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Lecture 1: More Linear Algebra
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Overview

The topics will be:
■ More Linear Algebra (Day 1)
■ Analyzing Linear ODEs (Day 1 & 2)
■ Light Intro to Non-linear Systems (Day 2)

The philosophy: get as comfortable as possible with qualitative
behavior of linear systems(topic 2, requiring topic 1); then
understand how non-linear systems can quickly differ (topic 3).
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represent a lot of things.
Simultaneous linear algebra.

Operators that map vectors to vectors:

L : R
n −→ R

n; given by x 7→ Ax

Linear ODEs:
dx

dt
= Ax; x(0) = x0

And, as you’ll see in SB200, probabilistic processes.
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The Main Point

But the Main Point is that:

Matrices are COMPLETELY classifiable.

Meaning, there is a standard “view" that every matrix can be
put into that renders all of its properties, like:
■ The existence and uniqueness of solutions to Ax = b

■ The range and behavior of the linear operator L

■ the dynamic and steady-state behavior of ẋ = Ax

■ and a great many other things,

COMPLETELY obvious.

Goal of this lecture: give you intuition for how this works.
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A Practical Problem

The most important practical problem in basic linear algebra is:

Figuring out how to calculate

eA

efficiently.
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A Practical Problem

The most important practical problem in basic linear algebra is:

Figuring out how to calculate

eA

efficiently.

This problem is inspired by ODEs.
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A Practical Problem

The most important practical problem in basic linear algebra is:

Figuring out how to calculate

eA

efficiently.

This problem is inspired by ODEs.

It drives all (or really, most) of the theory.
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Commutativity

For any two real (or complex) numbers a and b,
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Commutativity

For any two real (or complex) numbers a and b,

a · b = b · a.
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For any two real (or complex) numbers a and b,

a · b = b · a.

This is the commutativity property.
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Commutativity

For any two real (or complex) numbers a and b,

a · b = b · a.

This is the commutativity property. But matices are not always
commutative.
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Commutativity

For any two real (or complex) numbers a and b,

a · b = b · a.

This is the commutativity property. But matices are not always
commutative.

Problem 1 Find two 2x2 matrices A and B such that

AB 6= BA; that is, [A, B] = AB − BA 6= 0.

[A, B] is called the “commutator" of A and B.
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Commutativity

For any two real (or complex) numbers a and b,

a · b = b · a.

This is the commutativity property. But matices are not always
commutative.

Problem 1 Find two 2x2 matrices A and B such that

AB 6= BA; that is, [A, B] = AB − BA 6= 0.

[A, B] is called the “commutator" of A and B.

Notice that A always commutes with eA, because

AeA = A

(

∞
∑

n=0

An

n!

)

=
∞
∑

n=0

An+1

n!
=

(

∞
∑

i=0

An

n!

)

A.
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Commutativity

Why do we care about commutativity?
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Commutativity

Why do we care about commutativity?

Remember the motivating problem (exponentiation).
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Commutativity

Why do we care about commutativity?

Remember the motivating problem (exponentiation).

If [A, B] = AB − BA = 0, then
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Commutativity

Why do we care about commutativity?

Remember the motivating problem (exponentiation).

If [A, B] = AB − BA = 0, then

eA+B = eAeB = eBeA
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Commutativity

Why do we care about commutativity?

Remember the motivating problem (exponentiation).

If [A, B] = AB − BA = 0, then

eA+B = eAeB = eBeA

which might make the computation easier.
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Commutativity

Why do we care about commutativity?

Remember the motivating problem (exponentiation).

If [A, B] = AB − BA = 0, then

eA+B = eAeB = eBeA

which might make the computation easier.

Problem 2 Compute

exp

([

1 0

2 1

]

t

)

.
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Commutativity

Why do we care about commutativity?

Remember the motivating problem (exponentiation).

If [A, B] = AB − BA = 0, then

eA+B = eAeB = eBeA

which might make the computation easier.

Problem 2 Compute

exp

([

1 0

2 1

]

t

)

.

Answer:
[

et 0

2tet et

]

.
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Commutativity

But there’s a deeper interpretation.
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Commutativity

But there’s a deeper interpretation.

Problem 3 Show the following Little Fact 1: if A and B are diagonal
matrices, then they commute.
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Commutativity

But there’s a deeper interpretation.

Problem 3 Show the following Little Fact 1: if A and B are diagonal
matrices, then they commute.

Reason: because diagonal matrix multiplication is just like a
parallel version of regular number multiplication, separately on
each diagonal.
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Commutativity

But there’s a deeper interpretation.

Problem 3 Show the following Little Fact 1: if A and B are diagonal
matrices, then they commute.

Reason: because diagonal matrix multiplication is just like a
parallel version of regular number multiplication, separately on
each diagonal.

Problem 4 Show the following Little Fact 2: diagonal matrices with all the
diagonal numbers being the same commute with all matrices.
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Commutativity

But there’s a deeper interpretation.

Problem 3 Show the following Little Fact 1: if A and B are diagonal
matrices, then they commute.

Reason: because diagonal matrix multiplication is just like a
parallel version of regular number multiplication, separately on
each diagonal.

Problem 4 Show the following Little Fact 2: diagonal matrices with all the
diagonal numbers being the same commute with all matrices.

Reason: A(bI) = b(AI) = bA = (bI)A; i.e. the identity matrix
(obviously) commutes with everything.



● Overview

More Linear Algebra

● Matrices Represent ALOT

● The Main Point

● A Practical Problem

● Commutativity

● Commutativity

● Commutativity

● Rotation Matrices

● Rotation Matrices

● Commutativity

● Commutativity

● Commutativity

● Commutativity

● Commutativity

● Commutativity

● Eigenbases

● Eigenbases

● Eigenbases

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Nilpotency

● Nilpotency

● Nilpotency

● Nilpotency

● A Simple Form

● A Simple Form

● A Simple Form

● A Simple Form

● A Simple Form

● Putting it All Together

● Putting it All Together

- p. 10/38

Rotation Matrices

Before we go on, a little aside.
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Rotation Matrices

Before we go on, a little aside.

