

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

SIAM J. SCI. COMPUT. © 2021 Society for Industrial and Applied Mathematics
Vol. 43, No. 5, pp. A3184--A3211

SEARCH DIRECTION CORRECTION WITH NORMALIZED
GRADIENT MAKES FIRST-ORDER METHODS FASTER\ast

YIFEI WANG\dagger , ZEYU JIA\ddagger , AND ZAIWEN WEN\S

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . The so-called fast inertial relaxation engine is a first-order method for unconstrained
smooth optimization problems. It updates the search direction by a linear combination of the past
search direction, the current gradient, and the normalized gradient direction. We explore more
general combination rules and call this generalized technique the search direction correction (SDC).
SDC is extended to composite and stochastic optimization problems as well. Deriving from a second-
order ODE, we propose a fast inertial search direction correction (FISC) algorithm as an example of
methods with SDC. We prove the\scrO (k - 2) convergence rate of FISC for convex optimization problems.
Numerical results on sparse optimization, logistic regression, as well as deep learning demonstrate
that our proposed methods are quite competitive to other state-of-the-art first-order algorithms.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . first-order methods, search direction correction, Lyapunov function, composite
optimization, stochastic optimization

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 49M07, 65C60, 65K05, 90C06

\bfD \bfO \bfI . 10.1137/20M1335480

1. Introduction. We take the following optimization problem into considera-
tion:

(1.1) min
\bfx \in \BbbR n

f(x) = \psi (x) + h(x),

where \psi is a smooth function and h is a possibly nonsmooth convex function. In
machine learning, \psi often has the form

(1.2) \psi (x) =
1

N

N\sum
i=1

\psi i(x),

where \psi i is the prediction error to the ith sample. Since the dimension of the variable
x and the number of samples N are often extremely huge, first-order and/or stochastic
algorithms are frequently used for solving (1.1).

First-order algorithms only use the information of the function value and the
gradient. The vanilla gradient descent method is the simplest algorithm with conver-
gence guarantees. Adding momentum to the current gradient has been an efficient
technique to accelerate the convergence. This type of algorithms includes the Nes-
terov accelerated method [20], the Polyak heavy-ball method [23], and the nonlinear
conjugate gradient method [6]. Except the last one, these methods can be extended

\ast Submitted to the journal's Methods and Algorithms for Scientific Computing section May 1,
2020; accepted for publication (in revised form) April 23, 2021; published electronically September
16, 2021.

https://doi.org/10.1137/20M1335480
\bfF \bfu \bfn \bfd \bfi \bfn \bfg : The work of the third author was partially supported by the National Key R\&D

Program of China (2018YFC0704305), by NSFC grant 11831002, and by Beijing Academy of Articial
Intelligence.

\dagger Department of Electrical Engineering, Stanford University, Stanford, CA 94305-9505 USA
(wangyf18@stanford.edu).

\ddagger Department of EECS, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
(zyjia@mit.edu).

\S Corresponding author. Beijing International Center for Mathematical Research and Center for
Data Science, Peking University, China (wenzw@pku.edu.cn).

A3184

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/20M1335480
mailto:wangyf18@stanford.edu
mailto:zyjia@mit.edu
mailto:wenzw@pku.edu.cn

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE SDC MAKES FIRST-ORDER METHODS FASTER A3185

to cases where h is nonsmooth, by replacing the gradient with the so-called proximal
gradient. Meanwhile, it is proved in [21] that first-order algorithms cannot achieve
a convergence rate better than \scrO (1/k2). In this way, the convergence rate of the
Nesterov accelerated method matches this lower bound exactly.

Lately, a new technique borrowed from ODE and dynamical system has been
used to analyze the behavior of optimization algorithms, especially first-order meth-
ods. Several ODEs corresponding to different types of Nesterov accelerated methods
when the step size converges to zero are analyzed in [25]. With specifically designed
Lyapunov functions, they obtained a proportional convergence rate for these ODEs
and for Nesterov accelerated methods. Wibisono, Wilson, and Jordan [27] and [28]
generalized this technique to a broader class of first-order algorithms. Zhang et al.
[33] proposed a different type of Lyapunov function and obtained a convergence com-
petitive to Nesterov accelerated methods. Attouch et al. [1] analyze the ODE of such
an inertial system with extra Hessian driven damping and propose corresponding
discrete-time algorithms.

To deal with the large sample numbers N in evaluating full gradients, stochatic
methods are introduced. The stochastic gradient descent method (SGD) is the stocha-
stic version of the vanilla gradient descent method. However, SGD may suffer from the
large variance of stochastic gradients during its iterations. To tackle this problem, Sto-
chastic Variance Reduced Gradient (SVRG) [12], Stochastic Average Gradient (SAG)
[24], and SAGA [7] introduce variance reduction techniques and achieve acceleration
compared to SGD.

A natural question arises: how do we design efficient first-order stochastic meth-
ods to improve the optimization procedure? An optimization algorithm called the
fast inertial relaxation engine (FIRE) [4] from molecular dynamics seems to be quite
promising. FIRE is proposed for finding the atomic structures with the minimum
potential energy. Involving an extra term of the velocity correction along the gradient
direction with the same magnitude of the current velocity, and adopting a carefully
designed restarting condition, FIRE can practically achieve better performance than
other first-order methods including the conjugate gradient method. It is even compet-
itive to the limited-memory BFGS [16] in several test cases. However, neither is the
choice of molecular dynamics integrator specified nor the convergence rate given in [4].

Motivated by first-order algorithms and FIRE, we introduce a family of first-order
methods with the search direction correction (SDC) and propose the fast inertial
search direction correction (FISC) algorithm. Our contributions are listed as follows:

\bullet We adapt FIRE in molecular dynamics to solve general smooth and non-
smooth optimization problems. We explore more general combination rules
of updating search direction in FIRE and generalize it into a framework of
first-order methods with SDC. We allow more choices for step sizes, such as
applying a line search technique to find a step size satisfying the Armijo con-
ditions or the nonmonotone Armijo conditions. The basic restarting condition
ensures the global convergence for methods with SDC. Furthermore, SDC is
extended to composite optimization and stochastic optimization problems.

\bullet Second-order ODEs of methods with SDC in continuous time are derived
via taking the step size to zero. By constructing a Lyapunov function and
analyzing its derivative, we prove that the ODE corresponding to FISC has
the convergence rate of O(1/t2) on smooth convex optimization problems.
We also build a discrete Lyapunov function for FISC in the discrete case.
On composite optimization problems, FISC is proven to have the \scrO (1/k2)
convergence rate.

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3186 YIFEI WANG, ZEYU JIA, AND ZAIWEN WEN

\bullet Our algorithms are tested on sparse optimization, logistic regression, and
deep learning. Numerical experiments indicate that our algorithms are quite
competitive to other state-of-the-art first-order algorithms.

1.1. Organization. This paper is organized as follows. We present the update
rule of methods with SDC including FISC in section 2. In section 3, the ODE perspec-
tive of FISC is used to provide a necessary condition for the convergence. The global
convergence of methods with SDC and the convergence rate of FISC are discussed in
section 4. Finally, in section 5, we present numerical experiments to compare FISC,
FIRE, and other first-order algorithms.

1.2. Preliminaries. We use standard notation throughout the paper. \| \cdot \| is
the standard Euclidean norm and \langle \cdot , \cdot \rangle is the standard Euclidean inner product. \scrF L

stands for the class of convex and differentiable functions with L-Lipschitz continuous
gradients. \scrF represents the class of convex and differentiable functions. \BbbR + is the
collection of nonnegative real number. [N] denotes \{ 1, 2, . . . , N\} .

2. The framework of SDC. In this section, we introduce the framework of
first-order methods with SDC to solve smooth optimization problems (1.1) with h =
0. Based on this framework, we extend SDC to composite optimization problems,
stochastic optimization problems, and deep learning. We also compare SDC with
other first-order methods with momentum terms.

2.1. A family of first-order methods with SDC. In this subsection, we
focus on solving smooth optimization problems (1.1) with h = 0. It involves two
sequences of parameters \{ \beta k\} k=1 and \{ \gamma k\} k=1 and introduces a velocity u as a search
direction to update x.

We start with an initial guess x0 and an initial velocity u0 = 0. In the beginning of
the (k+1)th iteration, we determine whether uk is a descent direction by introducing
a restarting condition

(2.1) \varphi k = \langle - \nabla f(xk),uk\rangle \geq 0.

When this condition is satisfied, we update

(2.2) uk+1 = (1 - \beta k)uk - \gamma k
\| uk\|

\| \nabla f(xk)\|
\nabla f(xk) - \nabla f(xk).

When k = 0, we directly have u1 = - \nabla f(x0) given u0 = 0, so \beta 0 and \gamma 0 need not be
specified. We further require \beta k and \gamma k to satisfy

(2.3) 0 \leq \beta k \leq 1, 0 \leq \gamma k \leq 1.

Then we update \beta k+1 and \gamma k+1 as follows.
\bullet In FIRE [4], they are updated by

\gamma k+1 = \beta k+1 = d\beta \beta k,

where 0 < d\beta < 1 is a parameter. The initial value of \{ \beta k\} is set to \beta 1 = 1,
and d\beta is given by d\beta = 0.99.

\bullet In FISC, \beta k and \gamma k are parameterized with lk, i.e.,

(2.4) \beta k =
r

lk - 1 + r
, \gamma k =

r - 3

lk - 1 + r
,

where r \geq 3 and \{ lk\} is a sequence of parameters with an initial value of
l1 = 1. We update lk+1 = lk + 1.

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE SDC MAKES FIRST-ORDER METHODS FASTER A3187

If the condition (2.1) is not met, we restart the system by resetting uk+1, \beta k+1, and
\gamma k+1 as

uk+1 = - \nabla f(xk),(2.5)

\beta k+1 = \beta 1, \gamma k+1 = \gamma 1.(2.6)

Specifically, in FISC, we reset lk+1 = l1.
Then, we calculate the step size sk. Either of the following choices of sk is

acceptable:
(i) Fix the step size sk = s0.
(ii) Perform a backtracking line search to find a step size sk that satisfies the

Armijo conditions:

(2.7) f(xk - skuk+1) \leq f(xk) - \sigma sk \langle uk+1,\nabla f(xk)\rangle ,

where 0 < \sigma < 1 is a parameter and sk = \=sk\rho
hk . Here \=sk > 0 is the trial step

and hk is the largest number such that (2.7) holds.
(iii) Perform a nonmonotone line search [32] to find a step size sk that satisfies

nonmonotone Armijo conditions:

(2.8) f(xk - skuk+1) \leq Ck - sk
2

\langle uk+1,\nabla f(xk)\rangle ,

where sk = \=sk\rho
hk . Here \=sk > 0 is the trial step and hk is the largest number

such that (2.8) holds. Ck and Qk are updated as

Qk+1 = \eta kQk + 1, Ck+1 = (\eta kQkCk + f(xk+1))/Qk+1

with initial values C0 = f(x0), Q0 = 1. \eta k is selected from [\eta min, \eta max]. The
existence of sk is proved in subsection 4.1.

After calculating the step size sk, we update

(2.9) xk+1 = xk + skuk+1.

Then, we replace k by k + 1 and check whether convergence criteria are satisfied. A
family of first-order methods with SDC is given in Algorithm 2.1.

Algorithm 2.1 A family of first-order methods with SDC.

Input: initial guess x0, initial value u0 = 0, other required parameters.
1: set k = 0, fix step size s0, or calculate it by the line search.
2: while Convergence criteria are not met or k < Nmax do
3: Calculate \varphi k by (2.1).
4: if \varphi k \geq 0 then
5: Compute uk+1 by (2.2) and update \beta k+1, \gamma k+1.
6: else
7: Set uk+1 by (2.5) and reset \beta k+1, \gamma k+1.
8: end if
9: Fix step size sk or calculate it using line search techniques.

