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SDC makes first-order methods faster Introduction

The problem setting

@ We are interested in the following unconstrained optimization
problems

min f(x) = (x) + h(x), (1)

xER™
where 1) is smooth and h is a possibly non-smooth convex function.

@ In machine learning, ¥ often has the form

1 N
b0 = 2 i), (2)

where 1); is the prediction error to the i-th sample.

@ The dimension of the variable x and the number of samples N are
often extremely HUGE.
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SDC makes first-order methods faster Introduction

First-order and/or stochastic methods

@ The dimension of the variable x and the number of samples N are
often extremely HUGE.

@ The high dimension of the variable = makes first-order methods
popular. Many of these methods incorporate a momentum term to
accelerate the convergence.

@ Stochastic algorithms deal with the large sample number N.

e The vanilla SGD may suffer from the large variance of stochastic
gradients.

o SVRG , SAG and SAGA tackle this problem and achieve acceleration
compared to SGD.

Yifei Wang (PKU) SDC makes first-order methods faster zackwang24@pku.edu.cn 4 /44



SDC makes first-order methods faster Introduction

First-order methods with momentum

@ Nesterov accelerated method
Xip = Yi—1 — SV f(yr-1),

Y =X+ m(xk — Xj—1).

@ The heavy-ball method

{ Wy = BBy, — Vf(xp),

Xk+1 = Xk — SUE41-

@ The non-linear conjugate gradient method

{ g1 = 5,(€CG)uk - Vf(xp),

Xk+1 = Xk — SEUg41-
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SDC makes first-order methods faster Introduction

FIRE from molecular dynamics

@ Recently, an optimization algorithm called fast inertial relaxation
engine (FIRE!) is proposed for finding the atomic structures with the
minimum potential energy.

@ Involve an extra term of the velocity correction along the gradient
direction with the same magnitude of the current velocity and adopt
a carefully designed restarting criterion.

up1 = (11— Br)ug — ’BkHVH;(ka)va(Xk) -V f(xp)

@ FIRE can outperform the conjugate gradient method. It is even
competitive to the limited-memory BFGS in several test cases.

@ Nevertheless, the analysis on the convergence rate is absent.

LErik Bitzek et al. "Structural Relaxation Made Simple”. In: Physical Review Letters 97.17:(2006).
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SDC makes first-order methods faster Introduction

Our contributions

@ Adapt FIRE in molecular dynamics to solve general smooth and
nonsmooth optimization problems.

e Introduce a family of first-order methods with the search direction
correction (SDC) and propose the fast inertial search direction
correction (FISC) algorithm.

e SDC is extended to composite optimization and stochastic
optimization problems.

@ Interpret methods with SDC by second-order ODEs.

o FISC's ODE has the convergence rate of O(1/t?) on smooth convex
optimization problems.

o On composite optimization problems, FISC is proven to have the
O(1/k?) convergence rate.

@ Numerical experiments on sparse optimization, logistic regression and
deep learning indicate the strength of SDC.
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SDC makes first-order methods faster The framework of SDC

A family of first-order methods with SDC

@ We first focus on solving the smooth problem (1) with A = 0.

e SDC involves two sequences of parameters {5y }r=1 and {vx}r=1 and
introduces u as a search direction to update x.

@ In the beginning of the (k + 1)-th iteration, consider the restarting
criterion

o = (=Vf(xx),ur) > 0. (3)

@ If this criterion holds, we update

e = (1— Be)ug — vk%Vf<xk> Vi) (4)

and update Sk, k-
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SDC makes first-order methods faster The framework of SDC

A family of first-order methods with SDC

@ In FIRE, B and =y are updated by

Ve+1 = Brr1 = dpBr, 0<dg <1
@ In FISC, S and v are parameterized with I, i.e.,

r r—3

e—1+r 77

K -1+

where r > 3. lp11 is updated by ;41 = I + 1.

o If the criterion (3) is not met, reset uy1, Sk+1 and Y41 as

1 = —VF(xg), (6)
Brt1 = B Ve+1 = 71-
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A family of first-order methods with SDC

@ Then, calculate the step size si. Either of the following choices of sy,
is acceptable:

(i) Fix the step size si = so.
(ii) Perform a backtracking line search to find a step size sj, that satisfies
the Armijo conditions.

