Math 131P PDE I
Winter 2017

Jan 8

Course info:
Lecturer: Xuwen Zhu xuwenzhu@stanford.edu 383-PF
Office hour: Wed 1:30 - 3 PM
Course Assistant: Andrea Ottolini ottolini@stanford.edu 381-D
Office hour: Tue Thu 4-5:30 PM Thu 3-4:30 PM

Homework: due Monday 12:30 PM

Grading: homework 30% + midterm 25% + final 45%

Midterm: Feb 7 in-class
Final: March 22 8:30-11:30 AM
Notify at least one week before

Textbook: Partial differential equations for scientists and engineers
by Stanley J. Farlow

Useful website:
- Web.stanford.edu/~xuwenzhu/classes/Stanford/2017Winter/131P
- Canvas: grades, online feedback (this is counted into your grade!)

Today's goal: What is PDE? Why is it useful? Classification

What is PDE? Equations containing partial differentials.

Unknown function $\mathcal{U}(t, x, ...)$, a typical setting: t: time, x: position (could be others!)

Notation of partial differentials:

$$\frac{\partial \mathcal{U}}{\partial x} = \mathcal{U}_x = \partial_x \mathcal{U}, \quad \frac{\partial \mathcal{U}}{\partial t} = \mathcal{U}_t = \partial_t \mathcal{U}, \quad \frac{\partial^2 \mathcal{U}}{\partial x^2} = \mathcal{U}_{xx} = \partial_{xx} \mathcal{U}, \quad \frac{\partial^2 \mathcal{U}}{\partial x \partial t} = \mathcal{U}_{xt} = \partial_{xt} \mathcal{U}$$

Some examples:

Heat equation:

1D: $\mathcal{U}(t, x)$: temperature at time t and position x

equ.: $\mathcal{U}_t = \mathcal{U}_{xx}$

2D: $\mathcal{U}(t, x, y)$: position (x, y)

equ.: $\mathcal{U}_t = \mathcal{U}_{xx} + \mathcal{U}_{yy}$

Wave equation

1D: $\mathcal{U}(t, x)$: position of string at time t and position x

equ.: $\mathcal{U}_{tt} = \mathcal{U}_{xx}$

2D: $\mathcal{U}_{tt} = \mathcal{U}_{xx} + \mathcal{U}_{yy}$

Laplace equation

1D: $\mathcal{U}(x, y, ...)$: does not depend on t, equilibrium

equ.: $\mathcal{U}_{xx} = 0$

2D: $\mathcal{U}_{xx} + \mathcal{U}_{yy} = 0$

Other famous equations:

- Schrödinger equation: $i \mathcal{U}_t + \mathcal{U}_{xx} = 0$
- KdV equation: $\mathcal{U}_t + \mathcal{U}_{xxx} + 6 \mathcal{U} \mathcal{U}_x = 0$
- Maxwell's equations (see homework)
- Navier-Stokes equations
- Einstein field equations...

Why PDE is useful: provide models for physical phenomena

electromagnetism, fluid, general relativity, thermal, kinetic...
Goal for this class:

- Learn how to formulate PDEs from physical problems (differential pov.)
- Learn how to solve some PDEs (integral pov.)
- From solutions for 3 types of 2nd order linear equations, learn how to predict the behavior of solutions.

How to solve PDEs (some methods available)

- Explicit solutions
 - Separation of variables, eigenfunction expansion
 - Integral transforms: Fourier, Laplace, Sin/Cos transforms
 - Change of coordinates/variables
- Transform of equations
- Implicit solutions
 - Perturbation for nonlinear problems
- Calculus of variations
- Numerical solutions
 - Finite difference
 - Finite element
 - Spline approximation
 - Integral methods

And a lot more other tools... depends heavily on the type of PDEs.
Classification of PDEs: useful before starting to solve PDEs.