Problem 5 What does the matrix

Rθ =

[

cos(θ) −sin(θ)

sin(θ) cos(θ)

]

do?
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Rotation Matrices

Before we go on, a little aside.

Problem 5 What does the matrix

Rθ =

[

cos(θ) −sin(θ)

sin(θ) cos(θ)

]

do?

Answer: it rotates the plane through angle θ.
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Rotation Matrices

Before we go on, a little aside.

Problem 5 What does the matrix

Rθ =

[

cos(θ) −sin(θ)

sin(θ) cos(θ)

]

do?

Answer: it rotates the plane through angle θ.
What is its inverse? Well,
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Rotation Matrices

Before we go on, a little aside.

Problem 5 What does the matrix

Rθ =

[

cos(θ) −sin(θ)

sin(θ) cos(θ)

]

do?

Answer: it rotates the plane through angle θ.
What is its inverse? Well,

(Rθ)
−1 = R−θ =

[

cos(−θ) −sin(−θ)

sin(−θ) cos(−θ)

]

.

But remember cos(−θ) = cos(θ) and sin(−θ) = −sin(θ), so

R−1

θ =

[

cos(θ) sin(θ)

−sin(θ) cos(θ)

]

.
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Rotation Matrices

To rotate in three dimensions, we need three different
rotations:
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Rotation Matrices

To rotate in three dimensions, we need three different
rotations:

Rx,y
θ =







cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1






; Ry,z

θ =







1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)
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Rotation Matrices

To rotate in three dimensions, we need three different
rotations:

Rx,y
θ =







cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1






; Ry,z

θ =







1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)







and
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Rotation Matrices

To rotate in three dimensions, we need three different
rotations:

Rx,y
θ =







cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1






; Ry,z

θ =







1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)







and

Rx,z
θ =







cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)






.
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Rotation Matrices

To rotate in three dimensions, we need three different
rotations:

Rx,y
θ =







cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1






; Ry,z

θ =







1 0 0

0 cos(θ) −sin(θ)

0 sin(θ) cos(θ)







and

Rx,z
θ =







cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)






.

There are higher-dimensional versions for each n.
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Commutativity

Back to commutativity. Let’s consider two 2x2 matrices.
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Commutativity

Back to commutativity. Let’s consider two 2x2 matrices.
First,

A =

[

a 0

0 b

]

where a and b are real numbers.
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Commutativity

Back to commutativity. Let’s consider two 2x2 matrices.
First,

A =

[

a 0

0 b

]

where a and b are real numbers.
A stretches the x axis by factor a and the y axis by factor b,
making a circle into an ellipse.
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Commutativity

Back to commutativity. Let’s consider two 2x2 matrices.
First,

A =

[

a 0

0 b

]

where a and b are real numbers.
For example, if a < 1 and b > 1, then the picture is

b

A

radius 1
circle

a

Figure 1: Stretching action of a 2x2 diagonal matrix
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Commutativity

Back to commutativity. Let’s consider two 2x2 matrices.
First,

A =

[

a 0

0 b

]

where a and b are real numbers.
Conversely, if a > 1 and b < 1, then the picture is

a

A

radius 1
circle

minor axis

major axis

Length b 

Length a 

b

Figure 1: Stretching action of a 2x2 diagonal matrix
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Commutativity

Back to commutativity. Let’s consider two 2x2 matrices.
First,

A =

[

a 0

0 b

]

where a and b are real numbers.

Problem 6 What are the eigenvalues and eigenvectors of A?
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Commutativity

Back to commutativity. Let’s consider two 2x2 matrices.
First,

A =

[

a 0

0 b

]

where a and b are real numbers.

Problem 6 What are the eigenvalues and eigenvectors of A?

Answer: ([1 0], a) and ([0 1], b).
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Commutativity

Ok, so we have one matrix, A. Now for the second matrix, B.



● Overview

More Linear Algebra

● Matrices Represent ALOT

● The Main Point

● A Practical Problem

● Commutativity

● Commutativity

● Commutativity

● Rotation Matrices

● Rotation Matrices

● Commutativity

● Commutativity

● Commutativity

● Commutativity

● Commutativity

● Commutativity

● Eigenbases

● Eigenbases

● Eigenbases

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Nilpotency

● Nilpotency

● Nilpotency

● Nilpotency

● A Simple Form

● A Simple Form

● A Simple Form

● A Simple Form

● A Simple Form

● Putting it All Together

● Putting it All Together

- p. 13/38

Commutativity

Ok, so we have one matrix, A. Now for the second matrix, B.

Problem 7 Find a 2x2 matrix B with eigenvalues α and β, and whose
eigenvectors are rotated from x and y axis basis vectors by angle θ. Hint:
use Rθ as a change-of-basis.
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Commutativity

Ok, so we have one matrix, A. Now for the second matrix, B.

Problem 7 Find a 2x2 matrix B with eigenvalues α and β, and whose
eigenvectors are rotated from x and y axis basis vectors by angle θ. Hint:
use Rθ as a change-of-basis.

Answer:

B = Rθ

[

α 0

0 β

]

(Rθ)
−1 =

[

αcos2(θ) + βsin2(θ) (α − β)sin(θ)cos(θ)

(α − β)sin(θ)cos(θ) αsin2(θ) + βcos2(θ)

]



● Overview

More Linear Algebra

● Matrices Represent ALOT

● The Main Point

● A Practical Problem

● Commutativity

● Commutativity

● Commutativity

● Rotation Matrices

● Rotation Matrices

● Commutativity

● Commutativity

● Commutativity

● Commutativity

● Commutativity

● Commutativity

● Eigenbases

● Eigenbases

● Eigenbases

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Nilpotency

● Nilpotency

● Nilpotency

● Nilpotency

● A Simple Form

● A Simple Form

● A Simple Form

● A Simple Form

● A Simple Form

● Putting it All Together

● Putting it All Together

- p. 13/38

Commutativity

Ok, so we have one matrix, A. Now for the second matrix, B.

