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Roadmap

The hidden convex optimization landscape of regularized two-layer
ReLU networks1

All globally optimal ReLU neural networks can be found via convex
optimization

Implicit regularization of gradient flow in training two-layer ReLU
networks with no regularization2

Unregularized non-convex gradient flow (i.e., backpropagation)
converges to an optimal solution of our convex program

1Y. Wang, J. Lacotte, M. Pilanci. The Hidden Convex Optimization Landscape of Two-Layer ReLU Neural Networks: an
Exact Characterization of the Optimal Solutions. International Conference on Learning Representations (ICLR), 2022 (oral
presentation).

2Y. Wang, M. Pilanci. The Convex Geometry of Backpropagation: Neural Network Gradient Flows Converge to Extreme
Points of the Dual Convex Program. International Conference on Learning Representations (ICLR), 2022 (poster presentation).
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Neural networks

Neural networks exhibit extraordinary optimization and generalization
abilities.

The nonconvex training problem and nonlinear structure of neural
networks make our understanding difficult.
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Regularized training problem

Data: X ∈ Rn×d label: y ∈ Rn

Consider the regularized training problem:

pnoncvx : = minW1,w2

{
` (
∑m

i=1(Xw1,i)+w2,i,y) + β
2 (‖W1‖2F + ‖w2‖22)

}
.

`(z,y) is assumed to be a convex function of z. (e.g., logistic, hinge,
squared loss)
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Convex optimization formulation

In recent work1, an optimal neural network can be constructed based
on a solution of the convex program

pconvex : = min
(ui,u′i)

p
i=1

{
`
( p∑
i=1

DiX(ui − u′i),y
)

+ β

p∑
i=1

(‖ui‖2 + ‖u′i‖2)
}
,

s.t. (2Di − In)Xui ≥ 0, (2Di − In)Xu′i ≥ 0, i ∈ [p].

where D1, . . . ,Dp are the enumeration of all possible hyperplane
arrangements

{diag(1(Xu > 0))|u ∈ Rd}.

1Mert Pilanci and Tolga Ergen. Neural networks are convex regularizers: Exact polynomial-time convex optimization
formulations for two-layer networks. ICML2020.
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Hyperplane arrangements

n = 3 samples in Rd, d = 2. X =

xT1xT2
xT3

 =

3 3
2 2
1 0

 , y =

y1y2
y3

.

D1 =

1 0 0
0 1 0
0 0 1

, D1X =

3 3
2 2
1 0

.
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Hyperplane arrangements

n = 3 samples in Rd, d = 2. X =

xT1xT2
xT3

 =

3 3
2 2
1 0

 , y =

y1y2
y3

.

D2 =

1 0 0
0 1 0
0 0 0

, D2X =

3 3
2 2
0 0

.
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Hyperplane arrangements

n = 3 samples in Rd, d = 2. X =

xT1xT2
xT3

 =

3 3
2 2
1 0

 , y =

y1y2
y3

.

D3 =

0 0 0
0 0 0
0 0 0

, D3X =

0 0
0 0
0 0

.
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Hyperplane arrangements

n = 3 samples in Rd, d = 2. X =

xT1xT2
xT3

 =

3 3
2 2
1 0

 , y =

y1y2
y3

.

D4 =

0 0 0
0 0 0
0 0 1

, D4X =

0 0
0 0
1 0

.
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Upperbound on the number of hyperplane arrangement
patterns

For X ∈ Rn×d, p = #{1(Xu > 0)|u ∈ Rd} is bounded by

p ≤ 2r

(
e(n− 1)

r

)r
,

where r is the rank of X.1

1Thomas M Cover. Geometrical and statistical properties of systems of linear inequalities with applications in pattern
recognition. IEEE transactions on electronic computers. 1965.
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All global optima

Theorem

Assume that m ≥ m∗, where m∗ ≤ n+ 1 is a critical threshold. All
optimal solution of pnoncvx can be found from the optimal solutions of
pconvex up to permutation and splitting.

