to various convex loss functions, e.g., logistic, hinge.
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Convex optimization formulation

In recent work1, an optimal neural network can be constructed based
on a solution of the convex program

pconvex : = min
(ui,u′i)

p
i=1

1

2

∥∥∥∥∥
p∑
i=1

DiX(ui − u′i)− y

∥∥∥∥∥
2

2

+ β

p∑
i=1

(‖ui‖2 + ‖u′i‖2)

 ,

s.t. (2Di − In)Xui ≥ 0, (2Di − In)Xu′i ≥ 0, i ∈ [p].

where D1, . . . , Dp are the enumeration of all possible hyperplane
arrangements

{diag(1(Xu > 0))|u ∈ Rd}.

1Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-time convex optimization
formulations for two-layer networks. ICML 2020.

Yifei Wang (Stanford) Optimal Neural Network approximation Sep. 27th 13 / 42



Optimal Neural Network approximation Convex formulation of NNs

Hyperplane arrangements

n = 3 samples in Rd, d = 2. X =

xT1xT2
xT3

 =

3 3
2 2
1 0

 , y =

y1

y2

y3

.

D1 =

1 0 0
0 1 0
0 0 1

, D1X =

3 3
2 2
1 0

.
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Hyperplane arrangements
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Hyperplane arrangements

n = 3 samples in Rd, d = 2. X =
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Upperbound on the number of hyperplane arrangement
patterns

For X ∈ RN×d, p = #{1(Xw > 0)|w ∈ Rd} is bounded by

p ≤ 2r

(
e(N − 1)

r

)r
,

where r is the rank of X.1

For CNNs, the number of hyperplane arrangement patterns reduces to

O(r3(n/r)3r),

where r is the filter size, e.g., r = 9 for a 3× 3 filter.

1Thomas M Cover. Geometrical and statistical properties of systems of linear inequalities with applications in pattern
recognition. IEEE transactions on electronic computers. 1965.
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Sketch of the methology

Step 1: rescale parameters to obtain the primal problem.

p = min
W1,w2

1

2
‖(XW1)+w2 − y‖2 + β‖w2‖1, s.t. ‖w1,i‖2 ≤ 1, i ∈ [m].

Step 2: derive the dual problem by Lagrangian duality.

d = max
λ
−1

2
‖λ− y‖22 +

1

2
‖y‖22, s.t. max

w:‖w‖2≤1
|λT (Xw)+| ≤ 1

Step 3: rewrite the dual constraint in terms of hyperplane
arrangements.

d = max
λ
−1

2
‖λ− y‖22 +

1

2
‖y‖22,

s.t. max
w:‖w‖2≤1,(2Di−I)Xw≥0

|λT (Xw)+| ≤ 1, i ∈ [p]

Step 4: derive the bi-dual problem pconvex!
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Wasserstein gradient descent

Consider an optimization problem in the probability space:

inf
ρ∈P

DKL(ρ‖π) =

∫
ρ(log ρ− log π)dx.

π: a known probability density function of the posterior distribution.

The Wasserstein gradient flow for the KL divergence satisfies

∂tρt =∇ ·
(
ρt∇

δ

δρt
DKL(ρt‖π)

)
=∇ · (ρt(∇ log ρt −∇ log π)).
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Optimal Neural Network approximation Wasserstein gradient descent

Sample update and discrete-time formulation

Update in terms of samples:

dxt = −(∇ log ρt(xt)−∇ log π(xt))dt.

xt follows the distribution of ρt.

Wasserstein gradient descent (WGD) on the particle system {xnl }

xnl+1 = xnl − αl∇Φl(x
n
l ),

where {xnl } are samples drawn from ρl and Φl : Rd → R is a function
which approximates log ρl − log π.
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Variational formulation

Let H ⊆ C1(Rd) be a finite dimensional function space. Consider the
following variational problem

inf
Φ∈H

1

2

∫
‖∇Φ− (∇ log ρ−∇ log π)‖22ρdx.

or equivalently

inf
Φ∈H

1

2

∫
‖∇Φ‖22ρdx+

∫
∆Φρdx+

∫
〈∇ log π,∇Φ〉 ρdx.

In terms of finite samples

inf
Φ∈H

1

N

N∑
n=1

(
1

2
‖∇Φ(xn)‖22 + ∆Φ(xn)

)
+

1

N

N∑
n=1

〈∇ log π(xn),∇Φ(xn)〉 .
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Two-layer neural networks

Consider the case where H is a class of two-layer neural network with
the activation function ψ(z):

H =
{

Φθ ∈ C1(Rd)|Φθ(x) = αTψ(W Tx)
}
,

The gradient and Laplacian of Φ ∈ H

∇Φθ(x) =

m∑
i=1

αiwiψ
′(wTi x) = W (ψ′(W Tx) ◦ α),

∆Φθ(x) =

m∑
i=1

αi‖wi‖22ψ′′(wTi x).
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Regularized variational problem

Focus on the squared ReLU activation ψ(z) = (z)2
+ = (max{z, 0})2

This leads to the following training problem

min
W,α

1

2N

N∑
n=1

∥∥∥∥∥
m∑
i=1

αiwiψ
′(wTi xn)