Problem 7 Find a 2x2 matrix B with eigenvalues α and β, and whose
eigenvectors are rotated from x and y axis basis vectors by angle θ. Hint:
use Rθ as a change-of-basis.

Answer:

B = Rθ

[

α 0

0 β

]

(Rθ)
−1 =

[

αcos2(θ) + βsin2(θ) (α − β)sin(θ)cos(θ)

(α − β)sin(θ)cos(θ) αsin2(θ) + βcos2(θ)

]

By construction, the eigenvectors and eigenvalues of B are
([cos(θ), sin(θ)] with value α) and [cos(θ + π/2), sin(θ + π/2)]
with value β).
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Commutativity

Ok, so we have one matrix, A. Now for the second matrix, B.

Problem 7 Find a 2x2 matrix B with eigenvalues α and β, and whose
eigenvectors are rotated from x and y axis basis vectors by angle θ. Hint:
use Rθ as a change-of-basis.

Answer:

B = Rθ

[

α 0

0 β

]

(Rθ)
−1 =

[

αcos2(θ) + βsin2(θ) (α − β)sin(θ)cos(θ)

(α − β)sin(θ)cos(θ) αsin2(θ) + βcos2(θ)

]

By construction, the eigenvectors and eigenvalues of B are
([cos(θ), sin(θ)] with value α) and [cos(θ + π/2), sin(θ + π/2)]
with value β).

Question: why is the π/2 there in the second eigenvector?
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Commutativity

Now let’s figure out when A and B commute.
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Commutativity

Now let’s figure out when A and B commute. On the one
hand,

AB =

[

aαcos2(θ) + aβsin2(θ) a(α − β)sin(θ)cos(θ)

b(α − β)sin(θ)cos(θ) bαsin2(th) + bβcos2(θ)

]

.
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Commutativity

Now let’s figure out when A and B commute. On the one
hand,

AB =

[

aαcos2(θ) + aβsin2(θ) a(α − β)sin(θ)cos(θ)

b(α − β)sin(θ)cos(θ) bαsin2(th) + bβcos2(θ)

]

.

On the other hand,

BA =

[

aαcos2(θ) + aβsin2(θ) b(α − β)sin(θ)cos(θ)

a(α − β)sin(θ)cos(θ) bαsin2(th) + bβcos2(θ)

]

.
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Commutativity

Now let’s figure out when A and B commute. On the one
hand,

AB =

[

aαcos2(θ) + aβsin2(θ) a(α − β)sin(θ)cos(θ)

b(α − β)sin(θ)cos(θ) bαsin2(th) + bβcos2(θ)

]

.

On the other hand,

BA =

[

aαcos2(θ) + aβsin2(θ) b(α − β)sin(θ)cos(θ)

a(α − β)sin(θ)cos(θ) bαsin2(th) + bβcos2(θ)

]

.

Problem 8 When are AB and BA equal?
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Commutativity

Now let’s figure out when A and B commute. On the one
hand,

AB =

[

aαcos2(θ) + aβsin2(θ) a(α − β)sin(θ)cos(θ)

b(α − β)sin(θ)cos(θ) bαsin2(th) + bβcos2(θ)

]

.

On the other hand,

BA =

[

aαcos2(θ) + aβsin2(θ) b(α − β)sin(θ)cos(θ)

a(α − β)sin(θ)cos(θ) bαsin2(th) + bβcos2(θ)

]

.

Problem 8 When are AB and BA equal?

Answer: When 1) a = b, or 2) α = β or 3) θ = 0, π/2, π, 3π/2.
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Commutativity

But now, let’s look at the cases one by one.
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Commutativity

Case 1: a = b. In that case,
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Commutativity

Case 1: a = b. In that case, A = aI2, where I2 is the 2x2
identity matrix.
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Commutativity

Case 1: a = b. In that case, A = aI2, where I2 is the 2x2
identity matrix.

Claim:

[cos(θ), sin(θ)] and [cos(θ + π/2), sin(θ + π/2)]

are just as good eigenvectors for A as the original ones.
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Commutativity

Case 1: a = b. In that case, A = aI2, where I2 is the 2x2
identity matrix.

Claim:

[cos(θ), sin(θ)] and [cos(θ + π/2), sin(θ + π/2)]

are just as good eigenvectors for A as the original ones.

Problem 9 Why? (Don’t give a computational proof.)
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Commutativity

Case 1: a = b. In that case, A = aI2, where I2 is the 2x2
identity matrix.

Claim:

[cos(θ), sin(θ)] and [cos(θ + π/2), sin(θ + π/2)]

are just as good eigenvectors for A as the original ones.

Problem 9 Why? (Don’t give a computational proof.)

Answer: because the two original eigenvectors [0, 1] and [1, 0]
have the same eigenvalue, so linear combinations are also
eigenvectors.
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Commutativity

Case 1: a = b. In that case, A = aI2, where I2 is the 2x2
identity matrix.

Claim:

[cos(θ), sin(θ)] and [cos(θ + π/2), sin(θ + π/2)]

are just as good eigenvectors for A as the original ones.

Problem 9 Why? (Don’t give a computational proof.)

Answer: because the two original eigenvectors [0, 1] and [1, 0]
have the same eigenvalue, so linear combinations are also
eigenvectors.

