Adaptive Newton Sketch

Jonathan Lacotte, Yifei Wang and Mert Pilanci

Stanford University

Adaptive Newton Sketch

 A randomized algorithm with quadratic convergence rate for convex optimization problems:

$$\min_{x \in \mathbb{R}^d} \{ f(x) := f_0(x) + g(x) \}.$$

- f_0 : self-concordant and convex
- ullet g: self-concordant and μ -strongly convex
- Perform a randomized Newton's step using a random projection of the Hessian:

$$H_S(x) = (\nabla^2 f_0(x)^{\frac{1}{2}})^T S^T S \nabla^2 f_0(x)^{\frac{1}{2}} + \nabla^2 g(x),$$

$$x_+ = x + s H_S(x)^{-1} \nabla f(x).$$

- $\nabla^2 f_0(x)^{\frac{1}{2}} \in \mathbb{R}^{n \times d}$: Hessian matrix square root
- $oldsymbol{S} \in \mathbb{R}^{m imes n}$: sketching matrix with sketching dimension m

Example of loss function and matrix square root

- $f_0(x) = \sum_{i=1}^n \ell_i(a_i^{\top} x)$.
- In this case, a suitable Hessian matrix square root is given by the $n \times d$ matrix

$$\nabla^2 f_0(x)^{1/2} = \mathbf{diag}(\ell_i''(a_i^{\top} x)^{1/2}) A.$$

• g(x) can be ℓ_p -norms with p>1 or approximations of ℓ_1 -norm.

Our contribution

- Prior works on sketching require that $m \gtrsim d$ (the cost to solve the linear system is $O(d^3)$).
- Sketching dimension m can be as small as the effective dimension $\overline{d}_{\rm e}$ of the Hessian matrix, where

$$\overline{d}_{e} = \max_{x} \operatorname{tr}(\nabla^{2} f_{0}(x)(\nabla^{2} f_{0}(x) + \mu I_{d})^{-1}).$$

The cost to solve the linear system is $O(dd_{\rm e}^2)$.

- Propose an adaptive sketch size algorithm with quadratic convergence rate without prior knowledge of the effective dimension.
- Achieve state-of-the-art computational complexity to achieve a δ -accurate solution

$$\mathcal{O}\!\left(nd \log(\overline{d}_e) \log \left(\frac{d}{\delta} \right) \log \left(\log \left(\frac{d}{\delta} \right) \right) \right).$$

Computational complexities comparison

Table: Complexity to achieve δ -accurate solution.

Algorithm	Time complexity	Sketch size	Proba.
Accelerated SVRG	$(nd + d\sqrt{\kappa n})\log(1/\delta)$	-	1
Newton method	$nd^2\log(\log(1/\delta))$	-	1
Newton sketch	$nd\log(d)\log(1/\delta)$	d	$1-\frac{1}{d}$
Adaptive Newton sketch	$nd\log(\overline{d}_{\mathrm{e}})\log(\frac{d}{\delta})\log(\log(\frac{d}{\delta}))$	$\frac{d}{\delta} \left(\overline{d}_{e} + \log(\frac{d}{\delta}) \log(\overline{d}_{e}) \right)$	$1 - \frac{1}{\overline{d}_{e}}$

Adaptive Newton sketch

Same idea as for convex quadratic objectives. Start with $m_0=1$, $x_0\in\mathbb{R}^d$ and $S_0\in\mathbb{R}^{m_0\times n}$. At each iteration:

- Compute $x_{t+1} = x_t \mu_t H_{S_t}^{-1} \nabla f(x_t)$.
- Sample $S_{t+1} \in \mathbb{R}^{m_t \times n}$. Form and factorize $H_{S_{t+1}}$.
- ullet Compute improvement ratio $\widetilde{r}_t = \widetilde{\delta}_{t+1}/\widetilde{\delta}_t$ where

$$\widetilde{\delta}_t = \nabla f(x_t)^{\mathsf{T}} H_{S_t}^{-1} \nabla f(x_t).$$

• If \widetilde{r}_t small enough, accept update x_{t+1} . Otherwise, set $x_{t+1} = x_t$, double sketch size $m_{t+1} = 2m_t$ and sample new $S_{t+1} \in \mathbb{R}^{m_{t+1} \times n}$.

Numerical results

MNIST. $n = 30000, d = 780, \mu = 10^{-1}$.

Numerical results

w7a. kernel matrix. $n = 12000, d = 12000, \mu = 10.$