feedback for midterm

Problem 3: \(d_{k} \) is not the relative metric of \(d_{\infty} \) restriction!
- \(\lim_{k \to \infty} d_{k}(a^{(k)}, L) = 0 \implies \lim_{k \to \infty} d_{\infty}(a^{(k)}, L) = 0 \)
 This implies if \(X \subseteq L' \) is \(L' \)-closed, then \(X \subseteq L' \)-closed (not the other way around!)
- Relation to complete metric space. (will see later)

Problem 4: \(d_{R^{2n} \times R^{n}} = \sqrt{2} d_{R^{2n}} \)
\(B_{R^{2n}} \subseteq B_{R^{2n}} \)
- \(d_{R^{2n}} \leq d_{R^{n} \times R^{n}} \)
\(B_{R^{2n}} \subseteq B_{R^{2n}} \)

Compactness:
Def: An open cover of metric space \(M \) is a collection \(U = \{ U_{\alpha} \} \),
where \(U_{\alpha} \) is open for \(\forall \alpha \in \mathcal{I} \), and \(M = \bigcup_{\alpha \in \mathcal{I}} U_{\alpha} = \bigcup_{\alpha \in \mathcal{I}} U_{\alpha} \)
A subcover of \(U \) is \(U^{*} \subseteq U \) such that \(M = \bigcup_{\alpha \in \mathcal{I}} U_{\alpha} \)

Example: \(M = \mathbb{R}, U = \{(\alpha, \beta): \alpha < \beta \} \)
\(U^{*} = \{(\alpha', \beta'): \alpha < \beta', \alpha, \beta' \in \mathbb{Q} \} \)
\(M = [0,1], U = \bigcup_{n \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} \frac{1}{n}, 1] \)
\(U^{*} = (0, \frac{1}{2}) \bigcup \frac{1}{2}, 1] \)

Def: A metric space \(M \) is compact if every open cover of \(M \)
has a finite subcover.
Example (non-compact): $M_1 = \{(n, n+2), n \in \mathbb{Z}\}$

$M_2 = \{(\frac{1}{n}, 1), n \in \mathbb{N}\}$

To show some M is compact from definition can be very hard! If we restrict to $X \subseteq \mathbb{R}$, we have a simple criterion:

Thm (Heine-Borel): For a closed, bounded interval $[a, b] \subseteq \mathbb{R}$, any open cover has a finite subcover.

Proof: $U = \bigcup_{x \in I} \{a, b\} \subseteq \bigcup_{x \in I} U_x$ (we first restrict to

$U_x \in U$ (each $U_x = (a_x, b_x)$)

Let $X = \{x \in (a, b) \mid (a, x) \subseteq \bigcup_{i=1}^n U_i, \forall i \in U\}$

• If $x \in X$, then $\forall x \in (a, x), x \in X$.

• (a_1) is covered by some open set, so $\exists c \in (a, c)$ s.t. $(a, c) \subseteq X$.

• Let $c = \sup X$, we should $c \in X$, and $c = b$.

Another more useful characterization of compactness:

Thm (Bolzano-Weierstrass) M is compact \iff every sequence in M has a convergent subsequence.

Lemma 1. If M is compact, then every sequence in M has a convergent subsequence.

Proof: Prove by contradiction. Suppose $(a_n) \subset M$ and has no convergent subsequence. $\forall x \in M, \exists \delta > 0$ s.t. $B_{\delta}(x) \cap \{a_n\}$ is finite.

(if not, we can produce $\|a_{n_j}\| \in B_{\delta}(x), \text{ and } a_{n_j} \to x$)

Now take cover of $M: U \subseteq B_{\delta}(x)$. In order to cover M (at least $\{a_n\}$, we need infinitely many sets.

\square
Lemma 2: If M is a metric space such that every sequence in a convergent subsequence. Then $\forall \varepsilon > 0$, \exists finitely many points $x_1, \ldots, x_n \in M$ s.t. $M \supseteq B_{\varepsilon}(x_1) \cup B_{\varepsilon}(x_2) \cup \ldots \cup B_{\varepsilon}(x_n)$.

Proof: (Proof by contradiction) Take $\forall x_1 \in M$, and $B_{\varepsilon}(x_1)$. If $B_{\varepsilon}(x_1) = M$, then we are done. Otherwise take $x_2 \in M \setminus B_{\varepsilon}(x_1)$, and if $B_{\varepsilon}(x_1) \cup B_{\varepsilon}(x_2) = M$, we are done. Otherwise take $x_3 \in M \setminus B_{\varepsilon}(x_1) \cup B_{\varepsilon}(x_2)$.

We prove this process must stop in finite steps. Otherwise we get $(x_n)_{n=1}^{\infty}$, and $d(x_i, x_j) > \varepsilon$, $\forall i \neq j$. (critical!) So (x_n) is a sequence that does not have any convergent subsequences. Contradiction!

