The Hidden Convex Optimization Landscape of Regularized Two-layer ReLU Networks: an exact characterization of optimal solutions
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INTRODUCTION

Two layer neural network optimization problem with RelLU
activations and m hidden neurons::
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with data matrix X & ]R”Xd, o(z) = (). = max{z,0}, and £ any
convex loss tunction.
Equivalent convex formulation: Convex program with group-£,

regularization:
2p 2p
Pj::vl;/neigv {EC —Z(Z;Dz‘sz‘) +5'Z;Hwi”2}v
1= 1=
where

e Diagonal matrices Dy, ..., D, € R"*" = all possible values of
diag(1(Xu > 0)) for u € R?

e Convex cones partition C; = {u € RY(2D; — INXu > 0}

o Convex feasible set W i = {W = (wy, ..., wqy) | w; € Cj}

e Convex set of all optimal solutions W*

Important result from recent literature:

Pr =P torm = m* where m* <n+1

(Q1) How to compute optimal set O, ={0 € O,, | L3(0) =P} 7
(Q2) Can we map one-to-one W* and O ?

REGULARIZATION, SPARSITY AND MINIMAL NEURAL NETS
[f a neural net @ € O, is scaled (i.e., [|u;|| = |a;| Vi) and each convex

cone C'; contains at most a single neuron (u;, ;) of 8, then the neural
net  has a minimal representation. If a neural net 8 € 0,,, is scaled

(ie, [lugll

of 6 within C; are positively colinear, then the neural net is nearly

= |a;| V) and if for each convex cone C;, all neurons

minimal. Intuitively,

e ReLLU activation partitions space into cones C}

e [oss function is locally linear over each cone

e then, regularization promotes sparsity, 1.e., a single neuron per cone
(minimal neural net) is good enough

CONTRIBUTIONS
Lemma. Let W = (wy,...,wy) € W?* denote by T =
L, -5 9wt € [2p) the indices such that w;, # 0, and define
for ij el

(uj>aj) — (\/W?W@\/Hw%‘b)
where v; = 1 1f 1 < pand vy, = —1 it 2 > p. Then, the neural net
0 = {(u, ozz)} "o is optimal and minimal

We denote the above mapping by © and define
O =v(W,)

where VW = convex optimal solutions with cardinality less than m.

k
j=1

k
(\/V5Uy A/7jcx) for some ;5 = 0 and p 2y =

Given a neuron (u,«), a collection {(u;, ;) is a splitting of

(uv&) if (Uj;@j) -
l.

Let O be the set of split neural nets generated from ¢

Theorem.

*<n+ 1

o Let m* = minyew- ||W|lp. Then, we have m

e for m > m™, we have
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Figure 1:Diagram of relationships between O |

Theorem. Given any optimal neural net 6 € ©7 we can explicitly
transform it into a minimal neural net """ € ©7 . Furthermore, there

exists (o such that o(0™") € W* and o(1p(0™")) = g™

Recall that limit points of SGD are almost surely Clarke stationary with
respect to Lg.
Theorem.

e Any Clarke stationary neural net 6 of the non-convex loss
function is a nearly minimal neural net. Consequently, any
local minimum of L3 is nearly minimal.

ol ct § € O, be any neural net. There exists a continuous path in ©,,
from 6 to a nearly minimal neural net along which the loss
function is strictly decreasing.

CONCLUSION

e Scts of convex and non-convex optimal solutions can be mapped
one-to-one

e How to solve efficiently (approximately?) convex optimization

program to construct good neural nets? Convex cones
subsampling”

e How to relate solutions found specifically by SGD to convex
optimal solutions?
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