1. Order: highest derivative
 \[U_t + U_{xx} = 0, \quad iU_t + U_{xx} = 0, \quad U_{xx} + U_{yy} = 0 \Rightarrow 2\text{nd order} \]
 \[U_t + U_{xx} = 0 \Rightarrow \text{1st order} \]

2. Number of variables:
 \[U_t + U_{xx} = 0 \text{ (2 variables: } t \text{ and } x) \]
 \[U_{tt} = U_{xx} + U_{yy} \text{ (3 variables: } t, x, y) \]
 (1 variable? back to ODE)

3. Linearity: \(U \) and all derivatives of \(U \) (\(U_t, U_x, U_{xx}, \text{ etc.}\))
 all appear linear (e.g. \(U_{xx} \) is not linear)
 Non-example: \(UU_t + U_{xx} = 0 \) is nonlinear

4. Homogeneity: only for linear equations
 Is there part that does not contain \(U \)?
 Yes: \text{nonhomogeneous}
 No: \text{homogeneous} \Leftrightarrow \text{if } U \text{ is a solution, then } AU \text{ is also a solution for any number } A.

5. Constant coefficient: only for linear equations
 does the coefficient in front of \(U \) and its derivatives contain variables instead of being pure numbers?
 \(U_t + U_{xx} + 2 = 0 \) \text{ Linear equations} \underleftrightarrow{\text{homogeneous}} \quad \text{\(tU_t + U_{xx} = 0 \)}
 \text{non constant coefficient}
 \(tU_t + U_{xx} = 0 \) \text{\(\Rightarrow \text{inhomogeneous} \quad \text{\(tU_t + U_{xx} = x \)}}
Special classification for 2nd order linear equation

\[\begin{align*}
A U_{tt} + B U_{xt} + C U_{xx} + D U_t + E U_x + F U &= G \\
(A \sim G \text{ can be non constant; when } G \text{ is not 0, it's inhomogeneous})
\end{align*} \]

Focus on the top order part:

- determinant
- type
- example

\[\begin{align*}
B^2 - 4AC &= 0 & \text{parabolic} & \text{example} \\
B^2 - 4AC &> 0 & \text{hyperbolic} & U_{tt} - U_{xx} = 0 \text{ (wave)} \\
B^2 - 4AC &< 0 & \text{elliptic} & U_{tt} + U_{xx} = 0 \text{ (laplace)}
\end{align*} \]

Remark: \(U_{xx} \) can be replaced by \(\Delta U = U_{xx} + U_{yy} + U_{zz} + \ldots \) in higher dimensional case

- When \(A, B, C \) are non-constant, the type might change when \((x,t) \) changes.

Heat equation: derivation, Boundary Conditions for 1D system

Model:

- heat flow only from two ends
- length \(L \) rod, insulated on the side

\[U(x,t) \text{: temperature of the rod at time } t \text{ and position } x. \]

Initial condition: \(U(x,0) \) boundary condition: \(U(0,t) \) and \(U(L,t) \) (given for all \(t \)).
Example: $u(x,0) = T_0$, $u(0,t) = T_1$, $u(L,t) = T_2$ $T_1 < T_0 < T_2$ \(\text{eqn 6}\)

This process is given by the PDE:

(PDE) $u_t = \alpha^2 u_{xx}$ \(0 < x < L , \ 0 < t \leq \infty\)

(BC) \[
\begin{align*}
U(0,t) &= - \quad U(L,t) &= - \\
\text{for all } t
\end{align*}
\]

(IC) \[
U(x,0) = - \\
\text{for all } x.
\]

First focus on the PDE:

u_t: rate of change (deg/sec) \(\alpha^2\): diffusivity constant (m2/sec)

u_{xx}: concavity of the temperature profile (deg/m2)

Intuition: the temperature curve wants to flatten out

$u_{xx} < 0$, at mid point x_0, $u_t < 0$ (temperature wants to drop)

$u_{xx} > 0$ \implies $u_t > 0$

$u_{xx} = 0$ \implies $u_t = 0$ (temperature wants to remain the same)
To derive the PDE: we will use \(\text{Conservation of energy}\) + \(\text{Fourier's law of cooling}\) focusing on a very small segment.

