The Convex Geometry of Backpropagation: Neural Network Gradient Flows Converge to

Yifei Wangl & Mert Pilanci®

IStanford University, Electrical Engineering

-xtreme Points of the Dual Convex Program

INTRODUCTION

Problem setting

e |'wo-layer neural networks with RelLU activation, 1.e.
f(0,X) = (XWy) wy,
where W1 € R w, € R™ and 0 = (W1, wo).

® ‘[raining problem
min L(0) =: ; [(yif(0;x:)),

where [(q) = log(1 + exp(—q)) is the logistic loss.

)

Gradient descent and gradient flow

o ['he gradient descent update 1s

Ot +1)=0(t) —n(t)g(t),
where g(t) € 0°L(0(t)) and 0° represents Clarke subdifferential.

e For gradient flow, the trajectory of the parameter is an arc
0 [O, —I-OO) — O = {(Wl, Wg)‘Wl - Rdxm) W, € Rm}7 which
satisfies that for ¢ > 0, a.e..
d

~0(1) € —°L(8(1)).

Implicit regularization of two-layer ReLU networks

e Assume that there exists time ¢y such that £(0(ty)) < 1, i.e., the
data 1s separated at time .

o Lyu and Li' show that with ¢ — oo, any limiting point of Hg(gft;\b IS

along the direction to the KK'T point of the max-margin problem
1
min§\|9H%, sty f(0;x;) > 1,1 € |nl.
where [|0]]3 = [[Wh[ + [[wal[5.

e '['his is a nonconvex optimization problem.

e Does gradient flow converge to a global minimizer?

CONTRIBUTIONS

Theorem. Suppose that (X, y) € R™ 4 x {—1,1}" is orthogonally
separable, i.e., for all 4,7" € |n],

(x>0, ify =ys, x;xp <0, if y; £y

X =
Consider the non-convex subgradient flow applied to the non-convex
problem. Suppose that the initialization 1s sufficiently close to the
origin. Then, the non-convex subgradient flow converges to the global
optimum of the non-convex problem up to scaling, and equivalently

to an optimal solution of the convex program P .

Convex max-margin problem: The non-convex max-margin prob-
lem 1s equivalent to the following convex program

p
Plo=min ) ([lull>+ [luj]l2),
j=1

p
st. Yy DX(u)—u)) > 1,
j=1
(2D; — I)Xu; > 0, (2D; — I)Xu; > 0,Vj € [p].
Here Y = diag(y).

Theorem. The KKT point (W1, wo, A) of the non-convex max-
margin problem corresponds to a KK'T' point of the convex max-
margin problem if and only if X satisfies

max |[A' (Xu),| < 1.
u:|[uf|p<1

Dual problem

e ['he dual problem 1s given by
D* = mgxyT)\ st. YA =0, max |[A'(X'u).| <1

lliHllHQSl -
e Suppose that A™ is the optimal dual variable. Then, any optimal
primal variable u belongs to the set

arg max |(A*) (X u). .

112”11H2§1

BN

Ellipsoid Rectified Ellipsoid Q := Polar set O* of the
={Xu: ||ul|; <1} {(Xu), : ||[u]ls <1} and Rectified Ellipsoid: Q* =
its extreme points (spikes). {A : maxzeo |A z| < 11.

Proposition. Suppose that (X,y) is orthogonally separable. Sup-
pose that the KKT point (W7, wo, A) of the non-convex problem
includes two neurons (Wi ; ,wo;. ) and (Wy,; ,ws; ) such that

H(XW17Z'+ > O) > H(y = 1), H(XWL?;_ > O) > H(y = —1)
Then, the dual variable A satisfies

max |[A' (Xu),| < 1.
u:|[uf|p<1

[n other words, (W71, ws) globally minimizes the non-convex max-
margin problem.

T heorem. Consider the training problem for any dataset. Suppose
that the neural network is scaled at initialization such that

|W1illo = |way| for 2 € [m|. For random initialization, with high
probability, there exists neurons (W ;, Wo ;) such that

sign(y” (Xw,)4) = sign(ws,;) = s,
where s € {1, —1} Consider the subgradient flow applied to the

non-convex problem. Let 0 € (0,1). Suppose that the initialization is
sufficiently close to the origin. Then, there exist T = T'(d) such that

cos Z (w1 (T), sX ' D(wy,(T))y) >1—4.
Here D(u) = diag(I(Xu > 0)).
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CONCLUSION

e \Ve provide a convex formulation of the non-convex max-margin
problem for two-layer ReLU neural networks and uncover a
primal-dual extreme point relation between non-convex subgradient
How

e Non-convex subgradient flow globally maximizes the margin of
two-layer ReLLU networks on orthogonally separable datasets.

ACKNOWLEDGEMENTS

This work was partially supported by the National Science Foundation under grants
ECCS-2037304, DMS-2134248, and US Army Research Office.

|

ICL