10: Update xk+1 by (2.9), k \rightarrow k + 1.
11: end while
12: return xk

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3188 YIFEI WANG, ZEYU JIA, AND ZAIWEN WEN

2.2. A variant of FISC. In this subsection, we introduce FISC-nes, a variant
of FISC. A detailed derivation of FISC and FISC-nes is shown in section 3. In FISC-
nes, uk is replaced by an auxiliary variable yk and \{ lk\} k=1 in FISC-nes remains the
same. We start with x0 = x - 1. Given xk and xk - 1, the restarting condition uses the
quantity

\varphi k = \langle - \nabla f(xk),xk - xk - 1\rangle .

If \varphi k \geq 0, we compute yk by

(2.10) yk = xk +
lk - 1

lk - 1 + r
(xk - xk - 1) -

r - 3

lk - 1 + r

| | xk - xk - 1| |
| | \nabla f(xk)| |

\nabla f(xk).

The step sk is calculated at yk using the direction - \nabla f(yk). We then update

(2.11) xk+1 = yk - sk\nabla f(yk)

and update lk+1. Otherwise, we calculate the step size sk at xk using the direction
 - \nabla f(xk). Then xk+1 is updated by

xk+1 = xk - sk\nabla f(xk),

and we reset lk+1 = l1. We name this algorithm FISC-nes because it has an analogous
update rule with Nesterov's accelerated method.

If all restarting conditions are satisfied and the step size is fixed to be s, FISC
updates

(2.12) xk+1 = yk - s\nabla f(xk),

where yk is defined in (2.10), while FISC-nes updates xk+1 via (2.11). In section
4, we prove that with the update rule of FISC-nes (2.11), FISC-nes has an \scrO (k - 2)
convergence rate. With r > 3, FISC-nes has to calculate the gradient twice in up-
dating xk+1, which may be computationally costly. On the other hand, the update
rule of FISC (2.12) can be viewed as an approximation of the update rule of FISC-nes
(2.11) and it only evaluates the gradient once in each iteration. In short, FISC-nes
has better theoretical explanations and the performance of FISC is better in practice.

2.3. SDC for other optimization problems. In this subsection, we present
two modifications on the framework of SDC to two important optimization problems
in machine learning: composite optimization and stochastic optimization. When the
target function f(x) has a nonsmooth regularization term h(x), problem (1.1) turns
to a composite optimization problem. A typical example of h(x) is h(x) = \| x\| 1
in compressed sensing. On the other hand, when the smooth part \psi has the finite
sum structure (1.2), problem (1.1) becomes a stochastic optimization problem. This
is common in the empirical risk minimization setting. In this case, evaluating the
full gradient of \psi is computationally inefficient so we use the stochastic oracle of \nabla \psi
instead.

2.3.1. Composite optimization problems. Consider the composite optimiza-
tion problem (1.1), where \psi \in \scrF L. Given the convex function h and the step size
s > 0, we define the proximal mapping of h as

proxsh(x) = argmin
\bfz

\biggl(
1

2s
\| z - x\| 2 + h(z)

\biggr)
.

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE SDC MAKES FIRST-ORDER METHODS FASTER A3189

Based on the proximal mapping, the proximal gradient is defined by

Gs(x) =
x - proxsh(x - s\nabla \psi (x))

s
.

Here we present two ways to modify SDC for composite optimization problems. The
first way is to use the proximal gradient. We simply replace the gradient \nabla f(x) in
(2.2) by the proximal gradient Gs(x). In the (k + 1)th iteration, the step size sk is
fixed or calculated at xk for the proximal gradient, using line search techniques. The
basic restarting condition uses the quantity

(2.13) \varphi k = \langle uk, - Gsk(xk)\rangle .

If \varphi k \geq 0, then we will update uk+1 by

(2.14) uk+1 = (1 - \beta k)uk - \gamma k
\| uk\|

\| Gsk(xk)\|
Gsk(xk) - Gsk(xk).

Otherwise, uk+1 is reset by

(2.15) uk+1 = - Gsk(xk),

and \beta k+1, \gamma k+1 are reset using (2.6). Then xk+1 is calculated by (2.9).
The second way is to use the proximal mapping. We introduce an auxiliary

variable yk \in \BbbR n and start with x0 = x - 1. Given xk and xk - 1, the restarting
condition uses the following quantity:

\varphi k = \langle xk - xk - 1, - Gsk(xk)\rangle .

If \varphi k \geq 0, the step size sk is fixed or calculated at xk for the proximal gradient using
similar methods. yk is updated by

(2.16) yk = xk + (1 - \beta k)(xk - xk - 1) - \gamma k
\| xk - xk - 1\|
\| Gsk(xk)\|

Gsk(xk).

Then we fix the step size \=sk or calculate it at yk for the proximal mapping, compute

(2.17) xk+1 = yk - \=skG\=sk(yk),

and update \beta k+1, \gamma k+1. Note that xk+1 is the proximal mapping of yk, i.e., xk+1 =
prox\=skh (yk).

Otherwise, we fix sk or calculate it at xk for the proximal mapping, update

(2.18) xk+1 = xk - skGsk(xk),

and reset \beta k+1, \gamma k+1 by (2.6).
Taking \beta k = r

lk - 1+r and \gamma k = r - 3
lk - 1+r in (2.16), we obtain FISC-PM. When the

nonsmooth part h = 0 in (1.1), FISC-PM reduces to FISC-nes. On the other hand,
with r = 3 in FISC-PM, FISTA [3] can be recovered.

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3190 YIFEI WANG, ZEYU JIA, AND ZAIWEN WEN

2.3.2. Stochastic composite optimization problems. Consider the stochas-
tic composite optimization problem (1.1), where \psi has the finite sum form (1.2) and
\psi i \in \scrF L. In each iteration, we generate stochastic approximations of the gradient via
selecting subsamples \scrT k \subset [N] uniformly at random. That is, the minibatch stochastic
oracle is obtained as follows:

(2.19) \nabla \psi (k)(x) =
1

| \scrT k|
\sum
i\in \scrT k

\nabla \psi i(x).

Motivated by [30], we also adopt the variance reduced version of stochastic gra-
dient. With an extra parameter m \in \BbbN , the stochastic oracle can be as follows:

(2.20)

\left\{
If k mod m = 0, then set \~x = xk and calculate \nabla \psi (\~x).

Compute \nabla \psi (k)(xk) =
1

| \scrT k|
\sum
i\in \scrT k

(\nabla \psi i(x) - \nabla \psi i(\~x)) +\nabla \psi (\~x).

Here k is the current iteration number and m is the number of iterations after which
the full gradient \nabla \psi is evaluated at the auxiliary variable \~x. Similar to [19], this
additional noise-free information is stored and utilized in the computation of the
stochastic oracles in the following iterations.

Then, the proximal stochastic gradient is calculated by

Gsk(x) =
x - proxskh (x - sk\nabla \psi (k)(x))

sk
.

The condition \varphi k \geq 0 is evaluated using (2.13). If it is satisfied, we update the velocity
uk+1 by (2.14). Otherwise, we reset uk+1, \beta k+1, \gamma k+1 by (2.15) and (2.6). SDC for
the stochastic optimization can be obtained by setting the nonsmooth part h = 0 in
(1.1).

2.4. SDC in deep learning. We also adapt SDC to the deep learning setting.
In deep learning, h is usually the squared \ell 2 norm of x and each \psi i in (1.1) can
be highly nonconvex. The function f can be nonsmooth for neural networks with
nonsmooth activations. We make the following changes in updating rules. In the
(k+1)th iteration, we first calculate the ``momentum and gradient update"" on uk as
follows:

\~uk = \alpha uk - gk,

where 0 < \alpha < 1 is a parameter and gk is the stochastic subgradient of f evaluated
at xk through back-propagation. The basic restarting condition becomes

\varphi k = \langle \~uk, - gk\rangle .

If \varphi k \geq 0, we calculate uk+1 by correcting \~uk to

(2.21) uk+1 = (1 - \beta k)\~uk - \gamma k
\| \~uk\|
\| gk\|

gk.

Otherwise, we set
uk+1 = - gk.

Then, xk+1 is updated by (2.9).
Note that if we simply use \~uk or - gk as uk+1, then we will get SGD with mo-

mentum or vanilla SGD. The heuristic of the change in the deep learning setting is

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE SDC MAKES FIRST-ORDER METHODS FASTER A3191

that we do not want to restart the algorithm too frequently. (Otherwise, the update
in xk will become the (stochastic) gradient descent.) We notice that

\langle \~uk, - gk\rangle = \alpha \langle uk, - gk\rangle + \| gk\| 22.

Hence, a nonnegative \langle uk, - gk\rangle implies a nonnegative \langle \~uk, - gk\rangle . With this modifi-
cation, the algorithm may restart less frequently.

2.5. The comparison with other first-order methods. In this subsection,
we compare first-order methods with SDC with the Nesterov's accelerated method
with restarting [22], the heavy-ball method [23], and the nonlinear conjugate gradient
(CG) method [6].

The Nesterov's accelerated method with restarting. Suppose that the step
size is fixed, i.e., sk = s. Taking the limiting process s \rightarrow 0, the restarting condition
(2.1) essentially keeps \langle \.x,\nabla f(x)\rangle negative. This coincides with the heuristic in [22],
where they proposed a procedure termed as gradient restarting for the Nesterov's
accelerated method. Its update rule is given by

(2.22)

\left\{
xk = yk - 1 - s\nabla f(yk - 1),

yk = xk +
k - 1

k + 2
(xk - xk - 1).

The algorithm restarts with x0 = y0 := xk and resets k = 0, whenever

\langle \nabla f(yk),xk - xk - 1\rangle > 0.

We shall note that this coincides with FISC-nes when r = 3. If one takes step size
s\rightarrow 0, this restarting condition also keeps \langle \nabla f(x), \.x\rangle nonpositive along the trajectory
and resets k to prevent the coefficient (k - 1)/(k+2) from steadily increasing to 1. In
numerical experiments, we show that FISC will have better performance with r > 3
on several test cases.

The heavy-ball method. Consider the case where no restarting condition is
applied and the step size sk is fixed. The update rule of velocity uk+1 in the heavy-ball
method [23] is

(2.23) uk+1 = \beta (HB)uk - \nabla f(xk).

Then, the heavy-ball method updates xk+1 in the same way as (2.9). The coeffi-
cient of uk in the heavy-ball method is a constant \beta (HB), while \beta k in FIRE decays
exponentially and \beta k in FISC decays linearly with regard to k. Compared to the

heavy-ball method, FIRE/FISC introduce an extra term \gamma k
\| \bfu k\|

\| \nabla f(\bfx k)\| \nabla f(xk) in up-

dating uk+1. For general convex function f , the Ces\'aro average of the iterates xk,

\~xk = 1
k+1

\sum k
i=0 xk has \scrO (1/k) convergence rate in function values (see [9]).

The nonlinear CG method. In this case, we obtain a step size sk by line
search techniques and the update rule of search direction uk+1 reads

(2.24) uk+1 = \beta
(CG)
k uk - \nabla f(xk).

If uk does not have the descent property, i.e., \langle - \nabla f(xk),uk\rangle < 0, CG restarts by
setting uk+1 = - \nabla f(xk). In FIRE, when \varphi k = \langle - \nabla f(xk),uk\rangle in the restarting
condition is negative, uk+1 is reset in (2.5) the same as CG. Though the resetting
rules are the same, the update rules of the search direction can be viewed as different

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3192 YIFEI WANG, ZEYU JIA, AND ZAIWEN WEN

linear combinations of the history search direction and the current gradient. The

calculation of \beta
(CG)
k is based on \nabla f(xk) and \nabla f(xk - 1), while \beta k and \gamma k in SDC

depend on the restarting condition. Moreover, as mentioned before, the update rule

of uk with SDC involves an extra term \gamma k
\| \bfu k\|

\| \nabla f(\bfx k)\| \nabla f(xk), which leads to a different

combination rule. On the other hand, the performance of nonlinear CG methods
strongly depends on step sizes obtained by line search. In general, we cannot use a
fixed step size for CG. Hence, we cannot model the trajectory of CG iterations in
continuous time as an ODE.

