A Theory Approach to Local-to-Global Algorithms in Spatial Multi-Agent Systems

CS266, Fall 2007
Dan Yamins

Session 1: 12.04.2007
Spatial Multi-agent Systems

a space
Spatial Multi-agent Systems

a space with agents embedded in the space
Spatial Multi-agent Systems

a space with agents embedded in the space

local information and processing
Spatial Multi-agent Systems

a space with agents embedded in the space

local information and processing
globally defined tasks
biology:

drosophila embryo
biology:

drosophila embryo
biology:

drosophila embryo
biology:

drosophila embryo

polistes nest
biology:

*droso*phila embryo

polistes nest

white ibis flock
engineering:
Sensor Networks
engineering:

Sensor Networks

McLurkin iRobot Swarm
engineering:

Sensor Networks

McLurkin iRobot Swarm

Saul Griffith’s self-folding structures
engineering:

Sensor Networks

McLurkin iRobot Swarm

Saul Griffith’s self-folding structures

Butera’s “paintable computer” concept
Challenges ...
Challenges ...

- It's hard to translate Global imperatives into local actions:
Challenges ...

- It’s hard to translate Global imperatives into local actions:
 - G to L: description level mismatch
Challenges ...

• It’s hard to translate Global imperatives into local actions:
 • G to L: description level mismatch
 • L to G: inscrutable complexity
Challenges ...

- It’s hard to translate Global imperatives into local actions:
 - G to L: description level mismatch
 - L to G: inscrutable complexity

- Desire for provable and quantifiable robustness
Challenges ...

- It’s hard to translate Global imperatives into local actions:
 - G to L: description level mismatch
 - L to G: inscrutable complexity

- Desire for provable and quantifiable robustness

- What agent resource capacities are required to solve a given task? Is the global task even locally solvable at all?
Challenges ...

- It’s hard to translate Global imperatives into local actions:
 - G to L: description level mismatch
 - L to G: inscrutable complexity

- Desire for provable and quantifiable robustness

- What agent resource capacities are required to solve a given task? Is the global task even locally solvable at all?

- What does thinking of natural spatial computers \textit{qua} computers tell us scientically?
Challenges ...

- It’s hard to translate Global imperatives into local actions:
 - G to L: description level mismatch
 - L to G: inscrutable complexity

- Desire for provable and quantifiable robustness

- What agent resource capacities are required to solve a given task? Is the global task even locally solvable at all?

- What does thinking of natural spatial computers *qua* computers tell us scientifically?

... the Need for A Theory
Specific Problems ...
Specific Problems ...

- **A Description Problem:** What are appropriate formal models for spatial multi-agent systems? For the agents themselves? For local rules? For global tasks? (Today)
Specific Problems ...

- **A Description Problem:** What are appropriate formal models for spatial multi-agent systems? For the agents themselves? For local rules? For global tasks? (Today)

- **An Existence Problem:** When do given global tasks even have robust local rule solutions in the first place? What features make a global problem robustly solvable? (Session 2)
Specific Problems ...

- **A Description Problem:** What are appropriate formal models for spatial multi-agent systems? For the agents themselves? For local rules? For global tasks? (Today)

- **An Existence Problem:** When do given global tasks even have robust local rule solutions in the first place? What features make a global problem robustly solvable? (Session 2)

- **A Construction Problem:** Given that problem is solvable, can we algorithmically *construct* a generic procedure for producing solutions? (Session 3)
Specific Problems ...

- **A Description Problem:** What are appropriate formal models for spatial multi-agent systems? For the agents themselves? For local rules? For global tasks? (Today)

- **An Existence Problem:** When do given global tasks even have robust local rule solutions in the first place? What features make a global problem robustly solvable? (Session 2)

- **A Construction Problem:** Given that problem is solvable, can we algorithmically construct a generic procedure for producing solutions? (Session 3)

- **A Resources Problem:** The main parameters of a spatial multi-agent system are its *communications capacity* and the *amount of agent internal memory*. Can we trade off between the two? How do the answers to the other problems scale? (Session 4)
Specific Problems ...

