Derivation of Conditional Density Equation

Daniel Yamins

June 16, 2003

Derivation of the Conditional Density Equation (CDE) for systems with possibly correlated noise. This is inspired by #9 from p. 111 of the notes for ES 203. We have the system

\[dx = \alpha x dt + dw + bu dt; \quad dy = x dt + dv, \]

where \(dw, dv \) are independent Brownian motions and \(\alpha \in \{-1,-2\} \). We’re suppose to do system identification for \(\alpha \) in various circumstances. First, let’s assume that \(u = 0 \); we are now to calculate the conditional probability for propagating estimate of \(\alpha \). To do that, we use the unnormalized conditional density equation for the system \((\alpha,x)\). Let \(\rho(\alpha,x,t) \) denote the conditional density distribution conditioned on \(y \). Then let us assume that \(\rho(-1,x,t) \) and \(\rho(-2,x,t) \) are both gaussians for all time, a fair assumption in light of the fact that the initial condition is known to be gaussians for each. Hence, write

\[\rho(-1,x,t) = e^{\alpha_1(t)x^2 + b_1(t)x + c_1(t)} \]

and

\[\rho(-2,x,t) = e^{\alpha_2(t)x^2 + b_2(t)x + c_2(t)}. \]

In this case, the FP operator is:

\[-\frac{\alpha}{2} \frac{\partial \rho}{\partial x} + \frac{1}{2} \frac{\partial^2 \rho}{\partial x^2} - \frac{1}{2} x^2 \]

so the conditional density equation yields the six equations (three for each value of \(\alpha \))

\[\dot{a}_1 = 2a_1^2 - \frac{1}{2}; \quad \dot{b}_1 = 2a_1 b_1 - 2a_1 + \frac{dy}{dt}; \quad \dot{c}_1 = \frac{1}{2} b_1^2 + a_1 - b_1 \]

and

\[\dot{a}_2 = 2a_2^2 - \frac{1}{2}; \quad \dot{b}_2 = 2a_2 b_2 - 4a_2 + \frac{dy}{dt}; \quad \dot{c}_2 = \frac{1}{2} b_2^2 + a_2 - 2b_2 \]

where all these are functions of time. These are the propagation rules for \(\rho \). Using the formulae that we say in class relating the \(a, b \) to mean and variance, the initial conditions for the \(a_i, b_i \) are set at

\[a_1(0) = a_2(0) = \frac{1}{2\sigma(0)}, \]

\[b_1(0) = b_2(0) = \frac{\bar{x}(0)}{\sigma(0)} \]

where \(\bar{x}(0), \sigma(0) \) are the mean and variance of the initial gaussians. The initial conditions for the \(c_i \) are set at

\[c_1(0) = c_2(0) = -\ln(2) \]

because the a priori probabilities are \(\frac{1}{2} \) for both values.
Now, \[\rho(\alpha,t) = \int \rho(\alpha,x,t)dx. \]

So we can compute this for each value of \(\alpha \) easily by “completing the square” so to speak.

\[
\int e^t(x^2 + b(t)x + c(t))dx = e^t \int e(t)x^2 + b(t)x dx
\]
\[
= e^{(t)\frac{b(t)}{4a(t)}} \int e^{-\left(\frac{b(t)x - b(t)}{2\sqrt{-a(t)}}\right)^2} dx
\]
\[
= e^{(t)\frac{b(t)}{4a(t)}} \frac{1}{\sqrt{-a(t)}} \int e^{-y^2} dy
\]
\[
= \sqrt{\frac{2\pi}{-a(t)}} e^{(t)\frac{b(t)}{4a(t)}}.
\] (1)

Hence we propagate \(a_i, b_i, c_i \) for \(i = 1, 2 \) according to the six equations above starting at those given initial conditions. Then we compare the value of \[\sqrt{\frac{2\pi}{-a(t)}} e^{(t)\frac{b(t)}{4a(t)}} \]

at any given time, and whichever one is bigger, that is the one the the data indicants is the rate value of the system.

We can easily see that the mean \(\bar{t}_i \) for the value \(\alpha_i \) is given by \(-\frac{b_i}{2a_i} \). Hence in terms of the \(a, b \), the condition mean is given by

\[\bar{t}(t) = \bar{t}_1 + \bar{t}_2 = -\frac{1}{2} \frac{b_1(t)}{a_1(t)} + \frac{b_2(t)}{a_2(t)}. \]

The next thing that we’re supposed to do is calculate the conditional probability update equations for \(\alpha \) in the case that \(u(t) = k(t)z(t) \) where \(z \) obeys the stochastic equations

\[dz = -\beta(t)zdt + \gamma(t)dy. \]

This system can be rewritten as

\[
\begin{bmatrix}
\dot{z} \\
\dot{y}
\end{bmatrix} =
\begin{bmatrix}
\alpha & k(t) & 0 \\
\gamma(t) & -\beta(t) & 0 \\
1 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
y
\end{bmatrix} +
\begin{bmatrix}
1 & 0 \\
0 & 1 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
dw \\
dv
\end{bmatrix}.
\]

What we want to do is find the density for the subsystem

\[
\begin{bmatrix}
\dot{z} \\
\dot{y}
\end{bmatrix} =
\begin{bmatrix}
\alpha & k(t) \\
\gamma(t) & -\beta(t)
\end{bmatrix}
\begin{bmatrix}
x \\
z
\end{bmatrix} +
\begin{bmatrix}
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
dw \\
dv
\end{bmatrix}
\]

conditioned on observation by \(y \).

We cannot use the usual conditional density equation for this system, because there is a correlation between the noise in the signal and the noise in the observation (that is, there is \(dv \) in both). So we will take a slightly alternate approach.

