Adaptive Newton Sketch: Linear-time Optimization with Quadratic Convergence and Effective Hessian Dimensionality

Jonathan Lacotte, Yifei Wang, Mert Pilanci
lacotte@stanford.edu, wangyf18@stanford.edu, pilanci@stanford.edu
Department of Electrical Engineering, Stanford University

Introduction
Composite optimization problem
$x^{*}:=\underset{x \in \mathbb{R}^{d}}{\operatorname{argmin}}\left\{f(x):=f_{0}(x)+g(x)\right\}$
(i) $\frac{f_{0}, g: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}} \text { twice differentiable convex functions, where }}{}$ $\mathbb{R}=\mathbb{R} \cup\{+\infty\}$.
(ii) Forming Hessian $\nabla^{2} f_{0}(x)$ is prohibitively expensive, while a small computational cost.
(iii) g is μ-strongly convex, i.e., $\nabla^{2} g(x) \succeq \mu I_{d}$

Example of the Hessian matrix square-root
Example of the Hessian matrix square-root
$f_{0}(x)=\sum_{i=1}^{m} \ell_{i}\left(a_{i}^{\top} x\right), \nabla^{2} f_{0}(x)^{1 / 2}:=\operatorname{diag}\left(\ell_{i}^{\prime \prime}\left(a i_{i}^{\top} x\right)^{1 / 2}\right) A$ Examples of regularization functions g

- graph regularization $g(x)=\frac{1}{2} \sum_{i, j \in E}\left(x_{i}-x_{j}\right)^{2}$,
- ℓ_{p}-norms with $p>$
- approximations of ℓ_{1}-norm.

Large-scale optimization problems of this form are very common
arge-scations, due to the increasing dimensionality of data (es.
genomics, medicine, high-dimensional models)
Comparison between first and second-order methods

- Newton's method enjoys superior convergence in both the-
ory and practice compared to first-order methods.
- Optimal choice of first-order methods' parameters depend on unknown strong convexity and smoothness constants of problem.
- When f is self-concordant, then Newton's method is invarialing and coordinate transformation.
Newton's method. The update rule follows

$$
H(x):=\nabla^{2} f_{0}(x)+\nabla^{2} g(x),
$$

$$
\begin{aligned}
& H(x):=\nabla^{2} f_{0}(x)+\nabla^{2} g(x), \\
& x_{\mathrm{ne}}:=x-s H(x)^{-1} \nabla f(x) .
\end{aligned}
$$

Computational issue with Newton's method: per-iteration comlexity scaling as $\mathcal{O}\left(n d^{2}\right)$
Newton Sketch. Our work builds on a generic method called Newton Sketch, which utilizes a random embedding of the Hessian
ven an embedding matrix $S \in \mathbb{R}^{m \times n}$,

$$
H_{S}(x):=\left(\nabla^{2} f_{0}(x)^{\frac{1}{2}}\right)^{\top} S^{\top} S \nabla^{2} f_{0}(x)^{\frac{1}{2}}+\nabla^{2} g(x),
$$

$$
\begin{aligned}
& x_{\text {nsk }}:=x-s H_{S}(x)^{-1} \nabla f(x) .
\end{aligned}
$$

Here m is a sketch size such that $m \ll n$
For classial embeddings (e.g., sub-Gaussian, randomized orthogsketch to achieve a linear-quadratic convergence rate with high probability (w.h.p.).

Our contribution
i) under the assumption that g is μ-strongly convex, the scaling $m \leftrightharpoons \bar{d}_{\mu} \log \left(\bar{d}_{\mu}\right) / \delta$ is sufficient for the Newton sketch to achieve a δ-accurate solution at a quadratic convergence rate with high probability. Here we define

$$
\bar{d}_{\mu}:=\sup _{x \in S\left(x_{0}\right)} d_{\mu}(x),
$$

where x_{0} is the intial point of our algorithm, $\mathcal{S}\left(x_{0}\right)$ is the sublevel set of f at x_{0}, an $d_{\mu}(x):=\operatorname{trace}\left(\nabla^{2} f_{0}(x)\left(\nabla^{2} f_{0}(x)+\mu I_{d}\right)^{-1}\right)$
is the local effective dimension. Importantly, it always holds that $d_{\mu}(x) \leqslant \bar{d}_{\mu} \leqslant \min \{n, d\}=d$ and it can substantially smaller than the ambient dimension d.
(ii) propose an adaptive sketch size version of the effective dimension Newton sketch. Importantly, we prove that the adaptive sketch size scales in terms of \bar{d}_{μ}. Furthermore, our adaptive method offers the possibility to the user to choose the convergence rate, from linear to quadratic.
(iii) Achieve state-of-the-art computational complexity to achieve a δ-accurate solution

$$
\mathcal{O}\left(n d \log \left(\bar{d}_{e}\right) \log \left(\frac{d}{\delta}\right) \log \left(\log \left(\frac{d}{\delta}\right)\right)\right)
$$