Here we want to emphasize the relationship between the choice of step sizes and
the restarting condition. If we want to choose a step size by line search, a basic
assumption is that the searching direction uk+1 is a descent direction, or equivalently

\langle uk+1,\nabla f(xk)\rangle < 0.

The restarting condition essentially makes this assumption to hold. If we do not use
restarts, then we may not be able to find a step size by line search when \langle uk+1,\nabla f(xk)\rangle
\geq 0.

3. SDC from an ODE perspective. In this section, we consider the uncon-
strained smooth convex optimization problem (1.1). Namely, we consider the case
where h = 0, f \in \scrF L. We further assume that f has a unique minimizer x\ast with
\| x\ast \| <\infty . Moreover, we assume that no restarting condition is applied in Algorithm
2.1 and the step size sk is fixed to be s.

3.1. SDC in continuous time. By rescaling vk =
\surd
suk, we can write the

update rule of uk+1 and xk+1 given by (2.2) and (2.9) as follows:

(3.1)

\left\{
vk+1 - vk\surd

s
= - \beta k\surd

s
vk - \gamma k\surd

s

\| vk\|
\| \nabla f(xk)\|

\nabla f(xk) - \nabla f(xk),

xk+1 - xk\surd
s

= vk+1.

Taking the limit s\rightarrow 0 in (3.1) and neglecting higher-order terms, we directly have

(3.2)

\left\{ \.v = - \nabla f(x) - \beta (t)v + \gamma (t)
| | v| |

| | \nabla f(x)| |
\nabla f(x),

\.x = v,

where \beta (t), \gamma (t) : \BbbR + \rightarrow \BbbR + can be viewed as rescaled \beta k, \gamma k in continuous time.
Specifically, for FIRE, \beta (t) and \gamma (t) have the following expressions:

(3.3) \beta (t) = \gamma (t) = c1e
 - c2t,

where c1, c2 > 0 are constants.

Remark 3.1. The continuous time \beta (t) can be derived as follows:

\beta (t) = lim
s\rightarrow 0

\beta \lfloor t/
\surd
s\rfloor \surd
s

.

We also note that \beta k may depend on s. For instance, with \beta k =
2
\surd
\mu s

1+
\surd
\mu s , we have

\beta (t) = 2
\surd
\mu for a parameter \mu > 0.

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE SDC MAKES FIRST-ORDER METHODS FASTER A3193

We can rewrite (3.2) into a second-order ODE:

(SDC-ODE) \"x+\nabla f(x) + \beta (t) \.x+ \gamma (t)
| | \.x| |

| | \nabla f(x)| |
\nabla f(x) = 0.

Using the symplectic Euler scheme in molecular dynamics, we can discretize (3.2) by

(3.4)

\left\{ vk+1 = vk -
\surd
s\nabla f(xk) -

\surd
s\beta (k

\surd
s)vk +

\surd
s\gamma (k

\surd
s)

| | vk| |
| | \nabla f(xk)| |

\nabla f(xk),

xk+1 = xk +
\surd
svk+1,

where
\surd
s is the step size. By rescaling \beta k =

\surd
s\beta (k

\surd
s) and \gamma k =

\surd
s\gamma (k

\surd
s), (3.4)

is equivalent to the update rule (3.1). In other words, we use (SDC-ODE) to model
these first-order methods with SDC.

3.2. FISC-ODE with a \bfscrO (1/\bfitt \bftwo) convergence rate. The Lyapunov function
(energy functional) is a powerful tool to analyze the convergence rate of ODE, as
mentioned in [27, 28, 25]. But with \beta (t), \gamma (t) specified by (3.3), (SDC-ODE) is hard
to directly analyze using Lyapunov's methods. With t\rightarrow \infty , \beta (t) and \gamma (t) will decay
exponentially to zero, but the system will reduce to the following Hamiltonian system:

(3.5) \"x+\nabla f(x) = 0.

We note that the Hamiltonian system (3.5) makes the Hamiltonian 1
2\| \.x\|

2 + f(x)
invariant with respect to the time t. As t \rightarrow \infty , x following (3.5) may not converge
to the minimizer x\ast . Hence, it is hard to design a Lyapunov function to analyze the
convergence property of the ODE with \beta (t) = \gamma (t) = exp(- ct).

We hope to choose proper \beta k and \gamma k to ensure that (SDC-ODE) have certain
good properties in Lyapunov analysis. Consider the following Lyapunov function for
(SDC-ODE):

(3.6) \scrE (t) = \mu (t)

2
\| \.x\| 2 + 1

2
\| x - x\ast + \phi (t) \.x\| 2 + \zeta (t)(f(x) - f(x\ast)),

where \mu (t), \phi (t), and \zeta (t) are mappings \BbbR + \rightarrow \BbbR + and x\ast is the unique minimizer of
f . The structure of (3.6) is motivated by the Lyapunov function in [27] and [33]. The
Lyapunov function in [27] involves terms \| x(t) - x\ast +\phi (t) \.x(t)\| 2 and (f(x(t)) - f(x\ast)),
and [33] introduces an additional term \| \.x(t)\| 2.

We consider a specific selection of \beta (t), \gamma (t), \mu (t), \phi (t), and \zeta (t):
(3.7)

\beta (t) =
r - 3

t
, \gamma (t) =

r

t
, \mu (t) =

(r - 3)t2

2(r - 1)2
, \phi (t) =

t

r - 1
, \zeta (t) =

t2

2(r - 1)
,

where r \geq 3 is a parameter. This renders our proposed (FISC-ODE):

(FISC-ODE) \"x+
r

t
\.x+\nabla f(x) + r - 3

t

\| \.x\|
\| \nabla f(x)\|

\nabla f(x) = 0.

For the Lyapunov function of (FISC-ODE), we have the following lemma.

Lemma 1. Suppose that f \in \scrF and f has a unique minimizer x\ast with \| x\ast \| <
\infty With \mu (t), \phi (t), and \zeta (t) specified in (3.7), the Lyapunov function \scrE (t) satisfies
\.\scrE (t) \leq 0.

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3194 YIFEI WANG, ZEYU JIA, AND ZAIWEN WEN

Proof. For simplicity, let \omega = 1/(r - 1). Then (r - 3)/(r - 1)2 = \omega - 2\omega 2,
r = (\omega + 1)/\omega . We can rewrite (FISC-ODE) as

(3.8) \omega t\"x = - (1 + \omega) \.x - \omega t\nabla f(x) - (1 - 2\omega)
\| \.x\|

\| \nabla f(x)\|
\nabla f(x).

The convexity of f yields

(3.9) \langle x - x\ast ,\nabla f(x)\rangle \geq \langle x - x\ast ,\nabla f(x)\rangle - f(x) + f(x\ast) \geq 0.

The Lyapunov function (3.6) with \mu (t), \phi (t), and \zeta (t) specified in (3.7) writes as

(3.10) \scrE (t) = (\omega - 2\omega 2)t2

4
\| \.x\| 2 + 1

2
\| x - x\ast + \omega t \.x\| 2 + \omega t2

2
(f(x) - f(x\ast)).

Hence, we obtain

2 \.\scrE (t) = (1 - 2\omega)t \langle \.x, \omega t\"x\rangle + (\omega - 2\omega 2)t\| \.x\| 2 + 2 \langle x - x\ast + \omega t \.x, \.x+ \omega \.x+ \omega t\"x\rangle
+ \omega t2 \langle \.x,\nabla f(x)\rangle + 2\omega t(f(x) - f(x\ast))

= - (1 - 2\omega)t

\biggl(
(1 + \omega)\| \.x\| 2 + \omega t \langle \.x,\nabla f(x)\rangle + (1 - 2\omega)

\| \.x\|
\| \nabla f(x)\|

\langle \.x,\nabla f(x)\rangle
\biggr)

+ (\omega - 2\omega 2)t\| \.x\| 2 - 2(1 - 2\omega)
\| \.x\|

\| \nabla f(x)\|
\langle x - x\ast + \omega t \.x,\nabla f(x)\rangle

 - 2\omega t \langle x - x\ast + \omega t \.x,\nabla f(x)\rangle + \omega t2 \langle \.x,\nabla f(x)\rangle + 2\omega t(f(x) - f(x\ast))

= - (1 - 2\omega)t

\biggl(
\| \.x\| 2 + \| \.x\|

\| \nabla f(x)\|
\langle \.x,\nabla f(x)\rangle

\biggr)
 - 2(1 - 2\omega)

\| \.x\|
\| \nabla f(x)\|

\langle x - x\ast ,\nabla f(x)\rangle

 - 2\omega t (\langle x - x\ast ,\nabla f(x)\rangle - f(x) + f(x\ast)) \leq 0,

where the second equality is due to (3.8) and the last inequality takes (3.9).

Based on Lemma 1, we have the following convergence rate of (FISC-ODE).

Theorem 3.2 (the \scrO (t - 2) convergence rate of FISC-ODE). Suppose that f \in \scrF
and f has a unique minimizer x\ast with \| x\ast \| < \infty . For any r \geq 3, let x(t) be the
solution to (FISC-ODE) with initial conditions x(0) = x0 and \.x(0) = 0. Then, for
t > 0, we have

f(x(t)) - f(x\ast) \leq (r - 1)\| x0 - x\ast \| 2

t2
.

Proof. The definition (3.6) gives

\scrE (t) \geq t2(f(x(t)) - f(x\ast))

2(r - 1)
.

Since \scrE (t) is nonincreasing from Lemma 1, we obtain

f(x(t)) - f(x\ast) \leq 2(r - 1)\scrE (t)
t2

\leq 2(r - 1)\scrE (0)
t2

=
(r - 1)\| x0 - x\ast \| 2

t2
= O(t - 2),

which completes the proof.

Now, rewriting (FISC-ODE) into a first-order ODE system and discretizing it
with the symplectic Euler scheme, we can directly recover the update rule of FISC
(2.12) with lk = k. We can also discretize (FISC-ODE) with techniques analogous
to Nesterov's accelerated method, and then the update rule of FISC-nes (2.11) is
recovered.

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE SDC MAKES FIRST-ORDER METHODS FASTER A3195

3.3. Comparison with other first-order methods with ODE interpreta-
tions. If we take r = 3, then (FISC-ODE) turns out to be

(Nesterov-ODE) \"x+
3

t
\.x+\nabla f(x) = 0.

[25] used this ODE for modeling Nesterov's accelerated method.
Dropping the term (r - 3)\| \.x\| \nabla f(x)/(t\| \nabla f(x)\|), (FISC-ODE) becomes

(HF-nes-ODE) \"x+
r

t
\.x+\nabla f(x) = 0,

which is the high friction version of (Nesterov-ODE) in [25] with r \geq 3.

Under the special case r = 3, the coefficient of the term | | \bfu k| |
| | \nabla f(\bfx k)| | \nabla f(xk) in (2.11)

turns out to be 0. If no restarting condition is applied and the step size is fixed, FISC-
nes becomes the Nesterov's accelerated method. With restarts and a fixed step size,
FISC-nes recovers Nesterov's accelerated method with gradient restarting [22]. There-
fore, we can view FISC-nes as an extension of the restarting Nesterov's accelerated
method. Furthermore, numerical experiments indicate that a proper choice of r leads
to extra acceleration in Nesterov's accelerated method.

We also observe that the ODE model of the heavy-ball method is given by

(HB-ODE) \"x+ \beta \.x+\nabla f(x) = 0,

where \beta is a constant. The convergence rate of (HB-ODE) is an open problem for
a general convex f . Indeed, it is shown in subsection 4.6 in [15] that the heavy-ball
method does not converge for general convex f .

