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Introduction

Data matrix X ∈ Rn×d . Consider two layer neural network optimization
problem with ReLU activations and m hidden neurons:

P∗
m = min

θ∈Θm

{
Lβ(θ) := ℓ

(
m∑
i=1

σ(Xui )αi

)
+
β

2

m∑
i=1

(
∥ui∥22 + α2

i

)}
.

Here, σ(z) = (z)+ = max{z , 0}, and ℓ any convex loss function.

Q.1: How to compute optimal set Θ∗
m = {θ ∈ Θm | Lβ(θ) = P∗

m} ?



Equivalent convex formulation
Convex program with group-ℓ2 regularization:

P∗
c : = min

W∈W

{
Lc
β(W ) := ℓ

( 2p∑
i=1

DiXwi

)
+ β ·

2p∑
i=1

∥wi∥2
}
,

Here,

• Diagonal matrices D1, . . . ,Dp ∈ Rn×n = all possible values of
diag(1(Xu ⩾ 0)) for u ∈ Rd

• Convex cones partition Ci = {u ∈ Rd |(2Di − I )Xu ⩾ 0}
• Convex feasible set W : = {W = (w1, . . . ,w2p) | wi ∈ Ci}
• Convex set of all optimal solutions W∗

Important result from recent literature:

P∗
m = P∗

c for m ⩾ m∗ where m∗ ⩽ n + 1

Q.2: Can we map one-to-one W∗ and Θ∗
m?



Regularization, sparsity and minimal neural nets

Definition

• If a neural net θ ∈ Θm is scaled (i.e., ∥ui∥ = |αi | ∀ i) and each
convex cone Cj contains at most a single neuron (ui , αi ) of θ, then
the neural net θ has a minimal representation.

• If a neural net θ ∈ Θm is scaled (i.e., ∥ui∥ = |αi | ∀ i) and if for each
convex cone Cj , all neurons of θ within Cj are positively colinear,
then the neural net is nearly minimal.

Intuitively,

• ReLU activation partitions space into cones Ci

• loss function is locally linear over each cone

• then, regularization promotes sparsity, i.e., a single neuron per cone
(minimal neural net) is good enough



Convex optimal solutions and minimal neural nets

Lemma
Let W = (w1, . . . ,w2p) ∈ W∗, denote by I = {i1, . . . , i∥W∥0

} ⊂ [2p] the
indices such that w∗

ij
̸= 0, and define for ij ∈ I:

(uj , αj) =
( wij√

∥wij
∥2
, γij
√
∥wij∥2

)
where γi = 1 if i ⩽ p and γi = −1 if i > p

Then, the neural net θ = {(ui , αi )}∥W∥0

i=1 is optimal and minimal.

We denote the above mapping by ψ and define

Θcvx
m = ψ(W∗

m)

where W∗
m = convex optimal solutions with cardinality less than m.



Mapping from W∗
m to Θ∗

m

Given a neuron (u, α), a collection {(uj , αj)}kj=1 is a splitting of (u, α) if

(uj , αj) = (
√
γju,

√
γjα) for some γj ⩾ 0 and

∑k
j=1 γj = 1.

Let Θ̃cvx
m be the set of split neural nets generated from Θcvx

m .

Theorem

• Let m∗ = minW∈W∗ ∥W ∥0. Then, we have m∗ ⩽ n + 1.

• For m ⩾ m∗, we have

Θ∗
m = Θ̃cvx

m



Relationships between optimal sets

Figure: Diagram of relationships between Θ∗
m, Θ̃

cvx
m m, Θcvx

m and W∗
m.

Theorem
Given any optimal neural net θ ∈ Θ∗

m, we can explicitly transform it into
a minimal neural net θmin ∈ Θ∗

m. Furthermore, there exists φ such that
φ(θmin) ∈ W∗

m and φ(ψ(θmin)) = θmin
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Local minima and nearly minimal nets

Recall that limit points of SGD are almost surely Clarke stationary with
respect to Lβ .

Theorem

• Any Clarke stationary neural net θ of the non-convex loss
function is a nearly minimal neural net. Consequently, any local
minimum of Lβ is nearly minimal.

• Let θ ∈ Θm be any neural net. There exists a continuous path in
Θm from θ to a nearly minimal neural net along which the loss
function is strictly decreasing.



Conclusion

• Sets of convex and non-convex optimal solutions can be mapped
one-to-one

• How to solve efficiently (approximately?) convex optimization
program to construct good neural nets? Convex cones subsampling?

• How to relate solutions found specifically by SGD to convex optimal
solutions?


