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Introduction

Composite optimization problem

x∗ : = argmin
x∈Rd

{f (x) : = f0(x) + g(x)} .

(i) f0, g : Rd → R twice differentiable convex functions, where
R = R ∪ {+∞}.

(ii) Forming Hessian ∇2f0(x) is prohibitively expensive, while a
Hessian matrix square-root ∇2f0(x)1/2 ∈ Rn×d is available at
small computational cost.

(iii) g is µ-strongly convex, i.e., ∇2g(x) � µId.
Example of the Hessian matrix square-root
f0(x) =

∑m
i=1 `i(a>i x), ∇2f0(x)1/2 : = diag(`′′i (a>i x)1/2)A.

Examples of regularization functions g
• graph regularization g(x) = 1

2
∑

i,j∈E(xi − xj)2,
• `p-norms with p > 1,
• approximations of `1-norm.
Large-scale optimization problems of this form are very common
in applications, due to the increasing dimensionality of data (e.g.,
genomics, medicine, high-dimensional models).
Comparison between first and second-order methods
• Newton’s method enjoys superior convergence in both the-
ory and practice compared to first-order methods.
• Optimal choice of first-order methods’ parameters depend on
unknown strong convexity and smoothness constants of prob-
lem.
• When f is self-concordant, then Newton’s method is invari-
ant to rescaling and coordinate transformations.

Newton’s method. The update rule follows

H(x) : = ∇2f0(x) +∇2g(x) ,
xne : = x− sH(x)−1∇f (x) .

Computational issue with Newton’s method: per-iteration com-
plexity scaling as O(nd2).
Newton Sketch. Our work builds on a generic method called
Newton Sketch, which utilizes a random embedding of the Hessian
matrix H(x).
Given an embedding matrix S ∈ Rm×n,

HS(x) : = (∇2f0(x)
1
2)>S>S∇2f0(x)

1
2 +∇2g(x) ,

xnsk : = x− sHS(x)−1∇f (x) .

Here m is a sketch size such that m� n.
For classical embeddings (e.g., sub-Gaussian, randomized orthog-
onal systems), a sketch size m � d is sufficient for the Newton
sketch to achieve a linear-quadratic convergence rate with high
probability (w.h.p.).

Our contribution

(i) under the assumption that g is µ-strongly convex, the scaling m � dµ log
(
dµ
)
/δ is sufficient for

the Newton sketch to achieve a δ-accurate solution at a quadratic convergence rate with high
probability. Here we define

dµ : = sup
x∈S(x0)

dµ(x) ,

where x0 is the initial point of our algorithm, S(x0) is the sublevel set of f at x0, and

dµ(x) : = trace(∇2f0(x)(∇2f0(x) + µId)−1),

is the local effective dimension. Importantly, it always holds that dµ(x) 6 dµ 6 min{n, d} = d
and it can substantially smaller than the ambient dimension d.

(ii) propose an adaptive sketch size version of the effective dimension Newton sketch. Importantly,
we prove that the adaptive sketch size scales in terms of dµ. Furthermore, our adaptive method
offers the possibility to the user to choose the convergence rate, from linear to quadratic.

(iii) Achieve state-of-the-art computational complexity to achieve a δ-accurate solution

O
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)

log
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δ

)
log
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.

Computational complexity comparisons
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Notations and background

A closed convex function ϕ : Rd → R is self-concordant if |ϕ′′′(x)| 6 2 (ϕ′′(x))3/2. This encom-
passes many widely used functions in practice, e.g., linear, quadratic, negative logarithm.
The choice of the sketching matrix S ∈ Rm×n is critical for statistical and computational perfor-
mances. Typical choices include the subsampled randomized Hadamard transform (SRHT) and
the sparse Johnson-Lindenstrauss transform (SJLT).

Preliminaries

Define the Newton and approximate Newton decrements as

λf(x) : =
(
∇f (x)>H(x)−1∇f (x)

)1
2
,

λ̃f(x) : =
(
∇f (x)>HS(x)−1∇f (x)

)1
2
.

For a self-concordant function f , the optimality gap at any point x ∈ dom f is bounded in terms
of the Newton decrement as

f (x)− f (x∗) 6 λf(x)2 .

Optimality gap based on approximate Newton
decrements

Consider the following probability event which is critical to our convergence guaran-
tees,

Ex,m,ε : =
{

(1− ε

2
)Id � CS � (1 + ε

2
)Id
}
,

where CS : = H−
1
2HSH

−1
2 , H ≡ H(x) and HS ≡ HS(x).

Let ε ∈ (0, 1/4) and p ∈ (0, 1/2). It holds that P(Ex,ε,m) > 1 − p, provided
thatm = Ω(dµ(x)2/(ε2p)) for the SJLT with single nonzero element in each column,
and, m = Ω((dµ(x) + log(1/εp) log(dµ(x)/p))/ε2) for the SRHT.

Closeness of Newton decrements

Let ε ∈ (0, 1/4). Conditional on the event Ex,m,ε, it holds that

‖vne − vnsk‖H(x) 6 ε ‖vne‖H(x) , (1)
√

1− ε λf(x) 6 λ̃f(x) 6
√

1 + ε λf(x) . (2)

Adaptive Newton Sketch

We adopt the same idea as for convex quadratic objectives. Start with m0 = 1,
x0 ∈ Rd and S0 ∈ Rm0×n. At each iteration:
(i) Compute xt+1 = xt − µtH−1

St
∇f (xt).

(ii) Sample St+1 ∈ Rmt×n. Form and factorize HSt+1.
(iii) Compute improvement ratio r̃t = δ̃t+1/δ̃t where

δ̃t = ∇f (xt)>H−1
St
∇f (xt) .

(iv) If r̃t small enough, accept update xt+1. Otherwise, set xt+1 = xt, double sketch
size mt+1 = 2mt and sample new St+1 ∈ Rmt+1×n.

Geometric convergence guarantees of the adaptive
Newton sketch

(SRHT) Let δ ∈ (0, 1/2). For τ = 1 (quadratic rate), pick p0 � δ
d and

assume n large enough such that n &
d2d

2
µ

δ2 . Let m0 be an initial sketch size
satisfying. m0 � d

δ log
(
d
δ

)
. Then, it holds with probability at least 1− p0 that

adaptive Newton sketch returns a δ-approximate solution x̃ in function value
(i.e., f (x̃) − f (x∗) 6 δ) in less than T = O(log

(
dµ
)

log log(d/δ)) iterations,
with final sketch size bounded by 2m � 2d

δ (dµ+log
(
d
δ

)
log
(
dµ
)
) and with total

time complexity
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Numerical experiments

We test on `2-regularized logistic regression problems.

MNIST. n = 30000, d = 780, µ = 10−1.

w7a. kernel matrix. n = 12000, d = 12000, µ = 10.
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