(i) Perform a nonmonotone line search! to find a step size s that satisfies
nonmonotone Armijo conditions.

o Update

Xk+1 = Xk + SpUg41- (7)

1Hongchao Zhang and William W. Hager. " A nonmonotone line search technique and its application to unconstrained
optimization. In: SIAM Journal on Optimization 14.4 (2004), pp. 10431056.
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Algorithm 1 A family of first-order methods with SDC

Require: initial guess xgq, initial value ug = 0, other required parameters.
1: set k = 0, fix step size sg or calculate it by the line search.

2: while Convergence criteria are not met or k < Np,q: do

3:  Calculate ¢y by (3).

4. if ¢ > 0 then

5 Compute ug41 and update Bii1, Vi+1-

[
w1 = (L= B)wg — Yoo 40~ V. (XE) — VI (xk).
IV.f (%)
6: else
7: Set uy1 = —Vf(xx) and reset Bri1, Vi1
8: end if
9:  Fix step size si or calculate it using line search techniques.

10:  Update xg11 = X + sgugr1, £ — k + 1.
11: end while
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SDC makes first-order methods faster The framework of SDC

The importance of restarting

@ Momentum methods without/with restarting behaves like a heavy
ball/a skilled skier.

@ Nesterov accelerated method without restarting has an O(1/k?)
convergence rate.

e On quadratic cases f(x) = %ivTAl‘ +bT 2 where A is positive definite,
Brendan O'Donoghue and Emmanuel Candés! showed that Nesterov
accelerated method with restarting asymptoticly exhibits
O(exp(1 — y/k)¥) convergence rate, even without knowing . Here
k = L/u is the condition number of f.

1Brendan O’'Donoghue and Emmanuel Candés, " Adaptive restart for accelerated gradient schemes”, In: Foundations of
computational mathematics (2015).
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The importance of restarting
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SDC makes first-order methods faster The framework of SDC

SDC for composite optimization problems

e Consider the composite problem (1) with 1) is smooth and convex.

@ Given the convex function h and the step size s > 0, the proximal
mapping of A is defined as

1
prox; (x) = arg min <28||z —x|*+ h(z)) )

@ The proximal gradient is defined by

x — proxj (x — sVi(x))
. .

Gs(x) =

@ Here we present two ways to modify SDC for composite optimization
problems.

Yifei Wang (PKU) SDC makes first-order methods faster zackwang24@pku.edu.cn 14 / 44



SDC makes first-order methods faster The framework of SDC

The proximal gradient

The first way is to use the proximal gradient.

Simply replace V f(x) in (4) by the proximal gradient G4(x).

The restarting criterion uses the quantity

o = (g, =G, (Xk)) -

If o > 0, then update Bi11,vk11 and

[ |

Sk

Gy (xk) — G, (x5).-
@ Otherwise, reset Sk11,Yx+1 and

U1 = —G, (xp).

o Update xp11 = Xk + SpUgy1-
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SDC makes first-order methods faster The framework of SDC

The proximal mapping

@ The second way is to use the proximal mapping.
@ Introduce an auxiliary variable y € R™ and start with x¢p = x_;.
@ The restarting criterion uses the quantity:

PL = <X/€ — Xkg—1, _Gsk (Xk))> .
o If v > 0, compute

1% — Xi—1]]

yi =% (1= B Ok = Xe1) = oS

G, (Xk).
Update Sj+1,7%+1 and

Xi+1 = Yk — 356G, (V)

o Otherwise, reset 811, 7k+1 and update

Xk+1 = Xk — Sstk (Xk)
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SDC makes first-order methods faster The framework of SDC

SDC for stochastic composite optimization problems

o Consider the stochastic composite optimization problem (1), where
has the form (2) and each ¢; is convex.

@ The proximal stochastic gradient is calculated by

x — prox;* (x — sV (H)(x))

Sk

Gsk (X) =

where w(k)(x) is the stochastic approximation of the gradient.

e In each iteration, 1(*) (x) can be generated via selecting sub-samples
T C [N] uniformly at random.

Vi (x Z Vi (x (8)

zGT
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SDC for stochastic composite optimization problems

@ The variance reduced version of stochastic gradient is also adopted.
With m € N, the stochastic oracle 1)(¥) (x) can be computed by:

If kmodm=0 then setX =x; and calculate Vi)(x).

S (Vei(x) - Ve (%) + Veb(x). O

1€ Tk

Compute V w(k) (xk) |7_|

@ m is the number of iterations after which the full gradient V) is
evaluated at the auxiliary variable x.