In summary, (Nesterov-ODE), (HF-nes-ODE), and (HB-ODE) can be viewed as
specific examples of (SDC-ODE) with different choices of \beta (t) and \gamma (t).

4. Convergence analysis. In this section, we analyze the global convergence
of methods with SDC for general unconstrained smooth optimization problems and
the convergence of FISC-PM for composite optimization problems. In both cases, we
assume that the target function f is bounded from below.

4.1. The global convergence of methods with SDC. In this subsection, we
show the global convergence of methods with SDC and explain why we use (2.1) as
our restarting condition. We consider the case where the objective function is smooth,
i.e., h = 0 in (1.1). Namely, f is L-smooth. We begin with the following lemma.

Lemma 2. Suppose that f is differentiable, uk+1 is updated by (2.2) or (2.5)
depending on the restarting condition using \varphi k, and \beta k and \gamma k satisfy (2.3). Then,
for any integer k \geq 0, we have

(4.1) \langle uk+1, - \nabla f(xk)\rangle \geq \| \nabla f(xk)\| 2.

Proof. If \varphi k \geq 0, then we update uk+1 by (2.2). Hence,

\langle uk+1, - \nabla f(xk)\rangle
= (1 - \beta k) \langle uk, - \nabla f(xk)\rangle + \gamma k\| uk\| \| \nabla f(xk)\| + \| \nabla f(xk)\| 2 \geq \| \nabla f(xk)\| 2.

If \varphi k < 0, we reset uk+1 = - \nabla f(xk) and \langle uk+1, - \nabla f(xk)\rangle = \| \nabla f(xk)\| 2.

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3196 YIFEI WANG, ZEYU JIA, AND ZAIWEN WEN

According to Lemma 2, we have the following lower bound:

(4.2)
\langle uk+1, - \nabla f(xk)\rangle
\| uk+1\| \| \nabla f(xk)\|

\geq \| \nabla f(xk)\|
\| uk+1\|

.

From our assumption that f is bounded from below, there exists sk satisfying the
Armijo conditions (2.7) or the nonmonotone Armijo conditions (2.8), according to
Lemma 1.1 in [32].

To ensure the global convergence rate, we require that for sufficiently large k,

\| uk+1\| \leq C\| \nabla f(xk)\|

for some constant C. This condition can be hard to meet for a general choice of \beta k
and \gamma k. Hence, we add two restarting conditions:

df\| \nabla f(xk)\| \geq \| \nabla f(xk - 1)\| ,(4.3)

nk \leq K,(4.4)

where K \in \BbbN , df > 1, and nk is the number of iterations since the last restart.
Namely, we restart our system if at least one of the conditions (2.1), (4.3), and (4.4)
is not satisfied. If we set df and K large enough in practice, conditions (4.3) and
(4.4) will seldom be violated. Equipped with restarting conditions (4.3) and (4.4),
the system will restart at least once in K consecutive iterations and \| \nabla f(xk)\| will
not drop too rapidly. We then introduce the following lemma.

Lemma 3. Suppose that the conditions of Lemma 2 are satisfied. K \prime \leq K is an

integer and both (2.1) and (4.3) hold for 1 \leq k \leq K \prime . Then, \| \bfu k+1\|
\| \nabla f(\bfx k)\| is upper bounded

for all 0 \leq k \leq K \prime regardless of the initial value x0.

Proof. Let \lambda k = \| \bfu k+1\|
\| \nabla f(\bfx k)\| , \xi k = \| \bfu k\|

\| \nabla f(\bfx k)\| . Specifically, \lambda 0 = 1. Based on (4.3), we

have \xi k \leq df\lambda k - 1. Hence,

\lambda 2k =
1

\| \nabla f(xk)\| 2

\Biggl[
(1 - \beta k)

2\| uk\| 2 +
\biggl(
1 + \gamma k

\| uk\|
\| \nabla f(xk)\|

\biggr) 2

\| \nabla f(xk)\| 2

+ 2(1 - \beta k)

\biggl(
1 + \gamma k

\| uk\|
\| \nabla f(xk)\|

\biggr)
\langle uk, - \nabla f(xk)\rangle

\biggr]
\leq (1 - \beta k)

2\xi 2k + (1 + \gamma k\xi k)
2 + 2(1 - \beta k)(1 + \gamma k\xi k)\xi k

\leq (1 - \beta k)
2d2f\lambda

2
k - 1 + (1 + \gamma kdf\lambda k - 1)

2 + 2(1 - \beta k)(1 + \gamma kdf\lambda k - 1)df\lambda k - 1

\leq d2f\lambda
2
k - 1 + 2(1 + df\lambda k - 1)

2 = 4d2f\lambda
2
k - 1 + 4df\lambda k - 1 + 2.

Consider a sequence \{ \~\lambda k\} k=0 satisfying \~\lambda 2k = 4d2f
\~\lambda 2k - 1 + 4df \~\lambda k - 1 + 2 and \~\lambda 0 = 1.

Because df > 1, it is obvious that \~\lambda k is increasing with respect to k. Then,

\lambda k \leq \~\lambda k \leq \~\lambda K\prime \leq \~\lambda K , 0 \leq k \leq K \prime ,

which completes the proof.

Lemmas 2 and 3 guarantee that the direction assumption in [32] holds. Namely,
there exist positive constants c1 and c2 such that

(4.5) \langle uk+1,\nabla f(xk)\rangle \leq - c1\| \nabla f(xk)\| 2, \| uk+1\| \leq c2\| \nabla f(xk)\| .

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE SDC MAKES FIRST-ORDER METHODS FASTER A3197

Consider the sequence \{ xk\} given by Algorithm 2.1 with extra restarting con-
ditions (4.3) and (4.4). We further assume that the step size sk is attained by the
nonmonotone line search. Note that f(x) is bounded from below, the direction as-
sumption (4.5) holds, and the step sizes satisfy the nonmonotone Armijo conditions.
According to Theorem 2.2 in [32], we obtain

lim
k\rightarrow \infty

inf \| \nabla f(xk)\| = 0.

Moreover, if \eta max < 1 (\eta max is a parameter for the nonmonotone line search), then
we have

lim
k\rightarrow \infty

\| \nabla f(xk)\| = 0,

which indicates the global convergence of first-order methods with SDC.

4.2. The \bfscrO (1/\bfitk \bftwo) convergence rate of FISC-PM. We analyze the con-
vergence of FISC-PM for the composite optimization problem (1.1) with a unique
minimizer x\ast . It is assumed that \psi \in \scrF L is bounded from below. We consider the
case that the step size is fixed to be 0 < s \leq 1/L and no restarts are used, i.e., the
sequences \{ xk\} and \{ yk\} are merely updated by (2.16) and (2.17). In other words,
\beta k, \gamma k are specified by (2.4) with lk = k. We introduce the following discrete-time
Lyapunov function \scrE (k):

(4.6)

\scrE (k) = 2

\bigm\| \bigm\| \bigm\| \bigm\| xk - x\ast +
k - 1

r - 1
(xk - xk - 1)

\bigm\| \bigm\| \bigm\| \bigm\| 2 + 2(k + r - 2)2s

r - 1
(f(xk) - f(x\ast))

+
(r - 3)(k - 1)2

(r - 1)2
\| xk - xk - 1\| 2.

The discrete-time function \scrE (k) corresponds to the continuous-time Lyapunov func-
tion (3.10). We introduce a basic inequality in convex optimization.

Lemma 4. Consider a convex function of the form f(x) = \psi (x) + h(x), where
\psi \in \scrF L and h is convex. For any 0 < s \leq 1/L and x,y \in \BbbR n, we have

(4.7) f(y - sGs(y)) \leq f(x) +Gs(y)
T (y - x) - s

2
\| Gs(y)\| 2.

Proof. Define v = Gs(y) - \nabla \psi (y). Then, we have

(4.8)

f(y - sGs(y)) \leq \psi (y) - s\nabla \psi (y)TGs(y) +
Ls2

2
\| Gs(y)\| 22 + h(y - sGs(y))

\leq \psi (y) - s\nabla \psi (y)TGs(y) +
s

2
\| Gs(y)\| 22 + h(y - sGs(y))

\leq \psi (x) +\nabla \psi (y)T (y - x) - s\nabla \psi (y)TGs(y) +
s

2
\| Gs(y)\| 22

+ h(x) + vT (y - x - sGs(y))

= \psi (x) + h(x) +Gs(y)
T (y - x) - s

2
\| Gs(y)\| 22,

where the first inequality utilizes that \psi \in \scrF L, the second inequality applies s \leq 1/L,
and the third inequality follows from the convexity of g and h and v \in \partial h(y -
sGs(y)).

Based on the basic inequality (4.7), we give the following estimation.

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3198 YIFEI WANG, ZEYU JIA, AND ZAIWEN WEN

Lemma 5. Suppose that f(x) = \psi (x) + h(x), where \psi \in \scrF L and h is convex.
Assume that f has a unique minimizer x\ast with \| x\ast \| < \infty . The discrete Lyapunov
function \scrE (k) given by (4.6) satisfies

(4.9) \scrE (k) - \scrE (k - 1) \leq \alpha (\phi k - 1 - 2)\| \Delta xk - 1\| 2 - \alpha \phi k\| \Delta xk\| 2 -
2s

r - 1
(f(xk - 1) - f(x\ast)),

where

(4.10) \alpha =
r - 3

r - 1
, \phi k = 2k + r - 3, \Delta xk = xk - xk - 1.

Proof. For simplicity, we denote

rk =
\| \Delta xk\|

\| Gs(xk)\|
Gs(xk), \xi k =

k + r - 2

r - 1
, \nu k =

2(k + r - 2)(k + r - 4)

r - 1

and introduce two auxiliary variables zk and wk defined by

(4.11) zk = xk +
k - 1

r - 1
\Delta xk, wk = zk + zk - 1 - xk - xk - 1.

We can also write zk - 1 in the following way:
(4.12)

zk - 1 = xk - 1 +
k - 2

r - 1
\Delta xk - 1 =

k + r - 2

r - 1

\biggl(
xk - 1 +

k - 2

k + r - 2
\Delta xk - 1

\biggr)
 - k - 1

r - 1
xk - 1

=
k + r - 2

r - 1

\biggl(
yk - 1 +

r - 3

k + r - 2
rk - 1

\biggr)
 - k - 1

r - 1
xk - 1 = \xi kyk - 1 + \alpha rk - 1 -

k - 1

r - 1
xk - 1.

The update rule (2.16) and (2.17) can be written as

(4.13)
k - 2

r - 1
\Delta xk - 1 - \alpha rk - 1 = \xi k (\Delta xk + sGs(yk - 1)) .

Based on (4.12) and (4.13), we can write

(4.14)

zk - zk - 1 = \Delta xk +
k - 1

r - 1
\Delta xk - k - 2

r - 1
\Delta xk - 1

= \xi k\Delta xk - k - 2

r - 1
\Delta xk - 1 = - \alpha rk - 1 - \xi ksGs(yk - 1),

zk + zk - 1 = zk - zk - 1 + 2zk - 1

= - \alpha rk - 1 - \xi ksGs(yk - 1) + 2\xi kyk - 1 -
2(k - 1)

r - 1
xk - 1 + 2\alpha rk - 1

= - \xi ksGs(yk - 1) + 2\xi kyk - 1 -
2(k - 1)

r - 1
xk - 1 + \alpha rk - 1.

Using (4.11), (4.13), and the fact k - 1
r - 1 + \xi k = 2k+r - 3

r - 1 = \phi k

r - 1 yields
(4.15)

wk =
k - 1

r - 1
\Delta xk +

k - 2

r - 1
\Delta xk - 1 =

k - 1

r - 1
\Delta xk + \alpha rk - 1 + \xi k (\Delta xk + sGs(yk - 1))

=
\phi k
r - 1

\Delta xk + \alpha rk - 1 + \xi ksGs(yk - 1).

