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Introduction
Two layer neural network optimization problem with ReLU
activations and m hidden neurons::

P∗
m = min

θ∈Θm

{
Lβ(θ) : = ℓ

( m∑
i=1

σ(Xui)αi
)
+
β

2

m∑
i=1

(
∥ui∥22 + α2

i

)}
.

with data matrix X ∈ Rn×d, σ(z) = (z)+ = max{z, 0}, and ℓ any
convex loss function.
Equivalent convex formulation: Convex program with group-ℓ2
regularization:

P∗
c : = min

W∈W

{
Lc
β(W ) : = ℓ

( 2p∑
i=1

DiXwi

)
+ β ·

2p∑
i=1

∥wi∥2
}
,

where

•Diagonal matrices D1, . . . , Dp ∈ Rn×n = all possible values of
diag(1(Xu ⩾ 0)) for u ∈ Rd

•Convex cones partition Ci = {u ∈ Rd|(2Di − I)Xu ⩾ 0}
•Convex feasible set W : = {W = (w1, . . . , w2p) | wi ∈ Ci}
•Convex set of all optimal solutions W∗

Important result from recent literature:
P∗
m = P∗

c for m ⩾ m∗ where m∗ ⩽ n + 1

(Q1) How to compute optimal set Θ∗
m = {θ ∈ Θm | Lβ(θ) = P∗

m} ?

(Q2) Can we map one-to-one W∗ and Θ∗
m?

Regularization, sparsity and minimal neural nets

If a neural net θ ∈ Θm is scaled (i.e., ∥ui∥ = |αi| ∀ i) and each convex
cone Cj contains at most a single neuron (ui, αi) of θ, then the neural
net θ has a minimal representation. If a neural net θ ∈ Θm is scaled
(i.e., ∥ui∥ = |αi| ∀ i) and if for each convex cone Cj, all neurons
of θ within Cj are positively colinear, then the neural net is nearly
minimal. Intuitively,

•ReLU activation partitions space into cones Ci
• loss function is locally linear over each cone
• then, regularization promotes sparsity, i.e., a single neuron per cone

(minimal neural net) is good enough

Contributions
Lemma. Let W = (w1, . . . , w2p) ∈ W∗, denote by I =
{i1, . . . , i∥W∥0} ⊂ [2p] the indices such that w∗

ij
̸= 0, and define

for ij ∈ I :

(uj, αj) =
( wij√

∥wij∥2
, γij

√
∥wij∥2

)
where γi = 1 if i ⩽ p and γi = −1 if i > p. Then, the neural net
θ = {(ui, αi)}∥W∥0

i=1 is optimal and minimal.

We denote the above mapping by ψ and define
Θcvx
m = ψ(W∗

m)

where W∗
m = convex optimal solutions with cardinality less than m.

Given a neuron (u, α), a collection {(uj, αj)}kj=1 is a splitting of
(u, α) if (uj, αj) = (

√
γju,

√
γjα) for some γj ⩾ 0 and

∑k
j=1 γj =

1.

Let Θ̃cvx
m be the set of split neural nets generated from Θcvx

m .

Theorem.

•Let m∗ = minW∈W∗ ∥W∥0. Then, we have m∗ ⩽ n + 1.
•For m ⩾ m∗, we have

Θ∗
m = Θ̃cvx

m

Figure 1:Diagram of relationships between Θ∗
m, Θ̃cvx

m , Θcvx
m and W∗

m.

Theorem. Given any optimal neural net θ ∈ Θ∗
m, we can explicitly

transform it into a minimal neural net θmin ∈ Θ∗
m. Furthermore, there

exists φ such that φ(θmin) ∈ W∗
m and φ(ψ(θmin)) = θmin

Recall that limit points of SGD are almost surely Clarke stationary with
respect to Lβ.
Theorem.

•Any Clarke stationary neural net θ of the non-convex loss
function is a nearly minimal neural net. Consequently, any
local minimum of Lβ is nearly minimal.

• Let θ ∈ Θm be any neural net. There exists a continuous path in Θm

from θ to a nearly minimal neural net along which the loss
function is strictly decreasing.

Conclusion

• Sets of convex and non-convex optimal solutions can be mapped
one-to-one

•How to solve efficiently (approximately?) convex optimization
program to construct good neural nets? Convex cones
subsampling?

•How to relate solutions found specifically by SGD to convex
optimal solutions?
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