X

u1

u2

u3

X

u2

u3

u1

Permutation

X
u1 X

u′1

u′2

u′3

Splitting
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Nonconvex landscape and convex landscape

Comparison of the non-convex landscape (left) and the convex landscape (right).
Toy example with data X = 1, label y = 1 and the `2 loss. The nonconvex
objective is Lβ(u, α) = (1−max{u, 0}α)2 + 1

2 (|u|2 + |α|2). The convex
objective is then Lcβ(v, w) = (1− v + w)2 + (|v|+ |w|) subject to v, w > 0.
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Clarke stationary point

Denote Lβ(θ) as the objective of the nonconvex problem.

Clarke’s subdifferential:

∂◦Lβ(x) = Co {limk→∞∇Lβ (xk) | xk → x, xk ∈ D, limk→∞∇Lβ (xk) exists }

Clarke stationary point:

θ : 0 ∈ ∂◦L(θ),

Any local minimizer of Lβ is a Clarke stationary point.

The limit points of SGD are almost surely Clarke stationary with
respect to the nonconvex problem.
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f(x) = max{x, 0}, ∂◦f(x) =


1, x > 0,

[0, 1], x = 0,

0, x < 0.
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Characterization of Clarke stationary point

Theorem

Suppose that θ = (W1,w2) is a Clarke’s stationary point of the
nonconvex problem. Then, θ corresponds to a global optimum of the
subsampled convex program:

min
(ui,u′i)i∈I

`
(∑
i∈I

DiX(wi −w′i),y
)

+ β
∑
i∈I

(‖wi‖2 + ‖w′i‖2) ,

s.t. (2Di − In)Xwi ≥ 0, (2Di − In)Xw′i ≥ 0, i ∈ I,

where I = {i ∈ [p]| there exists k ∈ [m] s.t. Di = diag(I(Xu ≥ 0))}.
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Convex optimization formulation and gradient flow

Simple algorithms including (stochastic) gradient descent minimize
the training loss.

Gradient descent methods serve as heuristics to solve the convex
program.

What kind of solutions will gradient descent/gradient flow find?
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Implicit regularization

For neural network with structures, gradient flow/gradient descent
has implicit regularization.

Classification problem with logistic loss.

For linear model, the gradient descent maximizes the margin.

arg min
w∈Rd

1

2
‖w‖22, s.t. yiw

Txi ≥ 1, i ∈ [n].
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Problem setting

Two-layer neural networks with ReLU activation, i.e.,

f(θ,X) = (XW1)+w2,

where W1 ∈ Rd×m, w2 ∈ Rm and θ = (W1,w2).

Training problem

min
θ
L(θ) =:

n∑
i=1

l(yif(θ;xi)),

where l(q) = log(1 + exp(−q)) is the logistic loss.
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Gradient descent and gradient flow

The gradient descent takes the update rule

θ(t+ 1) = θ(t)− η(t)g(t),

where g(t) ∈ ∂◦L(θ(t)) and ∂◦ represents the Clarke’s subdifferential.

For gradient flow, the trajectory of the parameter is an arc
θ : [0,+∞)→ Θ = {(W1,w2)|W1 ∈ Rd×m,W2 ∈ Rm}, which
satisfies

d

dt
θ(t) ∈ −∂◦L(θ(t)),

for t ≥ 0, a.e..
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Implicit regularization for homogeneous network

Assume that there exists time t0 such that L(θ(t0)) < 1, i.e., the
data is separated at time t0.

Lyu and Li1 show that with t→∞, any limiting point of θ(t)
‖θ(t)‖2 is

along the direction to the KKT point of the max-margin problem

min
1

2
‖θ‖22, s.t. yif(θ;xi) ≥ 1, i ∈ [n].

where ‖θ‖22 = ‖W1‖2F + ‖w2‖22.

This is a nonconvex optimization problem.

Does gradient flow converge to a global minimizer?

1Lyu, K. and Li, J. (2019). Gradient descent maximizes the margin of homogeneous neural networks.
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Theorem

Suppose that (X,y) ∈ Rn×d × {−1, 1}n is orthogonally separable, i.e., for
all i, i′ ∈ [n],

xTi xi′ > 0, if yi = yi′ ,

xTi xi′ ≤ 0, if yi 6= yi′ .