∥∥∥∥∥
2

2

+
1

N

N∑
n=1

〈
m∑
i=1

αiwiψ
′(wTi xn),∇ log π(xn)

〉

+
1

N

N∑
n=1

m∑
i=1

αi‖wi‖22ψ′′(wTi xn) +
β

2

m∑
i=1

(‖wi‖32 + |αi|3),
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Proposition (Primal problem)

The regularized variational problem is equivalent to

min
W,α,Z

1

2
‖Z‖2F +

N∑
n=1

m∑
i=1

αi‖wi‖22ψ′′(wTi xn) + tr(Y TZ) + β̃‖α‖1,

s.t. zn =

m∑
i=1

αiwiψ
′(xTnwi), n ∈ [N ], ‖wi‖2 ≤ 1, i ∈ [m].

where β̃ = 3 · 2−5/3Nβ and Y =

∇ log π(x1)T

...
∇ log π(xN )T

 ∈ RN×d.
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Proposition (Dual problem)

The dual problem of the regularized variational problem is

max
Λ∈RN×d

− 1

2
‖Λ + Y ‖2F ,

s.t. max
w:‖w‖2≤1

∣∣∣∣∣
N∑
n=1

‖w‖22ψ′′(xTnw)− λTnwψ′(xTnw)

∣∣∣∣∣ ≤ β̃,
which provides a lower-bound on the primal problem.
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Analysis of the dual constraint

Analyze the dual constraint

max
w:‖w‖2≤1

∣∣∣∣∣
N∑
n=1

‖w‖22I(wTxn ≥ 0)− λTnw(xTnw)+

∣∣∣∣∣ ≤ β̃/2.
Let X = [x1, . . . , xN ]T ∈ RN×d. Denote the set of all possible
hyper-plane arrangements corresponding to the rows of X as

{D = diag(I(Xw ≥ 0))|w ∈ Rd}.
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Relaxed Dual problem

The relaxed dual problem is the SDP:

max
Λ∈RN×d,r(j,−),r(j,+)∈Rn+1

−1

2
‖Λ + Y ‖2F ,

s.t. Ãj(Λ) + B̃j +

N∑
n=0

r(j,−)
n H(j)

n + β̃ed+1e
T
d+1 � 0,

− Ãj(Λ)− B̃j +

N∑
n=0

r(j,+)
n H(j)

n + β̃ed+1e
T
d+1 � 0,

r(j,−) ≥ 0, r(j,+) ≥ 0, j ∈ [p].

Ãj : RN×d → R(d+1)×(d+1) is a linear mapping .

H
(j)
n ∈ R(d+1)×(d+1) is generated by the data and hyperplane

arrangement.
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Proposition (Relaxed bi-dual problem)

The dual of the relaxed dual problem is as follows

min
Z,S(j,+),S(j,−)

1

2
‖Z + Y ‖2F −

1

2
‖Y ‖2F +

p∑
j=1

tr(B̃j(S
(j,+) − S(j,−)))

+ β̃

p∑
j=1

tr
(

(S(j,+) + S(j,−))ed+1e
T
d+1

)
,

s.t. Z =

p∑
j=1

Ã∗j (S
(j,−) − S(j,+)),

tr(S(j,−)H(j)
n ) ≤ 0, tr(S(j,+)H(j)

n ) ≤ 0, n = 0, . . . , N,

S(j,−) � 0, S(j,−) � 0, j ∈ [p].

Here Ã∗j is the adjoint operator of the linear operator Ãj .
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Theorem

Suppose that (Z,W,α) is feasible to the primal problem. Then, there exist
matrices {S(j,+), S(j,−)}pj=1 constructed from (W,α) such that

(Z, {S(j,+), S(j,−)}pj=1) is feasible to the relaxed bi-dual problem.
Moreover, the objective value of the relaxed bi-dual problem at
(Z, {S(j,+), S(j,−)}pj=1) is the same as objective value of the primal
problem at (Z,W,α).
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Optimality analysis

Optimality of the relaxed bi-dual problem

J(Z̃∗, {S̃(j,+), S̃(j,−)}pj=1) ≤ J(Z∗, {S(j,+), S(j,−)}pj=1).

At (Z∗,W ∗, α∗) we obtain the optimal approximation of
∇ log ρ−∇ log π at x1, . . . , xN in the family of two-layer
squared-ReLU networks.

Smaller or equal objective value of the relaxed bi-dual problem can be
achieved at (Z̃∗, {S̃(j,+), S̃(j,−)}pj=1).
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Practical implementation

Computationally costly to enumerate all possible p matrices
D1, . . . , Dp to represent the constraints in the relaxed dual problem.

Randomly sample M i.i.d. random vectors u1, . . . , uM ∼ N (0, Id)
and generate a subset Ŝ of S as follows:

Ŝ = {diag(I(Xuj ≥ 0)|j ∈ [M ]}.

Optimize the randomly sub-sampled version of the relaxed dual
problem based on the subset Ŝ with |Ŝ| = p̂.

