THE HIDDEN CONVEX OPTIMIZATION LANDSCAPE OF REGULARIZED TWO-LAYER RELU NETWORKS: AN EXACT CHARACTERIZATION OF OPTIMAL SOLUTIONS

▲ロト ▲周ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Yifei Wang¹, Jonathan Lacotte¹ & Mert Pilanci Department of Electrical Engineering Stanford University

Introduction

Data matrix $X \in \mathbb{R}^{n \times d}$. Consider two layer neural network optimization problem with ReLU activations and *m* hidden neurons:

$$\mathcal{P}_m^* = \min_{\theta \in \Theta_m} \left\{ \mathcal{L}_\beta(\theta) := \ell \left(\sum_{i=1}^m \sigma(Xu_i) \alpha_i \right) + \frac{\beta}{2} \sum_{i=1}^m \left(\|u_i\|_2^2 + \alpha_i^2 \right) \right\}$$

Here, $\sigma(z) = (z)_+ = \max\{z, 0\}$, and ℓ any convex loss function.

Q.1: How to compute optimal set $\Theta_m^* = \{\theta \in \Theta_m \mid \mathcal{L}_\beta(\theta) = \mathcal{P}_m^*\}$?

ション ふゆ アメリア メリア しょうくしゃ

Equivalent convex formulation

Convex program with group- ℓ_2 regularization:

$$\mathcal{P}_c^* := \min_{W \in \mathcal{W}} \left\{ \mathcal{L}_\beta^c(W) := \ell \left(\sum_{i=1}^{2p} D_i X w_i \right) + \beta \cdot \sum_{i=1}^{2p} \|w_i\|_2 \right\},\$$

Here,

- Diagonal matrices D₁,..., D_p ∈ ℝ^{n×n} = all possible values of diag(1(Xu ≥ 0)) for u ∈ ℝ^d
- Convex cones partition $C_i = \{u \in \mathbb{R}^d | (2D_i I)Xu \ge 0\}$
- Convex feasible set $\mathcal{W} := \{W = (w_1, \dots, w_{2p}) \mid w_i \in C_i\}$
- Convex set of all optimal solutions \mathcal{W}^\ast

Important result from recent literature:

$${\mathcal P}_m^* = {\mathcal P}_c^*$$
 for $m \geqslant m^*$ where $m^* \leqslant n+1$

Q.2: Can we map one-to-one \mathcal{W}^* and Θ_m^* ?

ション ふゆ アメリア メリア しょうくしゃ

Regularization, sparsity and minimal neural nets

Definition

- If a neural net θ ∈ Θ_m is scaled (i.e., ||u_i|| = |α_i|∀i) and each convex cone C_j contains at most a single neuron (u_i, α_i) of θ, then the neural net θ has a minimal representation.
- If a neural net θ ∈ Θ_m is scaled (i.e., ||u_i|| = |α_i|∀i) and if for each convex cone C_j, all neurons of θ within C_j are positively colinear, then the neural net is nearly minimal.

Intuitively,

- ReLU activation partitions space into cones C_i
- loss function is locally linear over each cone
- then, regularization promotes sparsity, i.e., a single neuron per cone (minimal neural net) is good enough

Convex optimal solutions and minimal neural nets

Lemma

Let $W = (w_1, \ldots, w_{2p}) \in \mathcal{W}^*$, denote by $\mathcal{I} = \{i_1, \ldots, i_{||W||_0}\} \subset [2p]$ the indices such that $w_{i_i}^* \neq 0$, and define for $i_j \in \mathcal{I}$:

$$(u_j, \alpha_j) = \left(\frac{w_{i_j}}{\sqrt{\|w_{i_j}\|_2}}, \gamma_{i_j}\sqrt{\|w_{i_j}\|_2}\right)$$
 where $\gamma_i = 1$ if $i \leq p$ and $\gamma_i = -1$ if $i > p$

Then, the neural net $\theta = \{(u_i, \alpha_i)\}_{i=1}^{\|W\|_0}$ is optimal and minimal. We denote the above mapping by ψ and define

$$\Theta_m^{\mathrm{cvx}} = \psi(\mathcal{W}_m^*)$$

where $\mathcal{W}_m^* = \text{convex optimal solutions with cardinality less than } m$.

Mapping from \mathcal{W}_m^* to Θ_m^*

Given a neuron (u, α) , a collection $\{(u_j, \alpha_j)\}_{j=1}^k$ is a **splitting** of (u, α) if $(u_j, \alpha_j) = (\sqrt{\gamma_j}u, \sqrt{\gamma_j}\alpha)$ for some $\gamma_j \ge 0$ and $\sum_{j=1}^k \gamma_j = 1$. Let $\tilde{\Theta}_m^{\text{cvx}}$ be the set of split neural nets generated from Θ_m^{cvx} .

Theorem

• Let $m^* = \min_{W \in \mathcal{W}^*} \|W\|_0$. Then, we have $m^* \leq n+1$.

• For
$$m \ge m^*$$
, we have

$$\Theta_m^* = \tilde{\Theta}_m^{\rm cvx}$$

ション ふゆ アメリア メリア しょうくしゃ

Relationships between optimal sets

Figure: Diagram of relationships between Θ_m^* , $\widetilde{\Theta}_m^{cvx}$ m, Θ_m^{cvx} and \mathcal{W}_m^* .

Theorem

Given any optimal neural net $\theta \in \Theta_m^*$, we can explicitly transform it into a minimal neural net $\theta^{\min} \in \Theta_m^*$. Furthermore, there exists φ such that $\varphi(\theta^{\min}) \in \mathcal{W}_m^*$ and $\varphi(\psi(\theta^{\min})) = \theta^{\min}$

Relationships between optimal sets

Figure: Diagram of relationships between Θ_m^* , $\widetilde{\Theta}_m^{cvx}$, Θ_m^{cvx} and \mathcal{W}_m^* .

▲ロ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ▶ ● ○ ○ ○

Local minima and nearly minimal nets

Recall that limit points of SGD are almost surely Clarke stationary with respect to $\mathcal{L}_{\beta}.$

Theorem

- Any Clarke stationary neural net θ of the non-convex loss function is a nearly minimal neural net. Consequently, any local minimum of \mathcal{L}_{β} is nearly minimal.
- Let $\theta \in \Theta_m$ be any neural net. There exists a continuous path in Θ_m from θ to a nearly minimal neural net along which the loss function is strictly decreasing.

Conclusion

- Sets of convex and non-convex optimal solutions can be mapped one-to-one
- How to solve efficiently (approximately?) convex optimization program to construct good neural nets? Convex cones subsampling?
- How to relate solutions found specifically by SGD to convex optimal solutions?