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE SDC MAKES FIRST-ORDER METHODS FASTER A3199

We now analyze the difference between 2\| xk - x\ast + k - 1
r - 1\Delta xk\| 2 in \scrE (k):

(4.16)

2

\bigm\| \bigm\| \bigm\| \bigm\| xk - x\ast +
k - 1

r - 1
\Delta xk

\bigm\| \bigm\| \bigm\| \bigm\| 2 - 2

\bigm\| \bigm\| \bigm\| \bigm\| xk - 1 - x\ast +
k - 2

r - 1
\Delta xk - 1

\bigm\| \bigm\| \bigm\| \bigm\| 2
= 2\| zk - x\ast \| 2 - 2\| zk - 1 - x\ast \| 2 = 2(zk - zk - 1)

T (zk + zk - 1 - 2x\ast)

= - 2\xi ksGs(yk - 1)
T (zk + zk - 1 - 2x\ast) - 2\alpha rTk - 1(zk + zk - 1 - 2x\ast)

= - 2\xi ksGs(yk - 1)
T (zk + zk - 1 - 2x\ast) - 2\alpha rTk - 1 (xk + xk - 1 - 2x\ast) - 2\alpha rTk - 1wk.

Then, the difference between (r - 3)(k - 1)2

(r - 1)2 \| \Delta xk\| 2 in \scrE (k) is calculated by

(4.17)

(r - 3)(k - 1)2

(r - 1)2
\| \Delta xk\| 2 -

(r - 3)(k - 2)2

(r - 1)2
\| \Delta xk - 1\| 2

= (r - 3)(\| zk - xk\| 2 - \| zk - 1 - xk - 1\| 2) = (r - 3)(zk - zk - 1 - \Delta xk)
Twk

= (r - 3) (- \alpha rk - 1 - \xi ksGs(yk - 1) - \Delta xk)
T
wk.

By using (4.16) and (4.17), we can split \scrE (k) - \scrE (k - 1) into three parts:

(4.18)

\scrE (k) - \scrE (k - 1)

= - 2\xi kGs(yk - 1)
T (zk + zk - 1 - 2x\ast) - 2\alpha rTk - 1 (xk + xk - 1 - 2x\ast)

 - 2\alpha rTk - 1wk - (r - 3)
\bigl(
\alpha rTk - 1wk + \xi ksGs(yk - 1)

Twk +\Delta xT
kwk

\bigr)
+

2(k + r - 2)2s

r - 1
(f(xk) - f(x\ast)) - 2(k + r - 3)2s

r - 1
(f(xk - 1) - f(x\ast))

= - (r - 3)(rk - 1 +\Delta xk)
Twk - 2\alpha rTk - 1 (xk + xk - 1 - 2x\ast)

 - 2\xi ksGs(yk - 1)
T (zk + zk - 1 - 2x\ast) - (r - 3)\xi ksGs(yk - 1)

Twk

+
2(k + r - 2)2s

r - 1
(f(xk) - f(x\ast)) - 2(k + r - 3)2s

r - 1
(f(xk - 1) - f(x\ast)).

The quantities in the last three rows of (4.18) are denoted as L1, L2, and L3, respec-
tively. It follows from (4.15) and r - 3 = \alpha (r - 1) that
(4.19)

L1 + 4\alpha rTk - 1(xk - 1 - x\ast) = - (r - 3)(rk - 1 +\Delta xk)
Twk - 2\alpha rTk - 1\Delta xk

= - (r - 3)(rk - 1 +\Delta xk)
T

\biggl(
\phi k
r - 1

\Delta xk + \alpha rk - 1 + \xi ksGs(yk - 1)

\biggr)
 - 2\alpha rTk - 1\Delta xk

= - (r - 3)\xi kr
T
k - 1sGs(yk - 1) - (r - 3)\xi k\Delta xT

k sGs(yk - 1)

 - \alpha (\phi k\| \Delta xk\| 2 + (r - 3)\| rk - 1\| 2)) - 2(r - 3)\xi kr
T
k - 1\Delta xk

= - \alpha
\bigl(
\phi k\| \Delta xk\| 2 + (r - 3)\| rk - 1\| 2 + 2(r - 1)\xi kr

T
k - 1(\Delta xk + sGs(yk - 1))

\bigr)
+ \=L1,

where

(4.20)
\=L1 = (r - 3)\xi kr

T
k - 1sGs(yk - 1) - (r - 3)\xi k\Delta xT

k sGs(yk - 1)

= (r - 3)\xi ksGs(yk - 1)
T (rk - 1 - \Delta xk).

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3200 YIFEI WANG, ZEYU JIA, AND ZAIWEN WEN

Utilizing (4.13) and \| rk - 1\| = \| \Delta xk - 1\| , we obtain

(4.21)

\phi k\| \Delta xk\| 2 + (r - 3)\| rk - 1\| 2 + 2(r - 1)\xi kr
T
k - 1(\Delta xk + sGs(yk - 1))

= \phi k\| \Delta xk\| 2 + (r - 3)\| rk - 1\| 2 + 2rTk - 1((k - 2)\Delta xk - 1 - (r - 3)rk - 1)

= \phi k\| \Delta xk\| 2 - (r - 3)\| rk - 1\| 2 + 2(k - 2)rTk - 1\Delta xk - 1

\geq \phi k\| \Delta xk\| 2 - (2k - r - 7)\| rk - 1\| 2 = \phi k\| \Delta xk\| 2 - (\phi k - 1 - 2)\| \Delta xk - 1\| 2.

The last inequality even holds when k = 1 because r0 = \Delta x0 = 0. By setting
y = xk - 1, x = x\ast in the basic inequality (4.7), we have

(4.22)

\| Gs(xk - 1)\|
\| \Delta xk\|

rTk - 1(xk - 1 - x\ast) = Gs(xk - 1)
T (xk - 1 - x\ast)

\geq f(xk - 1 - sGs(xk - 1)) - f(x\ast) +
s

2
\| Gs(xk - 1)\| 2 \geq 0.

Substituting inequalities (4.21) and (4.22) in (4.19) yields

(4.23) L1 \leq - \alpha \phi k\| \Delta xk\| 2 + \alpha (\phi k - 1 - 2)\| \Delta xk - 1\| 2 + \=L1.

From the definition of wk and (4.14), we obtain

(4.24)

2(zk + zk - 1 - 2x\ast) + (r - 3)wk

= 2(zk + zk - 1 - 2x\ast) + (r - 3)((zk + zk - 1 - 2x\ast) - (xk + xk - 1 - 2x\ast))

= (r - 1)

\biggl(
 - \xi ksGs(yk - 1) + \xi k2yk - 1 -

2(k - 1)

r - 1
xk - 1 + \alpha rk - 1 - 2x\ast

\biggr)
 - 2(r - 3)(xk - 1 - x\ast) - (r - 3)\Delta xk

= (r - 1)

\biggl(
 - \xi ksGs(yk - 1) + 2\xi kyk - 1 -

2(k - 1)

r - 1
xk - 1 - 2x\ast

\biggr)
 - 2(r - 3)(xk - 1 - x\ast) - (r - 3)(\Delta x - rk - 1).

The above estimation implies
(4.25)

L2 = - \xi ksGs(yk - 1)
T (2(zk + zk - 1 - 2x\ast) + (r - 3)wk)

= - (r - 1)\xi ksGs(yk - 1)
T

\biggl(
 - \xi ksGs(yk - 1) + 2\xi kyk - 1 -

2(k - 1)

r - 1
xk - 1 - 2x\ast

\biggr)
+ 2(r - 3)\xi ksGs(yk - 1)

T (xk - 1 - x\ast) + (r - 3)\xi ksGs(yk - 1)
T (\Delta xk - rk - 1).

Finally, we compute L3. Note that xk = yk - 1 - sGs(yk - 1). Taking y = yk - 1,
x = xk, or x

\ast in the basic inequality (4.7) gives

(4.26)
f(xk) \leq f(xk - 1) +Gs(yk - 1)

T (yk - 1 - xk - 1) -
s

2
\| Gs(yk - 1)\| 2,

f(xk) \leq f(x\ast) +Gs(yk - 1)
T (yk - 1 - x\ast) - s

2
\| Gs(yk - 1)\| 2.

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE SDC MAKES FIRST-ORDER METHODS FASTER A3201

Based on the above inequalities, we observe that
(4.27)

L3 +
2s

r - 1
(f(xk - 1) - f(x\ast))

=
2(k + r - 2)2s

r - 1
(f(xk) - f(x\ast)) - 2(k + r - 2)(k + r - 4)s

r - 1
(f(xk - 1) - f(x\ast))

= 4\xi ks(f(xk) - f(x\ast)) + \nu ks(f(xk) - f(xk - 1))

\leq 4\xi k

\Bigl(
sGs(yk - 1)

T (yk - 1 - x\ast) - s

2
\| Gs(yk - 1)\| 2

\Bigr)
+ \nu k

\Bigl(
Gs(yk - 1)

T (yk - 1 - x\ast) - s

2
\| Gs(yk - 1)\| 2

\Bigr)
= \=L3.

Note that 4\xi k + \nu k = 2(k+r - 2)2

r - 1 =
(r - 1)\xi 2k

8 . \=L3 can be rewritten into
(4.28)
\=L3 = (4\xi k + \nu k)s

\Bigl(
Gs(yk - 1)

Tyk - 1 -
s

2
\| Gs(yk - 1)\| 2

\Bigr)
 - sGs(yk - 1)

T (4\xi kx
\ast + \nu kxk - 1)

= 2(r - 1)\xi 2ks
\Bigl(
Gs(yk - 1)

Tyk - 1 -
s

2
\| Gs(yk - 1)\| 2

\Bigr)
 - sGs(yk - 1)

T (2((r - 1) - (r - 3))\xi kx
\ast + 2((k - 1) - (r - 3))\xi kxk - 1)

= (r - 1)\xi ksGs(yk - 1)
T

\biggl(
2\xi kyk - 1 -

2(k - 1)

r - 1
xk - 1 - 2x\ast - \xi ksGs(yk - 1)

\biggr)
+ 2(r - 3)\xi ksGs(yk - 1)

T (x\ast - xk - 1).

Together with (4.20) and (4.25), we have

(4.29) \=L1 + L2 + \=L3 = 0.

Therefore, substituting (4.23), (4.27), and (4.29) in (4.18) renders (4.9).

Based on Lemma 5, we have the following estimation of \scrE (k).
Lemma 6 (discrete Lyapunov analysis of FISC-PM). Suppose that the objective

function is f(x) = \psi (x) + h(x), where \psi \in \scrF L and h is convex. Assume that f has
a unique minimizer x\ast with \| x\ast \| <\infty . The Lyapunov function \scrE (k) defined in (4.6)
satisfies

(4.30) \scrE (k) \leq \scrE (0) - 2s

r - 1
(f(x0) - f(x\ast)).

Proof. Note that \Delta x0 = x0 - x - 1 = 0. Summing (4.9) for l = 1 to k yields

\scrE (k) - \scrE (0) \leq \alpha

k\sum
l=1

\bigl(
(\phi k - 2)\| \Delta xl - 1\| 2 - \phi k\| \Delta xl\| 2

\bigr)
 - 2s

r - 1

k\sum
l=1

(f(xl - 1) - f(x\ast))

(4.31)

\leq \alpha

\Biggl(
 - \phi k\| \Delta xk\| 2 - 2

k - 1\sum
l=2

\| \Delta xl\| 2
\Biggr)

 - 2s

r - 1
(f(x0) - f(x\ast))(4.32)

\leq - 2s

r - 1
(f(x0) - f(x\ast)).(4.33)

Theorem 3.2 tells that FISC-ODE has the \scrO (t - 2) convergence rate and the fol-
lowing theorem is a discretized analogue of Theorem 3.2.