- **A Description Problem:** What are appropriate formal models for spatial multi-agent systems? For the agents themselves? For local rules? For global tasks? (Today)

- **An Existence Problem:** When do given global tasks even have robust local rule solutions in the first place? What features make a global problem robustly solvable? (Session 2)

- **A Construction Problem:** Given that problem is solvable, can we algorithmically construct a generic procedure for producing solutions? (Session 3)

- **A Resources Problem:** The main parameters of a spatial multi-agent system are its *communications capacity* and the *amount of agent internal memory*. Can we trade off between the two? How do the answers to the other problems scale? (Session 4)

... Global-to-Local compilation.
Definition. An underlying space \(\mathcal{G} \) of (partially) directed graphs.
The Model: Static Configurations

Definition. An underlying space is a set \(G \) of (partially) directed graphs.
The Model: Static Configurations

Definition. An underlying space is a set G of (partially) directed graphs.

Undirected Lines
The Model: Static Configurations

Definition. An underlying space is a set G of (partially) directed graphs.

Undirected Lines

Directed Lines
The Model: Static Configurations

Definition. An underlying space is a set \mathcal{G} of (partially) directed graphs.

- **Undirected Lines**

- **Directed Lines**

- **Ring Lattices**
Definition. An underlying space is a set \mathcal{G} of (partially) directed graphs.
The Model: Static Configurations

Definition. An underlying space is a set G of (partially) directed graphs.

Usually is a *large or infinite* set of configurations.
Definition. An underlying space is a set \mathcal{G} of (partially) directed graphs.
The Model: Static Configurations

Definition. An underlying space is a set \mathcal{G} of (partially) directed graphs.
Definition. An underlying space is a set G of (partially) directed graphs.
Definition. An underlying space is a set \mathcal{G} of (partially) directed graphs.
The Model: Static Configurations

Definition. An underlying space is a set \mathcal{G} of (partially) directed graphs.
Definition. An underlying space is a set \mathcal{G} of (partially) directed graphs.
Definition. An underlying space is a set \mathcal{G} of (partially) directed graphs.
The Model: Static Configurations

Definition. An underlying space is a set \(G \) of (partially) directed graphs.

Triangulated Sphere
Definition. An underlying space is a set \mathcal{G} of (partially) directed graphs.
The Model: Static Configurations

Definition. An underlying space is a set \mathcal{G} of (partially) directed graphs.
The Model: Static Configurations

Definition. An underlying space is a set G of (partially) directed graphs.

Definition. Configurations are labelings of graphs in G with elements of some “state set” S.
The Model: Static Configurations

Definition. An **underlying** space is a set G of (partially) directed graphs.

Definition. Configurations are labelings of graphs in G with elements of some “state set” S.

State labels represent the agent’s internal states.
The Model: Static Configurations

Definition. An underlying space is a set G of (partially) directed graphs.

Definition. Configurations are labelings of graphs in G with elements of some “state set” S.

State labels represent the agent’s internal states.
The Model: Static Configurations

Definition. An underlying space is a set \mathcal{G} of (partially) directed graphs.

Definition. Configurations are labelings of graphs in \mathcal{G} with elements of some “state set” S.

State labels represent the agent’s internal states.

Definition. $B_r(a, X)$ is the local ball of radius r around agent a in configuration X.
The Model: Static Configurations

Definition. An underlying space is a set \mathcal{G} of (partially) directed graphs.

Definition. Configurations are labelings of graphs in \mathcal{G} with elements of some “state set” S.

State labels represent the agent’s internal states.

Definition. $B_r(a, X)$ is the local ball of radius r around agent a in configuration X.
The Model: Static Configurations

Definition. An underlying space is a set \mathcal{G} of (partially) directed graphs.

