INTRODUCTION

Two layer neural network optimization problem with ReLU activations and *m* hidden neurons:

 $\mathcal{P}_m^* = \min_{\theta \in \Theta_m} \left\{ \mathcal{L}_\beta(\theta) := \ell \left(\sum_{i=1}^m \sigma(Xu_i)\alpha_i \right) + \frac{\beta}{2} \sum_{i=1}^m \left(\|u_i\|_2^2 + \alpha_i^2 \right) \right\}.$

with data matrix $X \in \mathbb{R}^{n \times d}$, $\sigma(z) = (z)_+ = \max\{z, 0\}$, and ℓ any convex loss function.

Equivalent convex formulation: Convex program with group- ℓ_2 regularization:

$$\mathcal{P}_c^* := \min_{W \in \mathcal{W}} \left\{ \mathcal{L}_\beta^c(W) := \ell \left(\sum_{i=1}^{2p} D_i X w_i \right) + \beta \cdot \sum_{i=1}^{2p} \|w_i\|_2 \right\},\$$

where

- Diagonal matrices $D_1, \ldots, D_p \in \mathbb{R}^{n \times n}$ = all possible values of diag $(\mathbf{1}(Xu \ge 0))$ for $u \in \mathbb{R}^d$
- Convex cones partition $C_i = \{ u \in \mathbb{R}^d | (2D_i I)Xu \ge 0 \}$
- Convex feasible set $\mathcal{W} := \{W = (w_1, \dots, w_{2p}) \mid w_i \in C_i\}$
- Convex set of all optimal solutions \mathcal{W}^*

Important result from recent literature:

 $\mathcal{P}_m^* = \mathcal{P}_c^*$ for $m \ge m^*$ where $m^* \le n+1$

(Q1) How to compute optimal set $\Theta_m^* = \{\theta \in \Theta_m \mid \mathcal{L}_\beta(\theta) = \mathcal{P}_m^*\}$?

(Q2) Can we map one-to-one \mathcal{W}^* and Θ_m^* ?

REGULARIZATION, SPARSITY AND MINIMAL NEURAL NETS

If a neural net $\theta \in \Theta_m$ is scaled (i.e., $||u_i|| = |\alpha_i| \forall i$) and each convex cone C_i contains at most a single neuron (u_i, α_i) of θ , then the neural net θ has a **minimal** representation. If a neural net $\theta \in \Theta_m$ is scaled (i.e., $||u_i|| = |\alpha_i| \forall i$) and if for each convex cone C_i , all neurons of θ within C_i are positively collinear, then the neural net is **nearly** minimal. Intuitively,

- ReLU activation partitions space into cones C_i
- loss function is locally linear over each cone
- then, regularization promotes sparsity, i.e., a single neuron per cone (minimal neural net) is good enough

Yifei Wang^{1,*}, Jonathan Lacotte^{1,*} & Mert Pilanci¹

¹Stanford University, Electrical Engineering *Equal contributions.

CONTRIBUTIONS

Lemma. Let $W = (w_1, \ldots, w_{2p}) \in \mathcal{W}^*$, denote by $\mathcal{I} =$ $\{i_1,\ldots,i_{\|W\|_0}\} \subset [2p]$ the indices such that $w_{i_i}^* \neq 0$, and define for $i_j \in \mathcal{I}$:

$$(u_j, \alpha_j) = \left(\frac{v_j}{\sqrt{\|w_{i_j}\|_2}}, where \gamma_i = 1 \text{ if } i \leq p \text{ and } \gamma_i = -1 \right)$$

$$\theta = \{(u_i, \alpha_i)\}_{i=1}^{\|W\|_0}$$
 is optimal and m

We denote the above mapping by ψ and define $\Theta_m^{\text{cvx}} = \psi(\mathcal{W}_m^*)$

where $\mathcal{W}_m^* = \text{convex optimal solutions with cardinality less than } m$.

Given a neuron (u, α) , a collection $\{(u_j, \alpha_j)\}_{j=1}^k$ is a splitting of (u, α) if $(u_j, \alpha_j) = (\sqrt{\gamma_j} u, \sqrt{\gamma_j} \alpha)$ for some $\gamma_j \ge 0$ and $\sum_{j=1}^k \gamma_j = 0$

Let $\tilde{\Theta}_m^{\text{cvx}}$ be the set of split neural nets generated from Θ_m^{cvx} .

Theorem.

• Let $m^* = \min_{W \in \mathcal{W}^*} ||W||_0$. Then, we have $m^* \leq n+1$.

• For $m \ge m^*$, we have

 $\Theta_m^* = \tilde{\Theta}_m^{\text{CVX}}$

Figure 1:Diagram of relationships between Θ_m^* , $\widetilde{\Theta}_m^{cvx}$, Θ_m^{cvx} and \mathcal{W}_m^* .

The Hidden Convex Optimization Landscape of Regularized Two-layer ReLU Networks: an exact characterization of optimal solutions

$$\gamma_{i_j} \sqrt{\|w_{i_j}\|_2} \big)$$

1 if i > p. Then, the neural net minimal.

Theorem. Given any optimal neural net $\theta \in \Theta_m^*$, we can explicitly transform it into a minimal neural net $\theta^{min} \in \Theta_m^*$. Furthermore, there exists φ such that $\varphi(\theta^{min}) \in \mathcal{W}_m^*$ and $\varphi(\psi(\theta^{min})) = \theta^{min}$

Recall that limit points of SGD are almost surely Clarke stationary with respect to \mathcal{L}_{β} . Theorem.

- function is strictly decreasing.

one-to-one

- subsampling?
- optimal solutions?

ACKNOWLEDGEMENTS

This work was partially supported by the National Science Foundation under grants ECCS-2037304, DMS-2134248, and the Army Research Office.

• Any Clarke stationary neural net θ of the non-convex loss function is a nearly minimal neural net. Consequently, any local minimum of \mathcal{L}_{β} is nearly minimal.

• Let $\theta \in \Theta_m$ be any neural net. There exists a continuous path in Θ_m from θ to a **nearly minimal neural net** along which the **loss**

CONCLUSION

• Sets of convex and non-convex optimal solutions can be mapped

• How to solve efficiently (approximately?) convex optimization program to construct good neural nets? Convex cones

• How to relate solutions found specifically by SGD to convex