@ The additional noise-free information V(%) is stored and utilized in
the computation of the stochastic oracles in the following iterations.
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SDC makes first-order methods faster The framework of SDC

SDC in deep learning

o Calculate the “momentum and gradient update” on uy.
u; = auy — gk,

where gy is the stochastic gradient of f evaluated at x.
@ The restarting criterion uses

o = (Ug, —8k) -

o If pr > 0, calculate ug,1 by correcting g to

w1 = (1= Be)ug — Yk I gk- (10)

@ Otherwise, set
Ug4+1 = —8k-

o Update xg41 = Xk + SpUky1-
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SDC makes first-order methods faster SDC from an ODE perspective

SDC in continuous time

@ By rescaling v, = /suy and taking the fixed step size s — 0,

vV=— X) — v [Vl X
VI(x) = Bt)v+(t) HVf(x)va( ); (11)
@ (11) is equivalent to a second-order ODE
) . |1l _
X+ Vf(x)+ B(t)x+(t) ||Vf(x)\|vf(x) =0.

@ Using the symplectic Euler scheme, the discretization of (11) recovers
the update rule of methods with SDC.
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SDC makes first-order methods faster SDC from an ODE perspective

ODE of FISC

e With r > 3, the ODE of FISC reads

% + gx FVF(x) + - 5 HV”;‘(” V) =0 (FISC-0DE)
@ The Lyapunov function for (FISC-ODE) is given by
3)t2 1 P \
() = ot g x| g s (000
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SDC makes first-order methods faster SDC from an ODE perspective

Convergence rate of FISC-ODE

If f is convex and smooth, then E(t) satisfies £(t) < 0.

For any r > 3, let x(t) be the solution to (FISC-ODE) with initial
conditions x(0) = x¢ and %x(0) = 0. Then, fort > 0, we have

(r—1)||xo — x

*HZ
12 i

@) - f(xF) <
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SDC makes first-order methods faster SDC from an ODE perspective

ODE of Nesterov accelerated method

e With r > 3, the ODE of Nesterov accelerated method?! reads
)"c—i—%)'c—i—Vf(x) =0. (12)

@ The Lyapunov function for this ODE is given by

r—1 2

E(t) = Hx—x*—i—

X

4 r—1

1Su et al. "A Differential Equation for Modeling Nesterovs Accelerated Gradient Method: Theory and Insights”. In:
Advances in Neural Information Processing Systems (2014).
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SDC makes first-order methods faster Convergence analysis

The global convergence of methods with SDC

@ We consider the case where the objective function is smooth, i.e.,
h=0in (1).

U1 is updated by (4) or (9) depending on the restarting criterion using
¢k, and X1 is updated by (7). For any integer k > 0, we have

(U1, =V f(xx)) > |V f (). (13)
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SDC makes first-order methods faster Convergence analysis

The global convergence of methods with SDC

@ We add two restarting criteria:

de ||V f (xe41) | = [V f(x)], (14)
ng < K, (15)

where K € N, dy > 1 and ny, is the number of iterations since the
last restart.

K' < K is an integer and both ¢y, = (=V f(x1),u) > 0 and (14) hold

for 0 < k < K'. Then,
0<k<K'

|ug11]|/[|Vf(xx)| is upper bounded for all
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SDC makes first-order methods faster Convergence analysis

The global convergence of methods with SDC

@ The direction assumption® holds. Namely, there exists positive
constants ¢; and ¢y such that

(1, V() < =l VEG)I?, gl < 2 VF(xi)]l. (16)

@ The step sizes sj, are obtained by the nonmonotone line search.
@ According to Theorem 2.21 | we obtain

lim inf ||V f(xg)]| = 0.
k—ro0

@ Moreover, if Nmaz < 1 (Mmaz is @ parameter for the nonmonotone line
search), then we have

lim ||V f(xg)|| = 0.
k—o0

1Hongchao Zhang and William W. Hager. " A nonmonotone line search technique and its application to unconstrained
optimization. In: SIAM Journal on Optimization 14.4 (2004), pp. 10431056.
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SDC makes first-order methods faster Convergence analysis

The O(1/k?) convergence rate of FISC-PM

@ The smooth part ¢ is convex and L-smooth.
@ The step size is fixed to be 0 < s < 1/L and no restarts are used.