Hence: Case 1) ⇒ A and B have a common set of
eigenvectors.
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Commutativity

Now, Case 2: α = β.
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Commutativity

Now, Case 2: α = β.
In this case,

B = Rθα

[

1 0

0 1

]

(Rθ)
−1 = αRθ(Rθ)

−1 = αI2.
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Commutativity

Now, Case 2: α = β.
In this case,

B = Rθα

[

1 0

0 1

]

(Rθ)
−1 = αRθ(Rθ)

−1 = αI2.

But that means we’re in the same situation as Case 1. Again,
common eigenvectors.
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Commutativity

Now, Case 2: α = β.
In this case,

B = Rθα

[

1 0

0 1

]

(Rθ)
−1 = αRθ(Rθ)

−1 = αI2.

But that means we’re in the same situation as Case 1. Again,
common eigenvectors.

Finally, Case 3: θ = 0, π/2, π, or 3π/2.
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Commutativity

Now, Case 2: α = β.
In this case,

B = Rθα

[

1 0

0 1

]

(Rθ)
−1 = αRθ(Rθ)

−1 = αI2.

But that means we’re in the same situation as Case 1. Again,
common eigenvectors.

Finally, Case 3: θ = 0, π/2, π, or 3π/2.

Problem 10 What are the eigenvectors of B in this case?
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Commutativity

Now, Case 2: α = β.
In this case,

B = Rθα

[

1 0

0 1

]

(Rθ)
−1 = αRθ(Rθ)

−1 = αI2.

But that means we’re in the same situation as Case 1. Again,
common eigenvectors.

Finally, Case 3: θ = 0, π/2, π, or 3π/2.

Problem 10 What are the eigenvectors of B in this case?

Answer: [0 1] and [1 0].



● Overview

More Linear Algebra

● Matrices Represent ALOT

● The Main Point

● A Practical Problem

● Commutativity

● Commutativity

● Commutativity

● Rotation Matrices

● Rotation Matrices

● Commutativity

● Commutativity

● Commutativity

● Commutativity

● Commutativity

● Commutativity

● Eigenbases

● Eigenbases

● Eigenbases

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Nilpotency

● Nilpotency

● Nilpotency

● Nilpotency

● A Simple Form

● A Simple Form

● A Simple Form

● A Simple Form

● A Simple Form

● Putting it All Together

● Putting it All Together

- p. 16/38

Commutativity

Now, Case 2: α = β.
In this case,

B = Rθα

[

1 0

0 1

]

(Rθ)
−1 = αRθ(Rθ)

−1 = αI2.

But that means we’re in the same situation as Case 1. Again,
common eigenvectors.

Finally, Case 3: θ = 0, π/2, π, or 3π/2.

Problem 10 What are the eigenvectors of B in this case?

Answer: [0 1] and [1 0].

Again! A and B have a common set of eigenvectors.
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Commutativity

Little Facts 1 and 2 above also say the same thing.
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Commutativity

Little Facts 1 and 2 above also say the same thing.

Problem 11 Show: if two matrices A and B can be diagonalized by the
same matrix S, then A and B commute.
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Commutativity

Little Facts 1 and 2 above also say the same thing.

Problem 11 Show: if two matrices A and B can be diagonalized by the
same matrix S, then A and B commute.

Reason:
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Commutativity

Little Facts 1 and 2 above also say the same thing.

Problem 11 Show: if two matrices A and B can be diagonalized by the
same matrix S, then A and B commute.

Reason:
■ AB = (XDAX−1)(XDBX−1),
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Commutativity

Little Facts 1 and 2 above also say the same thing.

Problem 11 Show: if two matrices A and B can be diagonalized by the
same matrix S, then A and B commute.

Reason:
■ AB = (XDAX−1)(XDBX−1),
■ = XDA(X−1X)DBX−1 by associativity
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Commutativity

Little Facts 1 and 2 above also say the same thing.

Problem 11 Show: if two matrices A and B can be diagonalized by the
same matrix S, then A and B commute.

Reason:
■ AB = (XDAX−1)(XDBX−1),
■ = XDA(X−1X)DBX−1 by associativity
■ = XDADBX−1 since X−1X = I
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Commutativity

Little Facts 1 and 2 above also say the same thing.

Problem 11 Show: if two matrices A and B can be diagonalized by the
same matrix S, then A and B commute.

Reason:
■ AB = (XDAX−1)(XDBX−1),
■ = XDA(X−1X)DBX−1 by associativity
■ = XDADBX−1 since X−1X = I

■ = XDBDAX−1 by Litte Fact 1
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Commutativity

Little Facts 1 and 2 above also say the same thing.

Problem 11 Show: if two matrices A and B can be diagonalized by the
same matrix S, then A and B commute.

Reason:
■ AB = (XDAX−1)(XDBX−1),
■ = XDA(X−1X)DBX−1 by associativity
■ = XDADBX−1 since X−1X = I

■ = XDBDAX−1 by Litte Fact 1
■ = XDB(X−1X)DAX−1 – we’ve inserted X−1X = I
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Commutativity

Little Facts 1 and 2 above also say the same thing.

Problem 11 Show: if two matrices A and B can be diagonalized by the
same matrix S, then A and B commute.

Reason:
■ AB = (XDAX−1)(XDBX−1),
■ = XDA(X−1X)DBX−1 by associativity
■ = XDADBX−1 since X−1X = I

■ = XDBDAX−1 by Litte Fact 1
■ = XDB(X−1X)DAX−1 – we’ve inserted X−1X = I

■ = (XDBX−1(XDAX−1) = BA.
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Commutativity

Little Facts 1 and 2 above also say the same thing.

Problem 11 Show: if two matrices A and B can be diagonalized by the
same matrix S, then A and B commute.

Reason:
■ AB = (XDAX−1)(XDBX−1),
■ = XDA(X−1X)DBX−1 by associativity
■ = XDADBX−1 since X−1X = I

■ = XDBDAX−1 by Litte Fact 1
■ = XDB(X−1X)DAX−1 – we’ve inserted X−1X = I

■ = (XDBX−1(XDAX−1) = BA.
A key fact is that the converse is true.