Definition. Configurations are labelings of graphs in \mathcal{G} with elements of some “state set” S.

State labels represent the agent’s internal states.

Definition. $B_r(a, X)$ is the local ball of radius r around agent a in configuration X.

$B_2(6, X)$ for $X = 1$-D configuration shown above
The Model: Local Rule Dynamics
Definition. A radius R local rule is a look-up table that maps R-ball configurations to “updated state” choices. Formally,

$$F : B_{r,S} \rightarrow S.$$
The Model: Local Rule Dynamics

Definition. A radius R local rule is a look-up table that maps R-ball configurations to "updated state" choices. Formally,

$$F : B_{r,S} \longrightarrow S.$$
The Model: Local Rule Dynamics

Definition. A radius R local rule is a look-up table that maps R-ball configurations to “updated state” choices. Formally,

$$F : \mathcal{B}_{r,S} \rightarrow S.$$

Thought of as “agent-based local programs”.
Sequences of agent calls can be synchronous or asynchronous.
Sequences of agent calls can be synchronous or asynchronous.

- Completely Synchronous: all agents called at all timesteps.
Sequences of agent calls can be synchronous or asynchronous.

- Completely Synchronous: all agents called at all timesteps.
- Completely asynchronous: only one agent called per timestep, and no other restriction, except liveness.
Sequences of agent calls can be synchronous or asynchronous.

- Completely Synchronous: all agents called at all timesteps.
- Completely asynchronous: only one agent called per timestep, and no other restriction, except liveness.

(liveness: no agent ever stops being called forever)
Sequences of agent calls can be synchronous or asynchronous.

- Completely Synchronous: all agents called at all timesteps.

- Completely asynchronous: only one agent called per timestep, and no other restriction, except liveness.

 (liveness: no agent ever stops being called forever)

- k-bounded asynchronous: only one agent called per timestep, and no agent called k+1 times before all others called once.
Sequences of agent calls can be synchronous or asynchronous.

- Completely Synchronous: all agents called at all timesteps.
- Completely asynchronous: only one agent called per timestep, and no other restriction, except liveness.

 \[(\text{liveness: no agent ever stops being called forever})\]

- k-bounded asynchronous: only one agent called per timestep, and no agent called \(k+1\) times before all others called once.

Definition. A size-\(n\) call sequence is a call sequence acting on an \(n\)-agent configuration. A timing model is a set of call sequences for each size \(n\).
The Model: Local Rule Dynamics
The Model: Local Rule Dynamics

Definition. The trajectory \(\{F^n_s(X_0)\} \) is generated by iterating \(F \) from the initial condition \(X_0 \), calling agents as specified by call sequence \(s \).
Definition. The trajectory \(\{F^n_s(X_0)\} \) is generated by iterating \(F \) from the initial condition \(X_0 \), calling agents as specified by call sequence \(s \).
The Model: Patterns
The Model: Patterns

Definition. A pattern is a set of configurations.
Definition. A pattern is a set of configurations.
The Model: Patterns

Definition. A pattern is a set of configurations.
The Model: Patterns

Definition. A pattern is a set of configurations.

Repeat Patterns
The Model: Patterns

Definition. A pattern is a set of configurations.

Repeat Patterns
Definition. A pattern is a set of configurations.
The Model: Patterns
The Model: Patterns

Definition. *A pattern is a set of configurations.*
The Model: Patterns

Definition. A pattern is a set of configurations.

Proportionate Patterns
Definition. A pattern is a set of configurations.
The Model: Patterns

Definition. A pattern is a set of configurations.

Proportionate Patterns

[Diagram of proportionate patterns with red and green circles connected by arrows]

Thursday, November 28, 13
The Model: Patterns

Definition. A pattern is a set of configurations.
The Model: Patterns

Definition. A pattern is a set of configurations.
The Model: Patterns

Definition. A pattern is a set of configurations.