o Consider the discrete Lyapunov function

2
E(k) =2 ||xp —x" + f_l(xk — Xj_1)
T — 28
B T T N ¢
WHM — X 1||2
(r—1)2 e
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SDC makes first-order methods faster Convergence analysis

The O(1/k?) convergence rate of FISC-PM

Lemma

The discrete Lyapunov function E(k) given by (17) satisfies

E(k) — E(k — 1)
<a(gr1 ~ Dl Axs 1l — oyl Axel ~ 2 (fGxir) — FG))
(18)
where 5
:T:1,¢k:2k‘+r—3,Axkzxk—xk_l. (19)

v
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SDC makes first-order methods faster Convergence analysis

Lemma (Discrete Lyapunov analysis of FISC-PM)
The Lyapunov function E(k) defined in (17) satisfies
2s

(f (x0) = f(x7))- (20)

V.

Yifei Wang (PKU) SDC makes first-order methods faster zackwang24@pku.edu.cn 29 / 44



SDC makes first-order methods faster Numerical experiments

Sparse optimization

@ We compare FIRE, FISC and other optimization solvers on the
following problem:

1
min —||Ax — b||2 + Allx]|1,
x€R” 2

where A € R™*" b ¢ R™ \ > 0.

o b= AX + w, where w is a Gaussian noise with a standard deviation
& =0.1. X € R" has k nonzero entries X; = +10%()/20 where c(i) is
uniformly distributed in [0, 1].

o Ax = (dct(x)); are m random cosine measurements. A =~ 8 x 1073,
n = 262144, m = 32768, k = 5553 and d = 40, 80.

o Terminate all methods by the relative criterion f(x*) < f (x*). where
x* is generated by ASSN satisfying ||sGs(x*)|| < e.
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SDC makes first-order methods faster Numerical experiments

Method €: 109 €:1071 €:1072 €: 1074 €:107°
Time Ny Time Ny Time Ny Time Ny Time Ny
SNF 2.06 158.2 5.01 380.8 6.19 483.2 6.69 525.0 7.16 566.8

SNF(aCG) 2.08 158.2 4.97 380.8 6.16 483.2 7.07 553.6 7.30 580.0
ASSN 2.28 182.2 3.53 285.4 4.10 338.6 4.97 407.0 5.56 459.2
FPC-AS 2.12 158.0 5.34 399.2 7.72 5784 9.62 720.2 10.41 774.8
SpaRSA  5.05 5234 5.07 530.0 5.56 588.2 6.38 671.6 7.28 755.8
F-PG 4.28 378.0 5.76 522.4 7.28 642.8 9.28 813.6 11.05 990.0
FS-PG(3) 1.71 153.6 3.05 2764 3.94 354.6 4.89 439.6 6.37 567.2
FS-PG(5) 1.62 143.6 2.72 245.6 3.46 317.6 4.41 4156 5.68 518.0
F-PM 2.02 171.2 2.68 244.0 3.94 3474 5.34 480.8 7.09 626.2
FS-PM(3) 2.11 184.2 3.14 279.8 4.68 424.0 7.29 648.2 10.11 903.4
FS-PM(5) 2.17 191.2 3.50 308.8 4.54 401.4 6.07 537.0 8.25 716.8

Table: Total number of A-calls and AT-calls N4 and CPU time (in seconds)
averaged over 10 independent runs with dynamic range 40dB.
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SDC makes first-order methods faster Numerical experiments

Method  €: 10° €:1071 €:1072 e:1077 €:1076
Time Ny Time Ny Time Ny Time Ny Time Ny
SNF 7.65 591.0 10.87 841.6 12.49 978.6 13.08 1024.8 15.89 1227.6

SNF(aCG) 7.58 591.0 10.78 841.6 12.44 978.6 13.30 1042.2 13.99 1105.8
ASSN 5.96 482.8 7.47 601.0 8.39 690.6 9.52 780.6 10.32 852.6
FPC-AS 4.28 321.4 828 611.0 10.61 788.0 11.85 883.2 12.13 902.0
SpaRSA  5.18 543.2 6.26 665.4 7.35 763.0 8.26 871.8 898 942.0
F-PG 7.18 642.8 8.90 792.8 10.35 951.0 12.47 1134.8 13.50 1231.6
FS-PG(3) 4.85 444.8 6.09 555.4 7.01 649.2 7.76 727.0 8.65 789.2
FS-PG(5) 4.30 407.2 5.72 521.6 6.77 625.8 7.64 702.0 8.15 753.2
F-PM 4.17 388.8 5.26 463.2 6.55 583.2 8.14 729.2 9.06 814.6
FS-PM(3) 6.00 5334 6.87 635.4 841 748.4 13.08 1162.8 15.04 13484
FS-PM(5) 4.99 436.4 5.75 525.0 7.08 639.8 9.51 860.0 10.93 987.0