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3202 YIFEI WANG, ZEYU JIA, AND ZAIWEN WEN

Theorem 4.1 (the \scrO (k - 2) convergence rate of FISC-PM). Suppose that f(x) =
\psi (x) + h(x), where \psi \in \scrF L and h is convex. Assume that f has a unique minimizer
x\ast with \| x\ast \| <\infty . Let \{ xk\} be a sequence given by (2.16) and (2.17). The step size
is fixed as 0 < s \leq 1/L and \beta k, \gamma k are specified by (2.4) with lk = k. Then, we have

f(xk) - f(x\ast) \leq (r - 1)C0

2(k + r - 2)2s
= \scrO (k - 2),

where

C0 = \scrE (0) - 2s

r - 1
(f(x0) - f(x\ast)) = 2\| x0 - x\ast \| 2 + (r - 3)s (f(x0) - f(x\ast)) .

Proof. By Lemma 6, the sequence of \{ xk\} given by FISC-PM satisfies

f(xk) - f(x\ast) \leq r - 1

2(k + r - 2)2s
\scrE (k) \leq r - 1

2(k + r - 2)2s
C0 = \scrO (k - 2),

which completes the proof.

Note that FISC-nes is FISC-PM with h = 0. Hence, we also prove the \scrO (k - 2)
convergence rate of FISC-nes for smooth convex optimization problems.

5. Numerical experiments.

5.1. Sparse optimization. We compare FIRE, FISC, and other optimization
solvers on the following problem:

min
\bfx \in \BbbR n

1

2
\| Ax - b\| 2 + \lambda \| x\| 1.

Here we have \psi (x) = 1
2\| Ax - b\| 2, h(x) = \lambda \| x\| 1, where A \in \BbbR m\times n, b \in \BbbR m, \lambda > 0.

The proximal mapping is computed as

(5.1) (proxsh(x))i = sign(xi)max\{ | xi| - \lambda s, 0\} .

In our numerical experiment, \lambda varies from different test cases and it is around 8\times 10 - 3.

5.1.1. Algorithm details and the implementation. We describe the imple-
mentation details of our method and of the state-of-the-art algorithms used in our
numerical comparison. The solvers used for comparison include SNF [18], ASSN [31],
FPC-AS [26], and SpaRSA [29]. We give an overview of the tested algorithms:

\bullet SNF is a semismooth Newton type method which uses the filter strategy.
\bullet SNF(aCG) is the SNF solver with an adaptive parameter strategy in the CG
method for solving the Newton equation.

\bullet ASSN is an adaptive semismooth Newton method.
\bullet FPC-AS is a first-order method that uses a fixed-point iteration under
Barzilai--Borwein (BB) steps [2] and the continuation strategy.

\bullet SpaRSA, which resembles FPC-AS, is also a first-order method using BB
steps and the continuation strategy.

\bullet F-PG/F-PM/FS-PG(r)/FS-PM(r) is the FIRE/FISC algorithm using the
proximal gradient (the proximal mapping) with the continuation strategy.
The step size is obtained from the nonmonotone line search with the BB
step as the initial guess. The number in the bracket is the parameter r for
FISC-PG/FISC-PM.

The continuation strategy in F-PG/F-PM/FS-PG(r)/FS-PM(r) is the same as in [26].
Note that FISC-PM with r = 3 recovers FISTA. We take same parameters for ASSN,
FPC-AS, SpaRSA, and SNF as in [18].

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE SDC MAKES FIRST-ORDER METHODS FASTER A3203

5.1.2. The numerical comparison. We use test problems from [18], which
are constructed as follows. First, we randomly generate a sparse solution \=x \in \BbbR n

with k nonzero entries, where n = 5122 = 262144 and k = [n/40] = 5553. The k
different indices are uniformly chosen from \{ 1, 2, ..., n\} and the magnitude of each
nonzero element is set by \=xi = c1(i)10

dc2(i)/20, where c1(i) is randomly chosen from
\{ - 1, 1\} with probability 1/2, respectively, c2(i) is uniformly distributed in [0, 1], and
d is a dynamic range which can influence the efficiency of the solvers. Then we
choose m = n/8 = 32768 random cosine measurements, i.e., A\=x = (dct(\=x))J , where J
contains m different indices randomly chosen from \{ 1, 2, ..., n\} and dct is the discrete
cosine transform. Finally, we construct the input data by b = A\=x+w, where w is an
isotropic Gaussian noise with a standard deviation \=\sigma = 0.1.

To compare fairly, we set a uniform stopping criterion. For a certain tolerance \epsilon ,
we obtain a solution xnewt using ASSN [31] such that \| sGs(xnewt)\| \leq \epsilon . Then, we
terminate all methods by the relative criterion

f
\bigl(
xk
\bigr)
 - f (x\ast)

max \{ | f (x\ast) | , 1\}
\leq f (xnewt) - f (x\ast)

max \{ | f (x\ast) | , 1\}
,

where f(x) is the objective function and x\ast is a highly accurate solution using ASSN
[31] under the criterion \| sGs(x

\ast)\| \leq 10 - 13.
We solve the test problems under different tolerances \epsilon \in \{ 10 - 0, 10 - 1, 10 - 2, 10 - 4,

10 - 6\} and dynamic ranges d \in \{ 20, 40, 60, 80\} . Since the evaluations of dct (in com-
puting Ax and ATx) dominate the overall computation we mainly use the total num-
bers of A-calls and AT -calls NA to compare the efficiency of different solvers. Tables
5.1--5.4 show the average numbers of NA and CPU time over 10 independent trials.

From the numerical results, with the increase of the dynamic range, FS-PG(5)
is competitive with ASSN or even outperforms ASSN in terms of both cpu time and
NA. If only a low precision is required, i.e., \epsilon = 100, FPC-AS has the smallest NA

with dynamic ranges 40dB, 60dB, and 80dB. With a relative low precision of \epsilon , F-PM
achieves better performance than FS-PG(5). Although in one iteration F-PM has
to calculate the proximal gradient twice, F-PM performs much better than F-PG.
In general, FISC with r = 5 has better performance than FISC with r = 3. These
observations indicate the strength of SDC in general.

Table 5.1
Total number of A-calls and AT -calls NA and CPU time (in seconds) averaged over 10 inde-

pendent runs with dynamic range 20dB.

Method \epsilon : 100 \epsilon : 10 - 1 \epsilon : 10 - 2 \epsilon : 10 - 4 \epsilon : 10 - 6

Time NA Time NA Time NA Time NA Time NA

SNF 1.09 84.6 2.63 205.0 3.20 254.2 3.85 307.0 4.59 373.0
SNF(aCG) 1.11 84.6 2.62 205.0 3.24 254.2 4.13 331.2 6.62 486.2
ASSN 1.13 89.8 1.82 145.0 2.10 \bfone \bfseven \bfthree .\bfzero \bftwo .\bfnine \bfseven \bftwo \bffour \bfsix .\bffour \bfthree .\bffive \bffive \bftwo \bfnine \bfeight .\bftwo
FPC-AS 1.45 109.8 5.08 366.0 6.88 510.4 9.56 719.4 9.90 740.8
SpaRSA 4.92 517.2 4.84 519.2 5.12 539.8 5.86 627.0 6.61 705.8
F-PG 2.14 190.4 3.21 291.2 4.25 376.8 6.79 600.8 9.05 801.8
FS-PG(3) 0.81 71.2 1.34 \bfone \bfone \bfnine .\bffour \bfone .\bfnine \bfthree 175.6 3.24 283.8 4.48 394.8
FS-PG(5) \bfzero .\bfseven \bfzero \bfsix \bffour .\bffour \bfone .\bfthree \bftwo 121.2 2.07 182.0 3.24 286.6 4.39 390.2
F-PM 0.95 81.8 1.54 140.0 2.11 180.4 3.91 338.8 5.14 464.2
FS-PM(3) 1.12 97.0 1.97 168.0 3.51 298.6 6.71 596.0 9.39 817.0
FS-PM(5) 0.98 87.4 1.68 141.4 2.65 227.0 6.36 560.2 8.08 702.2

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3204 YIFEI WANG, ZEYU JIA, AND ZAIWEN WEN

Table 5.2
Total number of A-calls and AT -calls NA and CPU time (in seconds) averaged over 10 inde-

pendent runs with dynamic range 40dB.

Method \epsilon : 100 \epsilon : 10 - 1 \epsilon : 10 - 2 \epsilon : 10 - 4 \epsilon : 10 - 6

Time NA Time NA Time NA Time NA Time NA

SNF 2.06 158.2 5.01 380.8 6.19 483.2 6.69 525.0 7.16 566.8
SNF(aCG) 2.08 158.2 4.97 380.8 6.16 483.2 7.07 553.6 7.30 580.0
ASSN 2.28 182.2 3.53 285.4 4.10 338.6 4.97 \bffour \bfzero \bfseven .\bfzero \bffive .\bffive \bfsix \bffour \bffive \bfnine .\bftwo
FPC-AS 2.12 158.0 5.34 399.2 7.72 578.4 9.62 720.2 10.41 774.8
SpaRSA 5.05 523.4 5.07 530.0 5.56 588.2 6.38 671.6 7.28 755.8
F-PG 4.28 378.0 5.76 522.4 7.28 642.8 9.28 813.6 11.05 990.0
FS-PG(3) 1.71 153.6 3.05 276.4 3.94 354.6 4.89 439.6 6.37 567.2
FS-PG(5) \bfone .\bfsix \bftwo \bfone \bffour \bfthree .\bfsix \bftwo .\bfseven \bftwo \bftwo \bffour \bffive .\bfsix \bfthree .\bffour \bfsix \bfthree \bfone \bfseven .\bfsix \bffour .\bffour \bfone 415.6 5.68 518.0
F-PM 2.02 171.2 2.68 244.0 3.94 347.4 5.34 480.8 7.09 626.2
FS-PM(3) 2.11 184.2 3.14 279.8 4.68 424.0 7.29 648.2 10.11 903.4
FS-PM(5) 2.17 191.2 3.50 308.8 4.54 401.4 6.07 537.0 8.25 716.8

Table 5.3
Total number of A-calls and AT -calls NA and CPU time (in seconds) averaged over 10 inde-

pendent runs with dynamic range 60dB.

Method \epsilon : 100 \epsilon : 10 - 1 \epsilon : 10 - 2 \epsilon : 10 - 4 \epsilon : 10 - 6

Time NA Time NA Time NA Time NA Time NA

SNF 5.12 391.8 8.28 648.8 9.86 777.6 10.44 828.2 11.13 881.0
SNF(aCG) 5.05 391.8 8.32 648.8 9.89 777.6 10.83 861.2 11.37 903.2
ASSN 3.60 295.4 5.01 416.4 5.95 492.0 6.97 \bffive \bfeight \bftwo .\bffour 7.66 \bfsix \bffour \bftwo .\bffour
FPC-AS \bfthree .\bfone \bffour \bftwo \bfthree \bftwo .\bftwo 8.89 644.0 11.61 844.4 13.80 1004.4 14.08 1031.2
SpaRSA 5.48 561.2 5.69 598.2 6.57 683.2 7.70 797.8 8.62 900.6
F-PG 7.07 638.6 8.77 780.8 10.35 937.2 13.05 1157.2 14.85 1338.0
FS-PG(3) 3.53 328.6 4.58 422.0 5.60 506.0 6.83 619.8 7.96 714.6
FS-PG(5) 3.49 319.0 4.58 428.6 5.72 520.6 \bfsix .\bfseven \bfone 612.8 \bfseven .\bffive \bfeight 695.0
F-PM 3.53 310.4 \bffour .\bfone \bffour \bfthree \bfseven \bffour .\bfzero \bffive .\bffour \bfthree \bffour \bfeight \bffive .\bfeight 7.98 720.2 9.65 868.6
FS-PM(3) 3.76 342.0 4.74 429.8 6.50 584.8 10.52 950.2 13.32 1201.2
FS-PM(5) 3.48 307.6 4.19 383.2 5.53 502.4 8.01 703.4 9.33 848.8

Table 5.4
Total number of A-calls and AT -calls NA and CPU time (in seconds) averaged over 10 inde-

pendent runs with dynamic range 80dB.