1. Net change of heat in this segment = net flux across 2 ends + total heat generated inside.

\[
\frac{d}{dt} \int_x^{x+\Delta x} \rho \ C \ A \ u(s, t) \, ds = \frac{d}{dt} \int_x^{x+\Delta x} \rho \ C \ A \ \frac{d}{dt} u(s, t) \, ds
\]

\(C:\) thermal capacity, \(\rho:\) density, \(A:\) across area \((\rho A \, ds = dm)\) in the infinitesimal mass.

2. Flux across \(x+\Delta x\) section + flux across \(x\) section.

\[= kA \ u_x(x+\Delta x, t) - kA \ u_x(x, t)\]

\(k:\) thermal conductivity.

Fourier's law of cooling: heat flow = \(kA(\text{normal derivative of temperature profile})\)

3. \(= \int_x^{x+\Delta x} f(s, t) \, ds\) \(f(s, t):\) a heat generating source inside.

Combine 1 \(\sim\) 3:

\[
CPA \int_x^{x+\Delta x} u_t(s, t) \, ds = kA \left[\frac{u_x(x+\Delta x, t) - u_x(x, t)}{\Delta x} \right] + \int_x^{x+\Delta x} f(s, t) \, ds
\]

let \(\Delta x \to 0\),

\[
CPA \ u_t(x, t) = kA \ u_{xx}(x, t) + A \ f(x, t)
\]

let \(\alpha^2 = \frac{k}{\rho C_p}\), cancel out \(A\),

\(u_t = \alpha^2 u_{xx} + F(x, t)\) when \(F = \frac{1}{\rho C_p} f\).
Boundary Conditions

1. Dirichlet BC: Fix boundary values.
 \[u(x,t) = g(x,t) \] for any \(x \) on the boundary.

1D: \(u(0,t) = g_1(t) \), \(u(L,t) = g_2(t) \)

2D: If we have a disk
 \[u(R,\theta,t) = \text{cos}\theta \sin\theta \] for example.

(Think of the example before: \(u(0,t) = T_1 \), \(u(L,t) = T_2 \))

2. Neumann BC: Specify the normal derivative at the boundary
 or \(\frac{\partial u}{\partial n} \) (heat flow by Fourier's Law of Cooling)

1D: \(u_x(0,t) = g_1(t) \), \(u_x(L,t) = g_2(t) \)

2D: \(\frac{\partial u}{\partial n} = \frac{\partial u}{\partial r} (\theta,t) = g(\theta,t) \)

Important BC: Insulation: \(\frac{\partial u}{\partial n} = 0 \)
mixed BC (Robin BC)

\[ID : \begin{cases} \alpha U(x=0, t) + \beta U(0, t) = g_1(t) \\ \gamma U(L, t) + \delta U(L, t) = g_2(t) \end{cases} \]

Physics model: two ends are in contact with some other material of given temperature.

Fourier's law of cooling

\[k A \frac{du}{dx}(x=0, t) = h A(u(0, t) - g_1(t)) \Rightarrow \text{rearrange to get expression above} \]

\[-k A \frac{du}{dx}(x=L, t) = h A(U(L, t) - g_2(t)) \]

Remark: when \(g_1(t), g_2(t) \neq 0 \), we have inhomogeneous BC.

Initial condition: initial temperature, usually just given by a fixed function \(g(x) \).

Steady state: a solution to the heat equation satisfying \(U_t = 0 \), i.e., \(U \) does not change with time any more.

In the simplest case: \(U_t = \alpha^2 U_{xx} \Rightarrow U_{xx} = 0 \).

\[\Rightarrow U(x, t) = C_1 x + C_2 \], a straight line profile.

\[U(x) \]