Table: Total number of A-calls and AT-calls N4 and CPU time (in seconds)
averaged over 10 independent runs with dynamic range 80dB.
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SDC makes first-order methods faster Numerical experiments

Sparse Logistic regression

@ We consider the ¢1-logistic regression problem

Ly Zlog (1 -+ exp(=bi (a5, %) + 1)) + Al

where data pairs (a;,b;) € R" x {—1,1}, correspond to a given data
set. A is set to be 0.001.

@ For all solvers, the sample size is fixed to be |Si| = |0.01N|. In
SVRG, we set m = 200 in (9); in sFVR-PG/sFSVR-PG, we set

m = 20 in (9). Here we intentionally set a larger m in SVRG because
it generates a higher precision solution.
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SDC makes first-order methods faster Numerical experiments

Data sets

@ The tested data sets obtained from libsvm in our numerical
comparison are summarized in the following table.

@ Except for the large data set tfidf, we linearly scale the entry of the
data-matrix A = (aj,as,...,ay) to [0,1]. Then, we add a row of
ones into the data-matrix A as coefficients for the bias term in our
linear classifier.

Data Set | Data Points N | Variables n | Density
rcvl 20, 242 47,236 0.16%
MNIST 60, 000 784 19.12%
mushroom 8,124 112 18.75%
tfidf 16,087 150,360 0.83%

Table: Information of the data sets in /;-logistic regression
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SDC makes first-order methods faster Numerical experiments

Implementation details

@ The initial step sizes varies for different tested data sets and it
determines the performance of solvers. Hence, we chose the initial
step size from set {2'|i € {—7,—6,..., T}}.

e For SGD, sF(S)-PG and sF(S)VR-PG, we use an exponentially
decaying step size. Namely, we decrease the step size by multiplying
0.85 in each epoch.

@ For all methods, we choose x¢p = 0 as the initial point.

@ The change of the relative error (f(x) — f(x*))/(max{1,|f(x*)|}) is
reported with respect to epochs. Here x* is a reference solution
generated by S2N-D! with a stopping criterion ||x; — x;_1| < 10712

L Andre Milzarek et al.” A Stochastic Semismooth Newton Method for Nonsmooth Nonconvex Optimizatio”. In:
arXiv:1803.03466 (2018).
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SDC makes first-order methods faster Numerical experiments

Deep learning

@ The optimization problem in deep learning is

where x denotes the parameters for training, data pairs {(a(i), b(i))}

correspond to a given data set, f(-,x) represents the function

determined by the neural network architecture, I(-,-) denotes the loss

function and X is the coefficient of weight decay (¢2-regularization).
@ Data sets: CIFAR-10 and CIFAR-100.

@ Neural network architectures: DenseNet121 and ResNet34.
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SDC makes first-order methods faster Numerical experiments

Implementation details

@ On CIFAR-10, we train the network using a batch size 128 for 200
epochs. The coefficient \ is 5 x 1074, The learning rate is decreased
10 times at epoch 150.

@ On CIFAR-100, we train the network using a batch size 64 for 300
epochs and X is 1 x 10™%. The learning rate is multiplied by 0.1 at
epoch 150 and epoch 225.

@ For both data sets, the momentum factor is 0.9 in MSGD, FIRE and
FISC; (1, 52) in Adam are (0.9,0.999) on DenseNet and
(0.99,0.999) on ResNet; € in Adam is 1078.
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Figure: CIFAR-10, DenseNet121.
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Figure: CIFAR-10, ResNet34.
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Figure: CIFAR-100, DenseNet121.
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Figure: CIFAR-100, ResNet34.
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Conclusion

@ We propose a family of first-order methods with SDC.

@ The restarting criterion is the foundation for the global converge of
methods with SDC and leads to better numerical results.

@ From an ODE perspective, we construct the FISC-ODE with an
O(t~2) convergence rate. In the discrete case, FISC-PM has a
provable O(k~2) convergence rate.

@ Numerical experiments indicate that our algorithmic framework with
SDC is competitive and promising.
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