Method \epsilon : 100 \epsilon : 10 - 1 \epsilon : 10 - 2 \epsilon : 10 - 4 \epsilon : 10 - 6

Time NA Time NA Time NA Time NA Time NA

SNF 7.65 591.0 10.87 841.6 12.49 978.6 13.08 1024.8 15.89 1227.6
SNF(aCG) 7.58 591.0 10.78 841.6 12.44 978.6 13.30 1042.2 13.99 1105.8
ASSN 5.96 482.8 7.47 601.0 8.39 690.6 9.52 780.6 10.32 852.6
FPC-AS \bffour .\bftwo \bfeight \bfthree \bftwo \bfone .\bffour 8.28 611.0 10.61 788.0 11.85 883.2 12.13 902.0
SpaRSA 5.18 543.2 6.26 665.4 7.35 763.0 8.26 871.8 8.98 942.0
F-PG 7.18 642.8 8.90 792.8 10.35 951.0 12.47 1134.8 13.50 1231.6
FS-PG(3) 4.85 444.8 6.09 555.4 7.01 649.2 7.76 727.0 8.65 789.2
FS-PG(5) 4.30 407.2 5.72 521.6 6.77 625.8 \bfseven .\bfsix \bffour \bfseven \bfzero \bftwo .\bfzero \bfeight .\bfone \bffive \bfseven \bffive \bfthree .\bftwo
F-PM 4.17 388.8 \bffive .\bftwo \bfsix \bffour \bfsix \bfthree .\bftwo \bfsix .\bffive \bffive 583.2 8.14 729.2 9.06 814.6
FS-PM(3) 6.00 533.4 6.87 635.4 8.41 748.4 13.08 1162.8 15.04 1348.4
FS-PM(5) 4.99 436.4 5.75 525.0 7.08 639.8 9.51 860.0 10.93 987.0

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE SDC MAKES FIRST-ORDER METHODS FASTER A3205

5.2. Logistic regression. We consider the \ell 1-logistic regression problem

(5.2) min
\bfx =(\^\bfx ,y)\in \BbbR n+1

1

N

N\sum
i=1

log(1 + exp(- bi(\langle ai, \^x\rangle + y))) + \lambda \| x\| 1,

where data pairs (ai, bi) \in \BbbR n \times \{ - 1, 1\} correspond to a given data set. The regular-
ization parameter \lambda > 0 controls the level of sparsity of a solution to (5.2). In our
numerical experiments, \lambda is set to be 0.001.

5.2.1. Algorithm details and the implementation. The solvers include
prox-SVRG [30], Adagrad [8], and SGD. We give an overview of the tested meth-
ods:

\bullet prox-SVRG stands for a variance reduced stochastic proximal gradient met-
hod. Similar to [19], we substitute the basic variance reduction technique
proposed in [30] with the minibatch version (2.20).

\bullet Adagrad is a stochastic proximal gradient method with a specific strategy for
choosing adaptive step sizes. We use the minibatch gradient (2.19) as the
first-order oracle in our implementation.

\bullet SGD is a stochastic proximal gradient method. The minibatch gradient (2.19)
is used as the first-order oracle in our implementation.

\bullet sF-PG/sFS-PG(r) stands for the stochastic version of FIRE/FISC using the
proximal gradient. The stochastic oracle (2.19) is used. In FISC, we take
r = 3 and r = 7.

\bullet sFVR-PG/sFSVR-PG(r) stands for the stochastic version of FIRE/FISC us-
ing the proximal gradient. The variance reduced stochastic oracle (2.20) is
used. In FISC, we take r = 3 and r = 7.

For all solvers, the sample size is fixed to be | \scrS k| = \lfloor 0.01N\rfloor . The proximal operator
of the \ell 1-norm is given in (5.1). In SVRG, we set m = 200 in (2.20); in sFVR-
PG/sFSVR-PG, we set m = 20 in (2.20). Here we intentionally set a larger m in
SVRG because it generates a higher precision solution.

5.2.2. The numerical comparison. The tested data sets obtained from lib-
svm [5] in our numerical comparison are summarized in Table 5.5. Except for two
large data sets tfidf and log1p, we linearly scale the entry of the data-matrix A =
(a1,a2, . . . ,aN) to [0, 1]. Then, we add a row of ones into the data-matrix A as
coefficients for the bias term in our linear classifier. The data sets for multiclass clas-
sification have been manually divided into two types of features. For instance, the
MNIST data set is used to classify even and odd digits.

Table 5.5
Information of the data sets in \ell 1-logistic regression. Here ``sparsity"" represents the proportion

of nonzero entries in \bfA .

Data set Data points N Variables n sparsity
rcv1 20,242 47,236 0.16\%
CINA 16,033 132 29.56\%
MNIST 60,000 784 19.12\%
gisette 6,000 5,000 12.97\%

mushroom 8,124 112 18.75\%
synthetic 10,000 50 22.12\%

tfidf 16,087 150,360 0.83\%
log1p 16,087 4,272,227 0.14\%

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3206 YIFEI WANG, ZEYU JIA, AND ZAIWEN WEN

Table 5.6
Initial step sizes.

Solver prox-SVRG Adagrad SGD sF-PG sFS-PG sFVR-PG sFSVR-PG
rcv1 8 2 - 4 32 32 32 8 16
CINA 2 2 - 3 8 8 8 2 2
MNIST 0.5 2 - 5 1 1 1 0.5 0.5
gisette 0.5 2 - 5 2 1 2 0.5 0.5

mushroom 128 8 8 128 128 128 128
synthetic 2 0.125 4 4 4 2 2

tfidf 2 0.25 1 0.25 0.5 0.25 0.25
log1p 32 0.5 16 16 16 32 32

The initial step size varies for different tested data sets and it determines the per-
formance of solvers. Hence, we chose the initial step size from set \{ 2i| i \in \{ - 7, - 6, . . . ,
7\} \} . For each data set, we ran the algorithms with these different parameters and
selected a parameter that ensured the best overall performance. Table 5.6 gives the
initial step size over these data sets. For SGD, sF(S)-PG, and sF(S)VR-PG, we use
an exponentially decaying step size. Namely, we decrease the step size by multiplying
0.85 in each epoch. For all methods, we choose x0 = 0 as the initial point.

We next show the performance of all methods. The change of the relative error
(f(x) - f(x\ast))/(max\{ 1, | f(x\ast)| \}) is reported with respect to epoch. Here one epoch
means going through the entire dataset for one time and it involves several iterations
since the sample size is fixed to be | \scrS k| = \lfloor 0.01N\rfloor . The point x\ast is a reference solution
of problem (5.2) generated by S2N-D in [19] with a stopping criterion \| xk - xk - 1\| <
10 - 12. The numerical results are plotted in Figure 5.1. We average the results over
10 independent runs except that only one run is used for log1p because the execution
time is too long.

In Figure 5.1, we can roughly split these stochastic methods into two categories:
with and without variance reduction techniques. The first category includes sFVR-
PG, sFSVR-PG, and prox-SVRG, while the second category consists of sF-PG, sFS-
PG, SGD, and Adagrad. For methods in the first category, we observe that sFVR-
PG and sFSVR-PG defeat all other methods, especially in epoch. sFSVR-PG(7) has
competitive performance compared to sFSVR-PG and sFSVR-PG(3). The variance
reduction technique seems to be especially well-suited for stochastic FIRE/FISC. On
log1p, SVRG decreases slowly in the early stage of iterations but converges rapidly
when the iterates are close to an optimal solution.

On most test cases, sFS-PG(7) achieves the best performance both with respect to
relative error and epoch among other methods, when variance reduction techniques
are not used. Our observation indicates that methods with SDC, i.e., sF-PG and
sFS-PG, outperform SGD and Adagrad. On large data sets, like tfidf and log1p,
SGD converges to a solution with low precision. Adagrad experiences oscillation after
100 epochs. Although sF-PG and sFS-PG experience oscillation at first, they finally
converge to a precise solution.

In general, sFS-PG(7) is better than sFS-PG(3) and it has similar performance
to sF-PG. While sFVR-PG and sFSVR-PG(3) slightly outperform sFSVR-PG(7) in
some test cases, sFSVR-PG(7) can lead to a more accurate solution on data sets
such as mushroom, tfidf, and log1p within some given number of epochs. Overall,
our numerical results indicate that SDC, especially combined with variance reduction
techniques, is very promising.

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE SDC MAKES FIRST-ORDER METHODS FASTER A3207

0 10 20 30 40 50 60 70 80 90 100

epochs

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

re
la

ti
v
e

 e
rr

o
r

prox-SVRG

Adagrad

SGD

sF-PG

sFS-PG3

sFS-PG7

sFVR-PG

sFSVR-PG3

sFSVR-PG7

(a) rcv1

0 10 20 30 40 50 60 70 80 90 100

epochs

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

re
la

ti
v
e

 e
rr

o
r

prox-SVRG

Adagrad

SGD

sF-PG

sFS-PG3

sFS-PG7

sFVR-PG

sFSVR-PG3

sFSVR-PG7

(b) CINA

0 10 20 30 40 50 60 70 80 90 100

epochs

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

re
la

ti
v
e

 e
rr

o
r

prox-SVRG

Adagrad

SGD

sF-PG

sFS-PG3

sFS-PG7

sFVR-PG

sFSVR-PG3

sFSVR-PG7

(c) MNIST

0 20 40 60 80 100 120 140 160 180 200

epochs

10
-4

10
-3

10
-2

10
-1

10
0

10
1

re
la

ti
v
e

 e
rr

o
r

prox-SVRG

Adagrad

SGD

sF-PG

sFS-PG3

sFS-PG7

sFVR-PG

sFSVR-PG3

sFSVR-PG7

(d) gisette

0 10 20 30 40 50 60 70 80 90 100

epochs

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

re
la

ti
v
e

 e
rr

o
r

prox-SVRG

Adagrad

SGD

sF-PG

sFS-PG3

sFS-PG7

sFVR-PG

sFSVR-PG3

sFSVR-PG7

(e) mushroom

0 10 20 30 40 50 60 70 80 90 100

epochs

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

re
la

ti
v
e

 e
rr

o
r

prox-SVRG

Adagrad

SGD

sF-PG

sFS-PG3

sFS-PG7

sFVR-PG

sFSVR-PG3

sFSVR-PG7

(f) synthetic

0 10 20 30 40 50 60 70 80 90 100

epochs

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

re
la

ti
v
e

 e
rr

o
r

prox-SVRG

Adagrad

SGD

sF-PG

sFS-PG3

sFS-PG7

sFVR-PG

sFSVR-PG3

sFSVR-PG7

(g) tfidf

0 20 40 60 80 100 120 140 160 180 200

epochs

10
-8

10
-6

10
-4

10
-2

10
0

10
2

re
la

ti
v
e

 e
rr

o
r

prox-SVRG

Adagrad

SGD

sF-PG

sFS-PG3

sFS-PG7

sFVR-PG

sFSVR-PG3

sFSVR-PG7

(h) log1p

Fig. 5.1. Change of the relative error with respect to the epochs for solving the \ell 1-logistic
regression problem (averaged over 10 independent runs, except for log1p).

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3208 YIFEI WANG, ZEYU JIA, AND ZAIWEN WEN

Table 5.7
The number of parameters of DenseNet12/ResNet34 on CIFAR-10/CIFAR-100.

DenseNet121 ResNet34
CIFAR-10 6,956,298 21,282,122
CIFAR-100 7,048,548 21,328,292

Table 5.8
The initial learning rate.