So we have $M = B_{\varepsilon}(x_1) \cup \ldots \cup B_{\varepsilon}(x_n)$.

Lemma 3: For any cover U of M (assume M still satisfies the assumption in Lemma 2), then $\exists \varepsilon > 0$, s.t. $\forall x \in M$, $B_{\varepsilon}(x) \subseteq U$.

Proof: (Proof by contradiction) Suppose $\forall \varepsilon > 0$, $\exists x \in M$, $B_{\varepsilon}(x)$ is not contained in any open set in U. Take $\varepsilon = \frac{1}{n}$, we get x_n each time.

$B_{\frac{1}{n}}(x_n) \subseteq U$ for $\forall U \in U$. Take a convergent subsequence $(x_{n_j}) \subseteq (x_n)$, and $\lim_{j \to \infty} x_{n_j} = x$. Since $x \in M$, $x \in U$ well.

$(x_{n_j}) \subseteq (x_n)$, and $\exists S > 0$ s.t. $B_S(x) \subseteq U$. Let N_k be chosen by $d(x_{n_k}, x) < \frac{S}{2}$, $\frac{1}{n_k} < \frac{S}{2}$.

Then $B_{\frac{1}{n_k}}(x_{n_k}) \subseteq B_S(x) \subseteq U$. Contradiction!
Lemma 4: If M satisfies that every convergent sequence has a convergent subsequence, then every open cover of M has a finite subcover.

Proof. By Lemma 3, \(\forall \varepsilon > 0, \exists x \in U \) \ni \(B_\varepsilon(x) \subseteq U_\varepsilon \subseteq U \).

Fix this ε, by Lemma 2, \(\exists \{x_1, \ldots, x_n\} \) s.t. \(M = \bigcup_{i=1}^n B_\varepsilon(x_i) \), \(B_\varepsilon(x_i) \subseteq U_{x_i} \subseteq U \).

So \(M = \bigcup_{i=1}^n U_{x_i} \).

Remark: Compact \Rightarrow sequentially compact.

Continuous functions on compact space

Theorem: \mathbb{R}^n gives the equivalent topology. Assume any metric is given on \mathbb{R}^n.

Goal: Show any metric on \mathbb{R}^n gives the equivalent topology.

Thm: $X \subset \mathbb{R}^n$ (with relative metric) is compact $\Rightarrow X$ is closed and bounded.

Proof: \Rightarrow If X is not closed, i.e. $\exists (a_n) \subset X$, \(\lim_{n \to \infty} a_n = x \in \mathbb{R}^n \) but $x \notin X$. Then take (a_n), it does not have convergent subsequences.

If X is not bounded, take (a_n) with $d(a_n, 0) > n$. Then (a_n) does not have convergent subsequences.

Suppose X is closed and bounded, $(a_n) \subset X$.

- $a(1) = (a_1, a_2, \ldots, a_n)$
- $a(k) = (a_1^{(k)}, a_2^{(k)}, \ldots, a_n^{(k)})$ is bounded and closed in \mathbb{R}^m.
- $(a_{1j})_{j=1}^{\infty}$ converges.
- $(a_{2i})_{i=1}^{\infty}$ converges.
repeating this process, (in finite steps!) we get a subseq \((a^{(k)}_{ij...m}) \subset (a^{(k)})\), each component converges,
\[\Rightarrow \text{convergent subseq.} \]

Rmk:
"\(\Rightarrow\)" holds for any compact metric space
"\(\Leftarrow\)" only holds for finite dim space. (\(\ell^\infty\): not true any more!)

Example: \(\mathbb{R}^n, d_E\) \(S_1 = \{ x \in \mathbb{R}^n : d_E(x, 0) = 1 \}\) unit sphere
\(S_1\) is compact \(\Leftarrow\) closed, bounded.

Thm. If \(f : M \to \mathbb{R}\) is continuous on compact \(M\), then
\(f\) is bounded on \(M\), and \(\exists c, d \in M\) s.t.
\[f(c) \leq f(x) \leq f(d) \]

Proof:

Steps:
1. \(\forall a \in M, \exists \delta_a > 0\) s.t.
\[\forall b \in B_{\delta_a}(a) \text{ i.e. } d(a, b) < \delta_a \]

 We have
 \[|f(b) - f(a)| < 1 \] (Continuity)

 So
 \[|f(b)| \leq |f(b) - f(a)| + |f(a)| \leq 1 + |f(a)| \]

Step 2: \(M = \bigcup_{a \in M} B_{\delta_a}(a)\) is an open cover.
Compact \(\Rightarrow\) finite subcover \(M = \bigcup_{i=1}^{n} B_{\delta_{a_i}}(a_i)\)

for \(x \in B_{\delta_{a_i}}(a_i)\):
\[|f(x)| \leq 1 + |f(a_i)| \]