Proportionate Patterns

Other patterns
Definition. A local rule F is a robust solution to pattern T in timing model \mathcal{S} if,
The Model: Robust Solutions

Definition. A *local rule* F is a robust solution to pattern T in timing model S if,
The Model: Robust Solutions

Definition. A local rule F is a robust solution to pattern T in timing model S if, for all sizes n
The Model: Robust Solutions

Definition. A local rule F is a robust solution to pattern T in timing model S if, for all sizes n and all configurations X of size n
The Model: Robust Solutions

Definition. A local rule F is a robust solution to pattern T in timing model S if, for all sizes n and all configurations X of size n and all call sequences on X.
The Model: Robust Solutions

Definition. A local rule F is a robust solution to pattern T in timing model S if, for all sizes n and all configurations X of size n and all call sequences on X

$$\lim_{n \to \infty} F_s^n(X)$$
The Model: Robust Solutions

Definition. A local rule F is a robust solution to pattern T in timing model S if, for all sizes n and all configurations X of size n and all call sequences on X

$$\lim_{n \to \infty} F^n_s(X)$$

whenever T contains one more instances of size n.
The Model: Robust Solutions

Definition. *A local rule* F *is a robust solution to pattern* T *in timing model* S *if, for all sizes* n *and all configurations* X *of size* n *and all call sequences on* X

$$
\lim_{n \to \infty} F_s^n(X)
$$

whenever T *contains one more instances of size* n.
The Model: Robust Solutions

Definition. A local rule F is a robust solution to pattern T in timing model S if, for all sizes n and all configurations X of size n and all call sequences on X

$$\lim_{n \to \infty} F_s^n(X)$$

whenever T contains one more instances of size n.

G Underlying Geometry

T Configuration Space
Definition. A local rule F is a robust solution to pattern T in timing model S if, for all sizes n and all configurations X of size n and all call sequences on X

$$\lim_{n \to \infty} F_s^n(X)$$

whenever T contains one more instances of size n.

G Underlying Geometry

S State set of size m

Configuration Space
The Model: Robust Solutions

Definition. A *local rule* F is a robust solution to pattern T in timing model S if, for all sizes n and all configurations X of size n and all call sequences on X

$$\lim_{n \to \infty} F^n_S(X)$$

whenever T contains one more instances of size n.

- G Underlying Geometry
- S State set of size m
- R Communication radius

Configuration Space

Thursday, November 28, 13
The Model: Robust Solutions

Definition. A local rule F is a robust solution to pattern T in timing model S if, for all sizes n and all configurations X of size n and all call sequences on X

$$\lim_{n \to \infty} F_s^n(X)$$

whenever T contains one more instances of size n.

Diagram:

- **G** Underlying Geometry
- **S** State set of size m
- **R** Communication radius
- **S** Timing model

Configuration Space
The Model: Robust Solutions

Definition. A local rule F is a robust solution to pattern T in timing model S if, for all sizes n and all configurations X of size n and all call sequences on X

$$\lim_{n \to \infty} F^*_s^n(X)$$

whenever T contains one more instances of size n.

Diagram:
- G: Underlying Geometry
- S: State set of size m
- R: Communication radius
- T: Timing model
- T: Pattern
- Configuration Space
The Model: Robust Solutions

Definition. A local rule F is a robust solution to pattern T in timing model S if, for all sizes n and all configurations X of size n and all call sequences on X

$$\lim_{n \to \infty} F_s^n(X)$$

whenever T contains one more instances of size n.

Configuration Space

Disorder to Order

- G Underlying Geometry
- S State set of size m
- R Communication radius
- S Timing model
- T Pattern

$$\implies F \text{ Robust Solution}$$
Other models: Amorphous Computing
Other models: Flocking & Sorting
Other models: Developmental Biology
Other models: Reconfigurable Robots
Other models: Pattern and Task Abstractions