Computational complexity comparisons

Algorithm	Time complexity	Sketch size	Proba.
Accelerated SVRG	$(n d+d \sqrt{k \bar{n}}) \log (1 / \delta)$	-	1
Newton method	$n d^{2} \log (\log (1 / \delta))$	-	1
Newton sketch	$n d \log (d) \log (1 / \delta)$	d	$1-\frac{1}{d}$
Adaptive	$n d \log \left(\bar{d}_{e}\right) \log \left(\frac{d}{\delta}\right) \log \left(\log \left(\frac{d}{\delta}\right)\right)$	$\frac{d}{\delta}\left(\bar{d}_{\mathrm{e}}+\log \left(\frac{d}{\bar{\delta}}\right) \log \left(\bar{d}_{\mathrm{e}}\right)\right)$	$1-\frac{1}{d_{e}}$
Newton sketch	$n d$		

Notations and background
A closed convex function $\varphi: \mathbb{R}^{d} \rightarrow \overline{\mathbb{R}}$ is self-concordant if $\left|\varphi^{\prime \prime \prime}(x)\right| \leqslant 2\left(\varphi^{\prime \prime \prime}(x)\right)^{3 / 2}$. This encompasses many widely used functions in practice, e.g., linear, quadratic, negative logarithm. Passes many widely used functions in practice, e.g., inear, quadratic, 1 negaive logatimion.
The choice of the sketching matrix $S \in \mathbb{R}^{m \times n}$ is critical for statistical and computational performances. Typical choices include the subsampled randomized Hadamard transform (SRHT) and the sparse Johnson-Lindenstrauss transform (SJLT).

Preliminaries
Define the Newton and approximate Newton decrements as

$$
\begin{aligned}
& \lambda_{f}(x):=\left(\nabla f(x)^{\top} H(x)^{-1} \nabla f(x)\right)^{\frac{1}{2}} \\
& \tilde{\lambda}_{f}(x):=\left(\nabla f(x)^{\top} H_{S}(x)^{-1} \nabla f(x)\right)^{\frac{1}{2}}
\end{aligned}
$$

For a self-concordant function f, the optimality gap at any point $x \in \operatorname{dom} f$ is bounded in terms
of the Newton decrement as of the Newton decrement as

Optimality gap based on approximate Newton decrements tees,
$\mathcal{E}_{x, m, \varepsilon}:=\left\{\left(1-\frac{\varepsilon}{2}\right) I_{d} \preceq C_{S} \preceq\left(1+\frac{\varepsilon}{2}\right) I_{d}\right\}$,
where $C_{S}:=H^{-\frac{1}{2}} H_{S} H^{-\frac{1}{2}}, H \equiv H(x)$ and $H_{S} \equiv H_{S}(x)$.
Let $\varepsilon \in(0,1 / 4)$ and $p \in(0,1 / 2)$. It holds that $\mathbb{P}\left(\mathcal{E}_{x, \varepsilon, m}\right) \geqslant 1-p$, provide hat $m=\Omega\left(d_{\mu}(x)^{2} /\left(\varepsilon^{2} p\right)\right.$) for the SJLT with single nonzero element in each column, and, $m=\Omega\left(\left(d_{\mu}(x)+\log (1 / \varepsilon p) \log \left(d_{\mu}(x) / p\right)\right) / \varepsilon^{2}\right)$ for the SRHT

Adaptive Newton Sketch
We adopt the same idea as for convex quadratic objectives. Start with $m_{0}=1$ $x_{0} \in \mathbb{R}^{d}$ and $S_{0} \in \mathbb{R}^{m_{0} \times n}$. At each iteration
(i) Compute $x_{t+1}=x_{t}-\mu_{t} H_{S_{t}}^{-1} \nabla f\left(x_{t}\right)$.
(ii) Sample $S_{t+1} \in \mathbb{R}^{m_{t} \times n}$. Form and factorize $H_{S_{t}}$
(iii) Compute improvement ratio $\widetilde{r}_{t}=\widetilde{\delta}_{t+1} / \widetilde{\delta}_{t}$ where

$$
\tilde{\delta}_{t}=\nabla f\left(x_{t}\right)^{\top} H_{S_{s}}^{-1} \nabla f\left(x_{t}\right),
$$

(iv) If \widetilde{r}_{t} small enough, accept update x_{t+1}. Otherwise, set $x_{t+1}=x_{t}$, double sketch size $m_{t+1}=2 m_{t}$ and sample new $S_{t+1} \in \mathbb{R}^{m_{t+1} \times n}$

Numerical experiments
We test on ℓ_{2}-regularized logistic regression problem.

w7a. kernel matrix. $n=12000, d=12000, \mu=10$.

