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Introduction
Problem setting

•Two-layer neural networks with ReLU activation, i.e.,
f (θ,X) = (XW1)+w2,

where W1 ∈ Rd×m, w2 ∈ Rm and θ = (W1,w2).
•Training problem

min
θ
L(θ) =:

n∑
i=1

l(yif (θ;xi)),

where l(q) = log(1 + exp(−q)) is the logistic loss.

Gradient descent and gradient flow

•The gradient descent update is
θ(t + 1) = θ(t)− η(t)g(t),

where g(t) ∈ ∂◦L(θ(t)) and ∂◦ represents Clarke subdifferential.
•For gradient flow, the trajectory of the parameter is an arc
θ : [0,+∞)→ Θ = {(W1,w2)|W1 ∈ Rd×m,W2 ∈ Rm}, which
satisfies that for t ≥ 0, a.e..

d

dt
θ(t) ∈ −∂◦L(θ(t)).

Implicit regularization of two-layer ReLU networks

•Assume that there exists time t0 such that L(θ(t0)) < 1, i.e., the
data is separated at time t0.
•Lyu and Li1 show that with t→∞, any limiting point of θ(t)

‖θ(t)‖2
is

along the direction to the KKT point of the max-margin problem

min
1

2
‖θ‖2

2, s.t. yif (θ;xi) ≥ 1, i ∈ [n].

where ‖θ‖2
2 = ‖W1‖2

F + ‖w2‖2
2.

•This is a nonconvex optimization problem.
•Does gradient flow converge to a global minimizer?

Contributions
Theorem. Suppose that (X,y) ∈ Rn×d× {−1, 1}n is orthogonally
separable, i.e., for all i, i′ ∈ [n],

xTi xi′ > 0, if yi = yi′, xTi xi′ ≤ 0, if yi 6= yi′.

Consider the non-convex subgradient flow applied to the non-convex
problem. Suppose that the initialization is sufficiently close to the
origin. Then, the non-convex subgradient flow converges to the global
optimum of the non-convex problem up to scaling, and equivalently
to an optimal solution of the convex program P ∗cvx .

Convex max-margin problem: The non-convex max-margin prob-
lem is equivalent to the following convex program

P ∗cvx = min

p∑
j=1

(‖uj‖2 + ‖u′j‖2),

s.t. Y
p∑
j=1

DjX(u′j − uj) ≥ 1,

(2Dj − I)Xuj ≥ 0, (2Dj − I)Xu′j ≥ 0,∀j ∈ [p].

Here Y = diag(y).

Theorem. The KKT point (W1,w2,λ) of the non-convex max-
margin problem corresponds to a KKT point of the convex max-
margin problem if and only if λ satisfies

max
u:‖u‖2≤1

|λT (Xu)+| ≤ 1.

Dual problem

•The dual problem is given by
D∗ = max

λ
yTλ s.t. Yλ � 0, max

u:‖u‖2≤1
|λT (XTu)+| ≤ 1.

• Suppose that λ∗ is the optimal dual variable. Then, any optimal
primal variable u belongs to the set

arg max
u:‖u‖2≤1

|(λ∗)T (XTu)+|.
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Ellipsoid
= {Xu : ‖u‖2 ≤ 1}.
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Rectified Ellipsoid Q :=
{(Xu)+ : ‖u‖2 ≤ 1} and
its extreme points (spikes).
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Polar set Q∗ of the
Rectified Ellipsoid: Q∗ =
{λ : maxz∈Q |λTz| ≤ 1}.

Proposition. Suppose that (X,y) is orthogonally separable. Sup-
pose that the KKT point (W1,w2,λ) of the non-convex problem
includes two neurons (w1,i+, w2,i+) and (w1,i−, w2,i−) such that

I(Xw1,i+ > 0) ≥ I(y = 1), I(Xw1,i− > 0) ≥ I(y = −1).

Then, the dual variable λ satisfies
max

u:‖u‖2≤1
|λT (Xu)+| ≤ 1.

In other words, (W1,w2) globally minimizes the non-convex max-
margin problem.

Theorem. Consider the training problem for any dataset. Suppose
that the neural network is scaled at initialization such that
‖w1,i‖2 = |w2,i| for i ∈ [m]. For random initialization, with high
probability, there exists neurons (w1,i,w2,i) such that

sign(yT (Xw1,i)+) = sign(w2,i) = s,

where s ∈ {1,−1}. Consider the subgradient flow applied to the
non-convex problem. Let δ ∈ (0, 1). Suppose that the initialization is
sufficiently close to the origin. Then, there exist T = T (δ) such that

cos∠
(
w1,i(T ), sXTD(w1,i(T ))y

)
≥ 1− δ.

Here D(u) = diag(I(Xu > 0)).
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Trajectories of (Xŵ1,i)+ along the
training dynamics of gradient descent.
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Trajectories of ŵ1,i =
w1,i

‖w1,i‖2 along the
training dynamics of gradient descent.

Conclusion

•We provide a convex formulation of the non-convex max-margin
problem for two-layer ReLU neural networks and uncover a
primal-dual extreme point relation between non-convex subgradient
flow
•Non-convex subgradient flow globally maximizes the margin of
two-layer ReLU networks on orthogonally separable datasets.
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