Theorem 1 If A and B are both diagonalizable, then they are commutative
if and only if they have a common eigenbasis.
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Eigenbases

Let’s go back to the notion of an eigenbasis, that is,
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Eigenbases

Let’s go back to the notion of an eigenbasis, that is,

a set {v1, . . . , vn} of distinct eigenvectors.
An eigenbasis exists IFF a matrix is diagonalizable.
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Eigenbases

Let’s go back to the notion of an eigenbasis, that is,

a set {v1, . . . , vn} of distinct eigenvectors.
An eigenbasis exists IFF a matrix is diagonalizable.

A = [v1 | v2 | . . . vn]













λ1 0 0 . . . 0

0 λ2 0 . . . 0
...

...
0 0 . . . 0 λn













[v1 | v2 | . . . vn]−1
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Eigenbases

Let’s go back to the notion of an eigenbasis, that is,

a set {v1, . . . , vn} of distinct eigenvectors.
An eigenbasis exists IFF a matrix is diagonalizable.

A = [v1 | v2 | . . . vn]













λ1 0 0 . . . 0

0 λ2 0 . . . 0
...

...
0 0 . . . 0 λn













[v1 | v2 | . . . vn]−1

where Avi = λivi.
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Eigenbases

Let’s go back to the notion of an eigenbasis, that is,

a set {v1, . . . , vn} of distinct eigenvectors.
An eigenbasis exists IFF a matrix is diagonalizable.

A = [v1 | v2 | . . . vn]













λ1 0 0 . . . 0

0 λ2 0 . . . 0
...

...
0 0 . . . 0 λn













[v1 | v2 | . . . vn]−1

where Avi = λivi.

Of course, the vi and λi might (have to) be complex, even if A
is real.
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Eigenbases

Let’s go back to the notion of an eigenbasis, that is,

a set {v1, . . . , vn} of distinct eigenvectors.
An eigenbasis exists IFF a matrix is diagonalizable.

A = [v1 | v2 | . . . vn]













λ1 0 0 . . . 0

0 λ2 0 . . . 0
...

...
0 0 . . . 0 λn













[v1 | v2 | . . . vn]−1

where Avi = λivi.

Of course, the vi and λi might (have to) be complex, even if A
is real. We’ll come back to this.
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Eigenbases

Now, suppose that A is diagonalizable, and has {v1, . . . , vn}
as n = dim(A) independent eigenvectors.
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Eigenbases

Now, suppose that A is diagonalizable, and has {v1, . . . , vn}
as n = dim(A) independent eigenvectors.

Collect them in groups of equal eigenvalues, say, in decreasing
order:
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Eigenbases

Now, suppose that A is diagonalizable, and has {v1, . . . , vn}
as n = dim(A) independent eigenvectors.

Collect them in groups of equal eigenvalues, say, in decreasing
order:

v1
λ1

, v2
λ1

, . . . , vn1

λ1
have eigenvalue λ1 = λmax
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Eigenbases

Now, suppose that A is diagonalizable, and has {v1, . . . , vn}
as n = dim(A) independent eigenvectors.

Collect them in groups of equal eigenvalues, say, in decreasing
order:

v1
λ1

, v2
λ1

, . . . , vn1

λ1
have eigenvalue λ1 = λmax

v1
λ2

, v2
λ2

, . . . , vn2

λ2
have eigenvalue λ2 < λ1
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Eigenbases

Now, suppose that A is diagonalizable, and has {v1, . . . , vn}
as n = dim(A) independent eigenvectors.

Collect them in groups of equal eigenvalues, say, in decreasing
order:

v1
λ1

, v2
λ1

, . . . , vn1

λ1
have eigenvalue λ1 = λmax

v1
λ2

, v2
λ2

, . . . , vn2

λ2
have eigenvalue λ2 < λ1

. . . .
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Eigenbases

Now, suppose that A is diagonalizable, and has {v1, . . . , vn}
as n = dim(A) independent eigenvectors.

Collect them in groups of equal eigenvalues, say, in decreasing
order:

v1
λ1

, v2
λ1

, . . . , vn1

λ1
have eigenvalue λ1 = λmax

v1
λ2

, v2
λ2

, . . . , vn2

λ2
have eigenvalue λ2 < λ1

. . . .
vm

λm
, v2λm, . . . , vnm

λm
have eigenvalue λm = λmin.
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Eigenbases

Now, suppose that A is diagonalizable, and has {v1, . . . , vn}
as n = dim(A) independent eigenvectors.

Collect them in groups of equal eigenvalues, say, in decreasing
order:

v1
λ1

, v2
λ1

, . . . , vn1

λ1
have eigenvalue λ1 = λmax

v1
λ2

, v2
λ2

, . . . , vn2

λ2
have eigenvalue λ2 < λ1

. . . .
vm

λm
, v2λm, . . . , vnm

λm
have eigenvalue λm = λmin.

m = number of distinct eigenvalues, and
n1 + n2 + . . . + nm =

∑

i ni = dim(A) = n.
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Eigenbases

We can think of A (after some change of basis) as
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Eigenbases

We can think of A (after some change of basis) as

A =













λ1In1
0 0 . . . 0

0 λ2In2
0 . . . 0

...
...

0 0 . . . 0 λmInm













.
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Eigenbases

We can think of A (after some change of basis) as

A =













λ1In1
0 0 . . . 0

0 λ2In2
0 . . . 0

...
...

0 0 . . . 0 λmInm













.

Each block λiIni
is the eigenspace associated with eigenvalue

λi.
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Eigenbases

We can think of A (after some change of basis) as

A =













λ1In1
0 0 . . . 0

0 λ2In2
0 . . . 0

...
...

0 0 . . . 0 λmInm













.