Consider the non-convex subgradient flow applied to the non-convex
problem. Suppose that the initialization is sufficiently close to the origin
and scaled. Then, the non-convex subgradient flow converges to the global
optimum of the non-convex problem up to scaling.
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Convex max-margin problem

The non-convex max-margin problem is equivalent to the following
convex program

P ∗cvx = min

p∑
j=1

(‖uj‖2 + ‖u′j‖2),

s.t. Y

p∑
j=1

DjX(u′j − uj) ≥ 1,

(2Dj − I)Xuj ≥ 0, (2Dj − I)Xu′j ≥ 0, ∀j ∈ [p].

Here Y = diag(y).
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KKT point

Theorem

The KKT point (W1,w2,λ) of the non-convex max-margin problem
corresponds to a KKT point of the convex max-margin problem if and only
if λ satisfies

max
u:‖u‖2≤1

|λT (Xu)+| ≤ 1.

Equivalently, the variable λ satisfies that for all j ∈ [p],

max
‖u‖2≤1,(2Dj−I)Xu≥0

|λTDjXu| ≤ 1.
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Dual problem

The dual problem is given by

D∗ = max
λ

yTλ s.t. Yλ � 0, max
u:‖u‖2≤1

|λT (XTu)+| ≤ 1.

Suppose that λ∗ is the optimal dual variable. Then, any optimal
primal variable u belongs to the set

arg max
u:‖u‖2≤1

|(λ∗)T (XTu)+|.
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Geometric interpretation

Geometric interpretation of

max
u:‖u‖2≤1

|λT (XTu)+|.
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Geometric Interpretation

Ellipsoid = {Xu : ‖u‖2 ≤ 1}.

2 1 0 1 2

2

1

0

1

2
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Geometric Interpretation

Rectified Ellipsoid Q := {(Xu)+ : ‖u‖2 ≤ 1} and its extreme points
(spikes).

2 1 0 1 2

2

1

0

1

2
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Geometric Interpretation

Polar set Q∗ of the Rectified Ellipsoid:

Q∗ = {λ : max
z∈Q
|λT z| ≤ 1} = {λ : max

u:‖u‖2≤1
|λT (XTu)+| ≤ 1}.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0
y
{ : max

u : |u|2 1|
T(Xu) + | 1}
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Proposition

Suppose that (X,y) is orthogonal separable. Suppose that the KKT point
(W1,w2,λ) of the non-convex problem include two neurons (w1,i+ , w2,i+)
and (w1,i− , w2,i−) such that

I(Xw1,i+ > 0) ≥ I(y = 1), I(Xw1,i− > 0) ≥ I(y = −1).

Then, the dual variable λ satisfies

max
u:‖u‖2≤1

|λT (Xu)+| ≤ 1.

In other words, (W1,w2) globally minimizes the non-convex max-margin
problem.
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Theorem

Consider the training problem for any dataset. Suppose that the neural
network is scaled at initialization such that ‖w1,i‖2 = |w2,i| for i ∈ [m].
Consider the subgradient flow applied to the non-convex problem. Let
δ ∈ (0, 1). Suppose that the initialization is sufficiently close to the origin.
For random initialization and s ∈ {−1, 1}, there exist T = T (δ) and
neuron (w1,i, w2,i) such that

cos∠
(
w1,i(T ), sXTD(w1,i(T ))y

)
≥ 1− δ.

Here D(u) = diag(I(Xu > 0)).
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Conclusion

The global optima of the non-convex training problem is given by the
optimal set of a cone-constrained convex program.

Non-convex subgradient flow of the logistic loss can globally
maximize the margin of two-layer ReLU networks on orthogonally
separable datasets.
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Future work

Characterize the globally optimal set of deep neural networks.

Study the generalization property of the global optima.

Extend the analysis to gradient descent training dynamics.

Extend the analysis to linear separable datasets.
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