CIFAR-10 CIFAR-100
MSGD 0.1 0.1
Adam 0.001 0.001
FIRE 0.01 0.1
FISC 0.01 0.1

5.3. Deep learning. The optimization problem in deep learning is

min
\bfx \in \BbbR n

1

N

N\sum
i=1

l
\Bigl(
f
\Bigl(
a(i),x

\Bigr)
, b(i)

\Bigr)
+ \lambda \| x\| 22,

where x denotes the parameters for training, data pairs \{ (a(i), b(i))\} correspond to
a given data set, f(\cdot ,x) represents the function determined by the neural network
architecture, l(\cdot , \cdot) denotes the loss function, and \lambda is the coefficient of weight decay
(\ell 2-regularization).

We evaluate our proposed algorithm on deep learning for image classification
tasks using the benchmark data sets: CIFAR-10 and CIFAR-100 [14]. CIFAR-10 is a
database of images from 10 classes and CIFAR-100 consists of images drawn from 100
classes. Both of them consist of 50,000 training images and 10,000 test images. We
normalize the data using the channel means and standard deviations for preprocessing.
The neural network architectures include DenseNet121 [11] and ResNet34 [10]. The
number of parameters is listed in Table 5.7.

The implemented algorithms include SGD with momentum (MSGD), Adam [13],
FIRE, and FISC with r = 7. The initial learning rate for different methods is given in
Table 5.8. On CIFAR-10, we train the network using a batch size 128 for 200 epochs.
The coefficient \lambda is 5 \times 10 - 4. The learning rate is decreased 10 times at epoch 150,
which is the same as [17]. On CIFAR-100, we train the network using a batch size 64
for 300 epochs and \lambda is 1\times 10 - 4. The learning rate is multiplied by 0.1 at epoch 150
and epoch 225, which is the same as [11]. For both data sets, the momentum factor
is 0.9 in MSGD, FIRE, and FISC; (\beta 1, \beta 2) in Adam are (0.9, 0.999) on DenseNet and
(0.99, 0.999) on ResNet; \epsilon in Adam is 10 - 8.

Figures 5.2 and 5.3 show that on CIFAR-10, FISC and FIRE have better perfor-
mance than MSGD and Adam from the very beginning, especially in training loss. On
CIFAR-10 with DenseNet, the test accuracy of FISC approaches 95\% around epoch
130. On CIFAR-100 with DenseNet, FISC and FIRE outperform MSGD and Adam
in test accuracy. This further illustrates the strength of SDC.

6. Conclusion. In this paper, we propose a family of first-order methods with
SDC. The restarting condition is the foundation for the global convergence of methods
with SDC. From an ODE perspective, we construct the FISC-ODE with an \scrO (t - 2)
convergence rate. FISC-PG shows excellent performance in numerical experiments,
while FISC-PM has a provable \scrO (k - 2) convergence rate. Numerical experiments
indicate that our algorithmic framework with SDC is competitive and promising.

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE SDC MAKES FIRST-ORDER METHODS FASTER A3209

0 25 50 75 100 125 150 175 200
Epoch

10−2

10−1

100
MSGD
adam
FIRE
FISC

(a) Training Loss, DenseNet121

0 25 50 75 100 125 150 175 200
Epoch

75

80

85

90

95

MSGD
adam
FIRE
FISC

(b) Test Accuracy, DenseNet121

0 25 50 75 100 125 150 175 200
Epoch

10−3

10−2

10−1

100
MSGD
adam
FIRE
FISC

(c) Training Loss, ResNet34

0 25 50 75 100 125 150 175 200
Epoch

75

80

85

90

95

MSGD
adam
FIRE
FISC

(d) Test Accuracy, ResNet34

Fig. 5.2. Numerical results on CIFAR-10. Top: DenseNet121; Bottom: ResNet34.

0 50 100 150 200 250 300
Epoch

10−2

10−1

100

MSGD
adam
FIRE
FISC

(a) Training Loss, DenseNet121

0 50 100 150 200 250 300
Epoch

60

65

70

75

80

MSGD
adam
FIRE
FISC

(b) Test Accuracy, DenseNet121

0 50 100 150 200 250 300
Epoch

10−2

10−1

100

MSGD
adam
FIRE
FISC

(c) Training Loss, ResNet34

0 50 100 150 200 250 300
Epoch

60

65

70

75

80

MSGD
adam
FIRE
FISC

(d) Test Accuracy, ResNet34

Fig. 5.3. Numerical results on CIFAR-100. Top: DenseNet121; Bottom: ResNet34.

Acknowledgments. The authors are grateful to Professor Andrea Walther and
two anonymous referees for their valuable comments and suggestions. Zaiwen Wen
would like to thank Lin Lin and Chao Yang for the kind introduction to and discussion
on the FIRE method. part by the NSFC grants 11421101 and 11831002, and by the
National Basic Research Project under the grant 2015CB856002.D

ow
nl

oa
de

d
10

/0
3/

22
 to

 1
28

.1
2.

12
2.

13
7

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

A3210 YIFEI WANG, ZEYU JIA, AND ZAIWEN WEN

REFERENCES

[1] H. Attouch, Z. Chbani, J. Fadili, and H. Riahi, First-order optimization algorithms via
inertial systems with hessian driven damping, Math. Program., 2020, https://doi.org/10.
1007/s10107-020-01591-1.

[2] J. Barzilai and J. M. Borwein, Two-point step size gradient methods, IMA J. Numer. Anal.,
8 (1988), pp. 141--148.

[3] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse
problems, SIAM J. Imaging Sci., 2 (2009), pp. 183--202.

[4] E. Bitzek, P. Koskinen, F. G\"ahler, M. Moseler, and P. Gumbsch, Structural relaxation
made simple, Phys. Rev. Lett., 97 (2006).

[5] C.-C. Chang and C.-J. Lin, LIBSVM: A library for support vector machines, ACM Trans.
Intell. Syst. Technol., 2 (2011), 27.

[6] Y. Dai, Nonlinear Conjugate Gradient Methods, Shanghai Science and Technology, Shanghai,
2000.

[7] A. Defazio, F. Bach, and S. Lacoste-Julien, SAGA: A fast incremental gradient method
with support for non-strongly convex composite objectives, in Proceedings of Neural Infor-
mation Processing Systems, 2014, pp. 1646--1654.

[8] J. Duchi, E. Hazan, and Y. Singer, Adaptive subgradient methods for online learning and
stochastic optimization, J. Mach. Learn. Res., 12 (2011), pp. 2121--2159.

[9] E. Ghadimi, H. R. Feyzmahdavian, and M. Johansson, Global convergence of the heavy-
ball method for convex optimization, in Proceedings of the European Control Conference
(ECC), IEEE, 2015, pp. 310--315.

[10] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition, in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 770--778.

[11] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, Densely connected convo-
lutional networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 4700--4708.

[12] R. Johnson and T. Zhang, Accelerating stochastic gradient descent using predictive variance
reduction, in Proceedings of the Advances in Neural Information Processing Systems, 2013,
pp. 315--323.

[13] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization, in Proceedings of the
International Conference on Learning Representations 2015.

[14] A. Krizhevsky, Learning Multiple Layers of Features from Tiny Images, Master's thesis,
Department of Computer Science, University of Toronto, 2009.

[15] L. Lessard, B. Recht, and A. Packard, Analysis and design of optimization algorithms via
integral quadratic constraints, SIAM J. Optim., 26 (2016), pp. 57--95.

[16] D. C. Liu and J. Nocedal, On the limited memory BFGS method for large scale optimization,
Math. Program., 45 (1989), pp. 503--528.

[17] L. Luo, Y. Xiong, Y. Liu, and X. Sun, Adaptive gradient methods with dynamic bound of
learning rate, in Proceedings of the International Conference on Learning Representations,
2018.

[18] A. Milzarek and M. Ulbrich, A semismooth Newton method with multidimensional filter
globalization for l1-optimization, SIAM J. Optim., 24 (2014), pp. 298--333.

[19] A. Milzarek, X. Xiao, S. Cen, Z. Wen, and M. Ulbrich, A stochastic semismooth Newton
method for nonsmooth nonconvex optimization, SIAM J. Optim., 29 (2019), pp. 2916--2948.

[20] Y. Nesterov, A method of solving a convex programming problem with convergence rate
O(1/k2), Soviet Math. Dokl., 27 (1983), pp. 372--376.

[21] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic Course, Appl. Op-
tim. 87, Springer, New York, 2013.

[22] B. O'Donoghue and E. J. Cand\'es, Adaptive restart for accelerated gradient schemes, Found.
Comput. Math., 15 (2015), pp. 715--732.

[23] B. T. Polyak, Introduction to Optimization, Optimization Software, New York, 1987.
[24] M. Schmidt, N. LeRoux, and F. Bach, Minimizing Finite Sums with the Stochastic Average

Gradient, Technical report, INRIA, 2013.
[25] W. Su, S. Boyd, and E. J. Cand\`es, A differential equation for modeling Nesterov's accelerated

gradient method: Theory and insights, J. Mach. Learn. Res., 17 (2016).
[26] Z. Wen, W. Yin, W. Goldfarb, and D. Zhang, A fast algorithm for sparse reconstruction

based on shrinkage, subspace optimization, and continuation, SIAM J. Sci. Comput., 32
(2010), pp. 1832--1857.

[27] A. Wibisono, A. C. Wilson, and M. I. Jordan, A variational perspective on accelerated
methods in optimization, Proc. Natl. Acad. Sci. USA, 113 (2016), pp. E7351--E7358.

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1007/s10107-020-01591-1
https://doi.org/10.1007/s10107-020-01591-1

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

THE SDC MAKES FIRST-ORDER METHODS FASTER A3211

[28] A. C. Wilson, B. Recht, and M. I. Jordan, A Lyapunov Analysis of Momentum Methods
in Optimization, https://arxiv.org/abs/1611.02635, 2016.

[29] S. J. Wright, R. D. Nowak, and M. A. Figueiredo, Sparse reconstruction by separable
approximation, IEEE Trans. Signal Process., 57 (2009), pp. 2479--2493.

[30] L. Xiao and T. Zhang, A proximal stochastic gradient method with progressive variance re-
duction, SIAM J. Optim., 24 (2014), pp. 2057--2075.

[31] X. Xiao, Y. Li, Z. Wen, and L. Zhang, A regularized semi-smooth Newton method with
projection steps for composite convex programs, J. Sci. Comput., 76 (2018), pp. 364--389.

[32] H. Zhang and W. W. Hager, A nonmonotone line search technique and its application to
unconstrained optimization, SIAM J. Optim., 14 (2004), pp. 1043--1056.

[33] J. Zhang, A. Mokhtari, S. Sra, and A. Jadbabaie, Direct Runge-Kutta discretization
achieves acceleration, in Proceedings of the 32nd International Conference on Neural In-
formational Processing Systems, 2018, pp. 3900--3909.

D
ow

nl
oa

de
d

10
/0

3/
22

 to
 1

28
.1

2.
12

2.
13

7
. R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://arxiv.org/abs/1611.02635

	Introduction
	Organization
	Preliminaries

	The framework of SDC
	A family of first-order methods with SDC
	A variant of FISC
	SDC for other optimization problems
	Composite optimization problems
	Stochastic composite optimization problems

	SDC in deep learning
	The comparison with other first-order methods

	SDC from an ODE perspective
	SDC in continuous time
	FISC-ODE with a O(1/t2) convergence rate
	Comparison with other first-order methods with ODE interpretations

	Convergence analysis
	The global convergence of methods with SDC
	The O(1/k2) convergence rate of FISC-PM

	Numerical experiments
	Sparse optimization
	Algorithm details and the implementation
	The numerical comparison

	Logistic regression
	Algorithm details and the implementation
	The numerical comparison

	Deep learning

	Conclusion
	References

