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Introduction

Data matrix X € R"*?. Consider two layer neural network optimization
problem with RelLU activations and m hidden neurons:

P;:erg(ian {cﬁ(o) :—K(; (Xu;) I> ﬁz HU/||2+O‘ } :

m

Here, 0(z) = (z)+ = max{z,0}, and ¢ any convex loss function.

‘Q.l: How to compute optimal set ©% = {0 € ©,, | L5(0) = Py} ?‘




Equivalent convex formulation
Convex program with group-f, regularization:

Pri= vwelgv {ﬁg(W) :—E(ip:D,-XW,-) +5’§p:||wi”2}a
i—1 i—1

Here,

* Diagonal matrices Dy, ..., D, € R™" = all possible values of
diag(1(Xu > 0)) for u € RY

* Convex cones partition C; = {u € R9|(2D; — 1) Xu > 0}
* Convex feasible set W:={W = (wy,...,wpp) | w; € G}
® Convex set of all optimal solutions W*

Important result from recent literature:

‘7);:73: for m > m* wherem*<n+1‘

‘Q.2: Can we map one-to-one W* and @*m?‘




Regularization, sparsity and minimal neural nets

Definition

* If a neural net 6 € ©,, is scaled (i.e., |uj|| = |o| Vi) and each
convex cone C; contains at most a single neuron (u;, a;) of 6, then
the neural net # has a minimal representation.

* If a neural net 6 € ©,, is scaled (i.e., ||ui|| = |a;| Vi) and if for each
convex cone C;, all neurons of 8 within C; are positively colinear,
then the neural net is nearly minimal.

Intuitively,
® ReLU activation partitions space into cones C;

® |oss function is locally linear over each cone

® then, regularization promotes sparsity, i.e., a single neuron per cone
(minimal neural net) is good enough



Convex optimal solutions and minimal neural nets

Lemma
Let W = (wi,...,wap) € W*, denote by T = {ir,...,ijw|,} C [2p] the
indices such that W,-j‘ # 0, and define for i € I:

(yj, o) = (\/%,Véw/ﬂw,}ﬂz) where y; =1 ifi<pand~ =-1ifi>p
J

Then, the neural net 8 = {(u;, ai)}!'\:\ﬂ{llo is optimal and minimal.

We denote the above mapping by ¢ and define
05, =v(Wy,)

where W), = convex optimal solutions with cardinality less than m.



Mapping from W to O}

Given a neuron (u, @), a collection {(uj,aj)}j-‘zl is a splitting of (u, @) if

k
(uj, o) = (Aju, \/j) for some ;> 0and >0, 75 = 1.
Let ©5* be the set of split neural nets generated from ©%*.

Theorem

* Let m* = minwew- ||W|lo. Then, we have m* < n+ 1.

* for m > m*, we have
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Relationships between optimal sets
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Figure: Diagram of relationships between ©% , (:)f,‘,’xm, O and W

Theorem
Given any optimal neural net 6 € ©},, we can explicitly transform it into
a minimal neural net ™" € ©% . Furthermore, there exists ¢ such that

PO™") € Wy, and p(i(0m) = o
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Local minima and nearly minimal nets

Recall that limit points of SGD are almost surely Clarke stationary with
respect to Lg.

Theorem

* Any Clarke stationary neural net 6 of the non-convex loss
function is a nearly minimal neural net. Consequently, any local
minimum of Lz is nearly minimal.

® Let O € ©p, be any neural net. There exists a continuous path in
©,, from 0 to a nearly minimal neural net along which the loss
function is strictly decreasing.



Conclusion

® Sets of convex and non-convex optimal solutions can be mapped
one-to-one

* How to solve efficiently (approximately?) convex optimization
program to construct good neural nets? Convex cones subsampling?

® How to relate solutions found specifically by SGD to convex optimal
solutions?