Applying the standard interior point method leads to the
computational time up to

O((max{N, d2}p̂)6).
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Dimension reduction

For high-dimensional problems, i.e., d is large, the computational cost
of solving SDP can be large.

In this case, we apply the dimension-reduction techniques12 to reduce
the parameter dimension d to a data-informed intrinsic dimension d̂,
which is often very low, i.e., d̂� d.

This can dramatically decrease the computational time.

O((max{N, d̂2}p̂)6).

1Chen, P. and Ghattas, O.. Projected stein variational gradient descent. Neurips 2020.
2Wang, Y., Chen, P. and Li, W.. Projected wasserstein gradient descent for high-dimensional bayesian inference.
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Adjustment of regularization parameter

Dual problem

max
Λ∈RN×d

− 1

2
‖Λ + Y ‖2F ,

s.t. max
w:‖w‖2≤1

∣∣∣∣∣
N∑
n=1

‖w‖22ψ′′(xTnw)− λTnwψ′(xTnw)

∣∣∣∣∣ ≤ β̃,
If the regularization parameter is too large, then we will have
−Λ− Y = 0, which makes the particle system unchanged.

To ensure that β̃ is not too large, we decay β̃ by a factor γ1 ∈ (0, 1).

If β̃ is too small resulting the relaxed dual problem infeasible, we
increase β̃ by multiplying γ−1

2 , where γ2 ∈ (0, 1).
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Algorithm 1 Convex Neural Wasserstein descent

Require: initial positions {xn0}Nn=1, step size αl, initial regularization pa-
rameter β̃0, γ1, γ2 ∈ (0, 1).

1: while not converge do
2: Form Xl and Yl based on {xnl }Nn=1 and {∇ log π(xnl )}Nn=1.
3: Solve Λl from the relaxed dual problem with β̃ = β̃l.
4: if the relaxed dual problem with β̃ = β̃l is infeasible then
5: Set Xl+1 = Xl for n ∈ [N ] and set β̃l+1 = γ−1

2 β̃l.
6: else
7: Update Xl+1 = Xl +αl(Λl +Yl) for n ∈ [N ] and set β̃l+1 = γ1β̃l.
8: end if
9: end while
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Toy example

π(x) = exp

(
−1

2
(F (x)− y)2 − 1

2
‖x‖22

)
,

F (x) = log
(
(x1 − 1)2 + 100(x2 − x2

1)2
)
.

Figure: Posterior density and sample distributions by WGD-cvxNN and WGD-NN
at the final step of 100 iterations, compared to the reference SVN samples (right).
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Toy example

Figure: MMD of WGD-cvxNN and WGD-NN samples compared to the reference
SVN samples at each iteration.
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PDE-constrained nonlinear Bayesian inference

Partial differential equation (PDE) with application to subsurface
(Darcy) flow in a physical domain D = (0, 1)2,

v + ex∇u = 0 in D,

∇ · v = h in D,

u is pressure, v is velocity, h is force, ex is a random (permeability)
field equipped with a Gaussian prior x ∼ N (x0, C) with covariance
operator C = (−δ∆ + γI)−α.

Use a finite element method with piecewise linear elements for the
discretization of the problem, resulting in d = 81 dimensions for the
discrete parameter.
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PDE-constrained nonlinear Bayesian inference
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Figure: Ten trials and the RMSE of the sample mean (top) and sample variance
(bottom) by pWGD-NN and pWGD-cvxNN at different iterations. The referenced
sample mean and sample variance are generated by DILI-MCMC algorithm1 with
10000 effective samples.

1Cui, T., Law, K. J., and Marzouk, Y. M., Dimension-independent likelihood-informed mcmc. Journal of Computational
Physics 2016.
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Optimal Neural Network approximation Numerical results

Bayesian inference for COVID-19

Apply Bayesian inference1 to learn the dynamics of the transmission
and severity of COVID-19 from the recorded data for New York state.

Model the transmission reduction effect of social distancing

Observation data: number of hospitalized cases

Target: infer social distancing parameter, a time-dependent stochastic
process that is equipped with a Tanh-Gaussian prior

96 dimensions after discretization.

1Chen, P. and Ghattas, O. Projected stein variational gradient descent. Neurips 2020.
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Optimal Neural Network approximation Numerical results

Bayesian inference for COVID-19
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Figure: Comparison of pWGD-cvxNN and pWGD-NN to the reference by pSVGD
for Bayesian inference of the social distancing parameter (top) from the data of
the hospitalized cases (bottom) with sample mean and 90% credible interval.
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Optimal Neural Network approximation Outlook

Conclusion and future directions

Consider the approximation of the Wasserstein gradient direction by
the gradient of functions in the family of two-layer neural networks.

Propose a convex SDP relaxation of the dual of the variational primal
problem.

Theoretical guarantee for the subsampling procedure of hyperplane
arrangements (On working!)

Design specialized solver for induced SDPs.

Application of convex optimization formulation of NN to the
computation/approximation of generalized Wasserstein flows, e.g.,
normalizing flows, mean field games.
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