Each block λiIni
is the eigenspace associated with eigenvalue

λi.

Problem 12 Show: for each i, Aλi
is a vector space with dimension ni.
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Eigenbases

We can think of A (after some change of basis) as

A =













λ1In1
0 0 . . . 0

0 λ2In2
0 . . . 0

...
...

0 0 . . . 0 λmInm













.

Each block λiIni
is the eigenspace associated with eigenvalue

λi.

Problem 12 Show: for each i, Aλi
is a vector space with dimension ni.

Reason: linear combinations of eigenvectors with the same
eigenvalue are also eigenvectors with that eigenvalue.
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Eigenbases

We can think of A (after some change of basis) as

A =













λ1In1
0 0 . . . 0

0 λ2In2
0 . . . 0

...
...

0 0 . . . 0 λmInm













.

Each block λiIni
is the eigenspace associated with eigenvalue

λi.

Problem 12 Show: for each i, Aλi
is a vector space with dimension ni.

Reason: linear combinations of eigenvectors with the same
eigenvalue are also eigenvectors with that eigenvalue.
For the same reason, any basis of Aλi

is equivalent to any
other, for the purposes of diagonalization.
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Behavioral Eigen-Analysis

Let’s get back to the issue of complex and real eigenvalues.
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Behavioral Eigen-Analysis

Let’s get back to the issue of complex and real eigenvalues.
Suppose all the eigenvalues of A are real. Then
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Behavioral Eigen-Analysis

Let’s get back to the issue of complex and real eigenvalues.
Suppose all the eigenvalues of A are real. Then

A = SDS−1 where

D =













λ1 0 0 . . . 0

0 λ2 0 . . . 0
...

...
0 0 . . . 0 λn













is a diagonal matrix with all real entries along the diagonal.
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Behavioral Eigen-Analysis

Let’s get back to the issue of complex and real eigenvalues.
Suppose all the eigenvalues of A are real. Then

A = SDS−1 where

D =













λ1 0 0 . . . 0

0 λ2 0 . . . 0
...

...
0 0 . . . 0 λn













is a diagonal matrix with all real entries along the diagonal.

Question: what does a diagonal matrix with real entries
correspond to? (don’t forget some could be negative)
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Behavioral Eigen-Analysis

Let’s get back to the issue of complex and real eigenvalues.
Suppose all the eigenvalues of A are real. Then

A = SDS−1 where

D =













λ1 0 0 . . . 0

0 λ2 0 . . . 0
...

...
0 0 . . . 0 λn













is a diagonal matrix with all real entries along the diagonal.

Question: what does a diagonal matrix with real entries
correspond to? (don’t forget some could be negative)
Answer: stretching along various directions, with a flip as well if
negative.
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Behavioral Eigen-Analysis

Hm, what does a complex eigenvalue correspond to?
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Behavioral Eigen-Analysis

Hm, what does a complex eigenvalue correspond to?

Problem 13 Compute the eigenvalues and eigenvectors of

Rθ =

[

cos(θ) −sin(θ)

sin(θ) cos(θ)

]

.
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Behavioral Eigen-Analysis

Hm, what does a complex eigenvalue correspond to?

Problem 13 Compute the eigenvalues and eigenvectors of

Rθ =

[

cos(θ) −sin(θ)

sin(θ) cos(θ)

]

.

Answer: v1 = [1 i], with eigenvalue cos(θ) − isin(θ) and
v2 = [i 1] with eigenvalue cos(θ) + isin(θ).
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Hm, what does a complex eigenvalue correspond to?

Problem 13 Compute the eigenvalues and eigenvectors of

Rθ =

[

cos(θ) −sin(θ)

sin(θ) cos(θ)

]

.

Answer: v1 = [1 i], with eigenvalue cos(θ) − isin(θ) and
v2 = [i 1] with eigenvalue cos(θ) + isin(θ).

Now, notice three facts:
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Behavioral Eigen-Analysis

Hm, what does a complex eigenvalue correspond to?

Problem 13 Compute the eigenvalues and eigenvectors of

Rθ =

[

cos(θ) −sin(θ)

sin(θ) cos(θ)

]

.

Answer: v1 = [1 i], with eigenvalue cos(θ) − isin(θ) and
v2 = [i 1] with eigenvalue cos(θ) + isin(θ).

Now, notice three facts:
■ Rotation here corresponds to complex

eigenvalues/eigenvectors.
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Behavioral Eigen-Analysis

Hm, what does a complex eigenvalue correspond to?

Problem 13 Compute the eigenvalues and eigenvectors of

Rθ =

[

cos(θ) −sin(θ)

sin(θ) cos(θ)

]

.

Answer: v1 = [1 i], with eigenvalue cos(θ) − isin(θ) and
v2 = [i 1] with eigenvalue cos(θ) + isin(θ).

Now, notice three facts:
■ Rotation here corresponds to complex

eigenvalues/eigenvectors.
■ The eigenvalues are complex conjugates of each other.
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Behavioral Eigen-Analysis

Hm, what does a complex eigenvalue correspond to?

Problem 13 Compute the eigenvalues and eigenvectors of

Rθ =

[

cos(θ) −sin(θ)

sin(θ) cos(θ)

]

.

Answer: v1 = [1 i], with eigenvalue cos(θ) − isin(θ) and
v2 = [i 1] with eigenvalue cos(θ) + isin(θ).

Now, notice three facts:
■ Rotation here corresponds to complex

eigenvalues/eigenvectors.
■ The eigenvalues are complex conjugates of each other.
■ Conjugate pair corresponds to real 2x2 with equal diagonal

elements, ± off-diagonals.
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Behavioral Eigen-Analysis

Let’s see why these facts are general.
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Behavioral Eigen-Analysis

Let’s see why these facts are general.

Problem 14 Show that of λ is an eigenvalue of a real matrix, so is λ̄.
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Let’s see why these facts are general.