Let \(\rho(\alpha, x, z, y) \) be the density distribution. Then

\[\rho(\alpha,x,z|y) = \frac{\rho(\alpha,x,z,y)}{\rho(y)}. \]

Hence

\[\rho(\alpha) = \int \int \frac{\rho(\alpha,x,z,y)}{\rho(y)} dx dz. \]
One way to solve this problem is to compute the joint distribution $\rho(\alpha, x, y, z)$, then integrate out x, y, z up over α to compute $\rho(y)$, then perform the operation given above. We can compute the joint distribution by solving according to the Fokker-Planck equation for the joint system:

$$
\rho_t(\alpha, x, z, y) = -\alpha(xR)_x - b \beta k(t) z \rho_x - \gamma(t) x \rho_y + \beta(t)(zR)_z + \gamma(t) x \rho_z + \frac{1}{2} (\nabla^2 \rho + 2 \rho_y z)
$$

\begin{equation}
= (\beta(t) - \alpha) \rho - (\alpha + bk(t) z) \rho_x + (\beta(t) z - \gamma(t) x) \rho_z + \rho_0 \frac{1}{2} (\nabla^2 \rho + 2 \rho_y z).
\end{equation}

This procedure is to propagate the FP equation for the joint system, then integrate, divide, and integrate to find the formula for $\rho(\alpha)$. However, we can also derive a conditional density type equation for the case of correlated noise. I will show how to do this for a scalar system, but the result will be the same for any system. To do this, consider

$$
\dot{x} = f(x) dt + g(x) dw_1 + c_1 dw_2
$$

observed by

$$
\dot{y} = h(x) dt + \chi dw + c_2 dw_2.
$$

Then

$$
\rho(x|y(t)) = \frac{\rho(x, y(t))}{\rho(y(t))}.
$$

We will derive an unnormalized differential equation for $\rho(x|y(t))$. That is, we will not use the normalization by $\rho(y(t))$. So first off by the chain rule

$$
\frac{\partial \rho(x, y(t))}{\partial t} = \frac{\partial R(x, y)}{\partial t} + \frac{\partial R(x, y)}{\partial y} \frac{dy}{dt}
$$

in which $\frac{dy}{dt}$ signifies the Stratonovic differential (remember, with stratonovic calculus, we can use regular calculus rules such as the chain rule). We use Fokker-Plank to expand the first term, changing notation for ease.\(^1\) This yields:

\begin{equation}
\frac{\partial \rho(x, y(t))}{\partial t} = \mathcal{L}_{x, y} \rho + \rho \frac{dy}{dt}
\end{equation}

\begin{equation}
= \mathcal{L}_{x} \rho - h(x) R_y + \frac{1}{2} (\chi^2 + c_2^2) \rho_{yy} + c_1 c_2 \rho_{xy} + R_y \frac{dy}{dt}.
\end{equation}

Now, the crucial point is that

$$
\frac{\partial R}{\partial y} = h(x) R
$$

as can easily be seen via the same calculation done in the notes for $\mathcal{R}(y|x)$ in general. Hence

$$
\rho_t = \mathcal{L}_{x} \rho - h^2(x) \rho + \frac{1}{2} h^2(x) \rho + c_1 h(x) \rho_x + h(x) \rho \frac{dy}{dt}
$$

which becomes

$$
\rho_t = [\mathcal{L}_{x} + h^2(x) \frac{1}{2} c_2^2 + \frac{1}{2} \chi^2 - 1] \rho + c_1 c_2 [h'(x) + h(x) \frac{\partial}{\partial x}] \rho + h(x) \frac{dy}{dt} \rho.
$$

Note that this reduces directly to the regular conditional density equation when either c_1 or c_2 is zero, that is, the signal and observation noises are uncorrelated with standard observation noise.

So now we can simply plug our original situation into a similar calculation (now with correlation between

\(^1\)Meaning, using L_f to refer to the FP operator for a system f and notation ρ_x to denote differentiation of $\rho(x, y, \ldots)$ with respect to x.

3
y and z noises) to get

$$\rho_t(\alpha, x, z|y) = [L_{0, x, z} - \frac{1}{2}x^2] \rho + h(x) \rho \frac{dy}{dt} + \rho_{yz} = [L_{0, x, z} - \frac{1}{2}x^2] \rho + x \frac{dy}{dt} \rho + \rho z.$$

Now

$$L_{0, x, z} = (\beta(t) - \alpha) \rho - (\alpha + k(t) z) \rho_x + (\beta(t) z - \gamma(t) x) \rho_z + \frac{1}{2}(\rho_{xx} + \rho_{zz}).$$

So the goal now is to plug into the modified conditional density equation something of the form

$$\rho(\alpha_i, x, z) = \exp\{a_i(t)x^2 + b_i(t)xz + c_i(t)z^2 + d_i(t)x + e_i(t)z + f_i(t)\}$$

for \(i = 1, 2\). Then as above we get 12 differential equations (6 for each value \(\alpha_i\)) relating the \(a_i(t), \ldots, f_i(t)\). Then, we integrate out the \(x, z\) in the expression and get unnormalized \(\rho(\alpha, t)\) equations. Propagating these along the 12 differential equations and comparing, we take which ever one is bigger at any given moment, and that is the value of \(\alpha\) indicated by the observations up to that time. Here, I will simply note that this is the procedure, and not actually do the (long and laborious) calculation. However, the result provided here is quite general, and represents a simple and clean way to create the conditional density equation with less restrictive assumptions than those seen in the literature that I am aware of (meaning, Prof. B, his students’ papers, the Wonham 1960 paper, and the books on stochastic control and differential equations in the McKay Library).