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Adaptive Newton Sketch

A randomized algorithm with quadratic convergence rate for
convex optimization problems:

min
x∈Rd
{f(x) := f0(x) + g(x)}.

f0: self-concordant and convex
g: self-concordant and µ-strongly convex

Perform a randomized Newton’s step using a random projection of
the Hessian:

HS(x) =(∇2f0(x)
1
2 )TSTS∇2f0(x)

1
2 +∇2g(x),

x+ =x+ sHS(x)
−1∇f(x).

∇2f0(x)
1
2 ∈ Rn×d: Hessian matrix square root

S ∈ Rm×n: sketching matrix with sketching dimension m
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Example of loss function and matrix square root

f0(x) =
∑n

i=1 `i(a
>
i x).

In this case, a suitable Hessian matrix square root is given by the
n× d matrix

∇2f0(x)
1/2 = diag(`′′i (a

>
i x)

1/2)A.

g(x) can be `p-norms with p > 1 or approximations of `1-norm.
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Our contribution

Prior works on sketching require that m & d (the cost to solve the
linear system is O(d3)).

Sketching dimension m can be as small as the effective dimension
de of the Hessian matrix, where

de = max
x

tr(∇2f0(x)(∇2f0(x) + µId)
−1).

The cost to solve the linear system is O(dd2e).

Propose an adaptive sketch size algorithm with quadratic convergence
rate without prior knowledge of the effective dimension.

Achieve state-of-the-art computational complexity to achieve a
δ-accurate solution

O
(
nd log(de) log

(
d

δ

)
log

(
log

(
d

δ

)))
.
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Computational complexities comparison

Table: Complexity to achieve δ-accurate solution.

Algorithm Time complexity Sketch size Proba.

Accelerated SVRG (nd+ d
√
κn) log(1/δ) - 1

Newton method nd2 log(log(1/δ)) - 1

Newton sketch nd log(d) log(1/δ) d 1− 1
d

Adaptive
nd log(de) log(

d
δ
) log(log( d

δ
)) d

δ

(
de + log( d

δ
) log(de)

)
1− 1

deNewton sketch
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Adaptive Newton sketch

Same idea as for convex quadratic objectives. Start with m0 = 1, x0 ∈ Rd
and S0 ∈ Rm0×n. At each iteration:

Compute xt+1 = xt − µtH−1St ∇f(xt).
Sample St+1 ∈ Rmt×n. Form and factorize HSt+1 .

Compute improvement ratio r̃t = δ̃t+1/δ̃t where

δ̃t = ∇f(xt)>H−1St ∇f(xt) .

If r̃t small enough, accept update xt+1. Otherwise, set xt+1 = xt,
double sketch size mt+1 = 2mt and sample new St+1 ∈ Rmt+1×n.
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Numerical results

MNIST. n = 30000, d = 780, µ = 10−1.
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Numerical results

w7a. kernel matrix. n = 12000, d = 12000, µ = 10.
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