Problem 14 Show that of λ is an eigenvalue of a real matrix, so is λ̄.

Reason:
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Behavioral Eigen-Analysis

Let’s see why these facts are general.

Problem 14 Show that of λ is an eigenvalue of a real matrix, so is λ̄.

Reason:
■ If Ax = λx, then conjugating gives:
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Behavioral Eigen-Analysis

Let’s see why these facts are general.

Problem 14 Show that of λ is an eigenvalue of a real matrix, so is λ̄.

Reason:
■ If Ax = λx, then conjugating gives:
■ Ax = λx = Āx̄ = λ̄x̄.
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Behavioral Eigen-Analysis

Let’s see why these facts are general.

Problem 14 Show that of λ is an eigenvalue of a real matrix, so is λ̄.

Reason:
■ If Ax = λx, then conjugating gives:
■ Ax = λx = Āx̄ = λ̄x̄.
■ since A is real, Ā = A, so
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Behavioral Eigen-Analysis

Let’s see why these facts are general.

Problem 14 Show that of λ is an eigenvalue of a real matrix, so is λ̄.

Reason:
■ If Ax = λx, then conjugating gives:
■ Ax = λx = Āx̄ = λ̄x̄.
■ since A is real, Ā = A, so
■ Ax̄ = λ̄x̄
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Behavioral Eigen-Analysis

Let’s see why these facts are general.

Problem 14 Show that of λ is an eigenvalue of a real matrix, so is λ̄.

Reason:
■ If Ax = λx, then conjugating gives:
■ Ax = λx = Āx̄ = λ̄x̄.
■ since A is real, Ā = A, so
■ Ax̄ = λ̄x̄

■ so λ̄ is an eigenvalue by definition.
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Behavioral Eigen-Analysis

Hence, the eigenvalues of A can be listed in two groups.
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Behavioral Eigen-Analysis

Hence, the eigenvalues of A can be listed in two groups.

Real values: r1, r2, . . . , rk and
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Behavioral Eigen-Analysis

Hence, the eigenvalues of A can be listed in two groups.

Real values: r1, r2, . . . , rk and non-real values:
c1, c̄1, c2, c̄2, . . . , cl, c̄l.
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Behavioral Eigen-Analysis

Hence, the eigenvalues of A can be listed in two groups.

Real values: r1, r2, . . . , rk and non-real values:
c1, c̄1, c2, c̄2, . . . , cl, c̄l.
So, when diagonalized,
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Behavioral Eigen-Analysis

Hence, the eigenvalues of A can be listed in two groups.

Real values: r1, r2, . . . , rk and non-real values:
c1, c̄1, c2, c̄2, . . . , cl, c̄l.
So, when diagonalized,

A =







































r1 0 0 0 . . . 0 0 0

0 r2 0 0 . . . 0 0 0
... 0 0 . . . 0 0

...
0 . . . rk 0 . . . 0 0

0 0 0 c1 0 . . . 0 0

0 0 0 0 c̄1 0 . . . 0
...

...
0 cl 0

0 0 c̄l







































.
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Behavioral Eigen-Analysis

But consider those complex pair-blocks

Blocki =

[

ci 0

0 c̄i

]

.
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But consider those complex pair-blocks

Blocki =

[

ci 0

0 c̄i

]

.

In fact, they correspond to real matrices. Namely:
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But consider those complex pair-blocks

Blocki =

[

ci 0

0 c̄i

]

.

In fact, they correspond to real matrices. Namely: Blocki is the
same up to change of basis as
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Behavioral Eigen-Analysis

But consider those complex pair-blocks

Blocki =

[

ci 0

0 c̄i

]

.

In fact, they correspond to real matrices. Namely: Blocki is the
same up to change of basis as

[

ai −bi

bi ai

]

where ai = Re(ci) and bi = Im(ci).
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Behavioral Eigen-Analysis

But consider those complex pair-blocks

Blocki =

[

ci 0

0 c̄i

]

.

In fact, they correspond to real matrices. Namely: Blocki is the
same up to change of basis as

[

ai −bi

bi ai

]

where ai = Re(ci) and bi = Im(ci).

Problem 15 This is a constant times a rotation matrix. Which one? (Hint:
use the definition of cosine.)
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Behavioral Eigen-Analysis

But consider those complex pair-blocks

Blocki =

[

ci 0

0 c̄i

]

.

In fact, they correspond to real matrices. Namely: Blocki is the
same up to change of basis as

[

ai −bi

bi ai

]

where ai = Re(ci) and bi = Im(ci).

Problem 15 This is a constant times a rotation matrix. Which one? (Hint:
use the definition of cosine.)

Answer: rotation angle is θi = cos−1(ai/
√

a2
i + b2

i )
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Thus, we have a TOTAL behavioral understanding of
diagonalizable real matrices:
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Behavioral Eigen-Analysis

Thus, we have a TOTAL behavioral understanding of
diagonalizable real matrices:

Theorem 2 All such matrices can be written as SDS−1 where D has
diagonal elements corresponding to real-eigenvalue dilations or 2x2 blocks
corresponding to complex-eigenvalue rotation-dilations.
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Thus, we have a TOTAL behavioral understanding of
diagonalizable real matrices:

Theorem 2 All such matrices can be written as SDS−1 where D has
diagonal elements corresponding to real-eigenvalue dilations or 2x2 blocks
corresponding to complex-eigenvalue rotation-dilations.

Moreover: the rotation rate and stretch multiple are controlled
by the eigenvalues.
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Thus, we have a TOTAL behavioral understanding of
diagonalizable real matrices:

Theorem 2 All such matrices can be written as SDS−1 where D has
diagonal elements corresponding to real-eigenvalue dilations or 2x2 blocks
corresponding to complex-eigenvalue rotation-dilations.