Step 3: \(R = \max_{i=1}^{n} \left\{ 1 + |f(a_i)| \right\}\) then
\[|f(x)| \leq R, \quad \forall x \in M. \]

Step 4: Since \(\{f(x) : x \in M\}\) is bounded above/below, take
\[y = \sup \{ f(x) \}, \quad z = \inf \{ f(x) \}\] we prove they can be attained.
suppose \(f(x_i) \rightarrow y, \ x_i \in M \).
\((x_i) \) has a convergent subseq \((x_{i_j}) \). (Compactness)
\(x_{i_j} \xrightarrow{j \to \infty} \ a \in M \)
\(\xrightarrow{\text{Continuity}} \)
\(f(x_{i_j}) \xrightarrow{j \to \infty} f(a) \).

So \(y = f(a) \). Similarly we have \(z = f(c) \).

So \(f(c) \leq f(x) \leq f(d) \)

\(\Box \).

Application: equivalence of norms on \(\mathbb{R}^d \).

Def: Let \(V \) be a vector space. A norm is \(\| \cdot \| : V \rightarrow [0, \infty) \)

s.t.
(i) \(\| x \| = 0 \Leftrightarrow x = 0 \)
(ii) \(\| cx \| = |c| \| x \| \quad \forall c \in \mathbb{R}, x \in V \)
(iii) \(\| x + y \| \leq \| x \| + \| y \| \).

Relation to metric: if \(\| \cdot \| \) is a norm, then \(d(x, y) = \| x - y \| \) gives a metric.

Example: \(\| x \|_{d_2} = \sqrt{\sum \| x_i \|^2} \)
\(\| x \|_{d_1} = d(f(x), a) \)

Recall: If we fix a point \(a \in M \), \(d(\cdot, a) \) is a continuous function on \(M \).

Similarly: \(\| \cdot \| : (\mathbb{R}^n, d_2) \rightarrow \mathbb{R} \) is also continuous (actually requires a proof). (Theorem)

Thm: For any norm \(\| \cdot \| \) on \(\mathbb{R}^n \), there are two constants \(M, m \in \mathbb{R} \)

s.t. \(m \| x \| \leq \| x \| \leq M \| x \|, \ \forall x \in \mathbb{R}^n \).

Proof: \(f: \| \cdot \| : S_1 \rightarrow \mathbb{R} \) where \(S_1 \) is the unit sphere with \(\{ \| x \| = 1 \} \).
\(f(c) \leq f(x) \leq f(d) \) for some \(c, d \in S_1 \).
Let \(f(c) = m, \ f(d) = M \) note \(m, M > 0 \).

\[
m \leq \frac{f(x)}{\|x\|} \leq M \quad \text{for any} \quad \|x\| = 1.
\]

Scaling: \(m\|x\| \leq \|x\|d \leq M\|x\| \quad \forall x \in \mathbb{R}^d \quad \square \)

Corollary: The topology given by \(d \) and \(d_E \) are equivalent:

open set in \(d \Longleftrightarrow \) open set in \(d_E \).

Proof: \(\quad \)

Rmk: Not true in infinite dimensional space!

Unit sphere is compact \(\iff \) finite dim.

\[
\|x\| = S \quad \rightarrow \quad \mathbb{R} \quad \rightarrow \quad \text{achieve max and min}
\]

Continuously Closed-bounded \(\rightarrow \) compact in \(\mathbb{R}^n \)

Why \(\|\cdot\| \) is continuous on \(\left(\mathbb{R}^n, d_E \right) \):

\[
\forall x \in \mathbb{R}^n = (x_1, \ldots, x_n) \quad \tilde{e}_i = (0, 0, \ldots, 1, 0, \ldots) \quad \text{triangle inequality} \quad \text{Cauchy-Schwarz}
\]

\[
\|x\|_d = \|\sum_{i=1}^{n} x_i \tilde{e}_i\|_d \leq \sum_{i=1}^{n} \|x_i\| \|\tilde{e}_i\|_d \leq \sqrt{\sum_{i=1}^{n} x_i^2} \cdot \sqrt{\sum_{i=1}^{n} 1^2} = R \cdot \|x\|_d \quad \left(R = \sqrt{\sum_{i=1}^{n} \|\tilde{e}_i\|_d^2} \right)
\]

Continuity of \(\|\cdot\| \): \(\forall \varepsilon > 0, \ \exists \delta = \frac{\varepsilon}{R} \) s.t.

\[
d_E(\tilde{a}, \tilde{b}) < \delta \quad \Rightarrow \quad \|\tilde{a} - \tilde{b}\|_d \leq R \cdot \|\tilde{a} - \tilde{b}\|_d = R \cdot \|\tilde{a} - \tilde{b}\|_d < \varepsilon.
\]

\[
|f(a) - f(b)|
\]

\(f(x) = \frac{1}{1 + \|x\|^2} \)