Moreover: the rotation rate and stretch multiple are controlled
by the eigenvalues.
But what if the matrix is not diagonalizable? i.e
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Behavioral Eigen-Analysis

Thus, we have a TOTAL behavioral understanding of
diagonalizable real matrices:

Theorem 2 All such matrices can be written as SDS−1 where D has
diagonal elements corresponding to real-eigenvalue dilations or 2x2 blocks
corresponding to complex-eigenvalue rotation-dilations.

Moreover: the rotation rate and stretch multiple are controlled
by the eigenvalues.
But what if the matrix is not diagonalizable? i.e

What if we can’t find n linearly independent eigenvectors?
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Nilpotency

We started with one property of scalars that matrices didn’t
share (commutativity).
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share (commutativity). Here’s another:
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Nilpotency

We started with one property of scalars that matrices didn’t
share (commutativity). Here’s another:

For all real (or complex) numbers a, if ak = 0 ⇒ a = 0.
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Nilpotency

We started with one property of scalars that matrices didn’t
share (commutativity). Here’s another:

For all real (or complex) numbers a, if ak = 0 ⇒ a = 0.

Problem 16 Find a non-zero 2x2 matrix A such that A2 = 0.
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Nilpotency

We started with one property of scalars that matrices didn’t
share (commutativity). Here’s another:

For all real (or complex) numbers a, if ak = 0 ⇒ a = 0.

Problem 16 Find a non-zero 2x2 matrix A such that A2 = 0.

Answer: the standard answer is

A =

[

0 1

0 0

]

.
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Nilpotency

We started with one property of scalars that matrices didn’t
share (commutativity). Here’s another:

For all real (or complex) numbers a, if ak = 0 ⇒ a = 0.

Problem 16 Find a non-zero 2x2 matrix A such that A2 = 0.

Answer: the standard answer is

A =

[

0 1

0 0

]

.

Problem 17 Compute the eigenvalues and eigenvalues of this A.
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Nilpotency

We started with one property of scalars that matrices didn’t
share (commutativity). Here’s another:

For all real (or complex) numbers a, if ak = 0 ⇒ a = 0.

Problem 16 Find a non-zero 2x2 matrix A such that A2 = 0.

Answer: the standard answer is

A =

[

0 1

0 0

]

.

Problem 17 Compute the eigenvalues and eigenvalues of this A.

Answer: Trick question. A has no non-trivial eigenvectors.
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Nilpotency

A matrix is said to be nilpotent if Ak = 0 for some k.
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Nilpotency

A matrix is said to be nilpotent if Ak = 0 for some k.

Problem 18 Find an n-by-n matrix such that An−1 = 0 but Ai 6= 0 for
i < n − 1 (A is the said to be “nilpotent of order n − 1”).
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Nilpotency

A matrix is said to be nilpotent if Ak = 0 for some k.

Problem 18 Find an n-by-n matrix such that An−1 = 0 but Ai 6= 0 for
i < n − 1 (A is the said to be “nilpotent of order n − 1”).

Answer: Standard answer is

Nn =

















0 1 0 0 . . . 0

0 0 1 0 . . . 0
...

...
0 . . . 0 1

0 . . . 0

















.
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Nilpotency

A matrix is said to be nilpotent if Ak = 0 for some k.

Problem 18 Find an n-by-n matrix such that An−1 = 0 but Ai 6= 0 for
i < n − 1 (A is the said to be “nilpotent of order n − 1”).

Answer: Standard answer is

Nn =

















0 1 0 0 . . . 0

0 0 1 0 . . . 0
...

...
0 . . . 0 1

0 . . . 0

















.

This matrix has no non-trivial eigenvectors.
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Nilpotency

A matrix is said to be nilpotent if Ak = 0 for some k.

Problem 18 Find an n-by-n matrix such that An−1 = 0 but Ai 6= 0 for
i < n − 1 (A is the said to be “nilpotent of order n − 1”).

Answer: Standard answer is

Nn =

















0 1 0 0 . . . 0

0 0 1 0 . . . 0
...

...
0 . . . 0 1

0 . . . 0

















.

This matrix has no non-trivial eigenvectors. It’s behavior is like
a step-by-step “collapser”:
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Nilpotency

A matrix is said to be nilpotent if Ak = 0 for some k.

Problem 18 Find an n-by-n matrix such that An−1 = 0 but Ai 6= 0 for
i < n − 1 (A is the said to be “nilpotent of order n − 1”).

Answer: Standard answer is

Nn =

















0 1 0 0 . . . 0

0 0 1 0 . . . 0
...

...
0 . . . 0 1

0 . . . 0

















.

This matrix has no non-trivial eigenvectors. It’s behavior is like
a step-by-step “collapser”:

en → en−1 → . . . → e1 → 0.
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Nilpotency

Problem 19 Show that any nilpotent matrix has no non-trivial eigenvectors.
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Nilpotency

Problem 19 Show that any nilpotent matrix has no non-trivial eigenvectors.

Reason:
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Nilpotency

Problem 19 Show that any nilpotent matrix has no non-trivial eigenvectors.

Reason:
■ Suppose Nx = λx and N is nilpotent.
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Nilpotency

Problem 19 Show that any nilpotent matrix has no non-trivial eigenvectors.

Reason:
■ Suppose Nx = λx and N is nilpotent.
■ Then N lx = λlx for all l.
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Nilpotency

Problem 19 Show that any nilpotent matrix has no non-trivial eigenvectors.

Reason:
■ Suppose Nx = λx and N is nilpotent.
■ Then N lx = λlx for all l.
■ But λl 6= 0 for all l,
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Nilpotency

Problem 19 Show that any nilpotent matrix has no non-trivial eigenvectors.

Reason:
■ Suppose Nx = λx and N is nilpotent.
■ Then N lx = λlx for all l.
■ But λl 6= 0 for all l,
■ which conflicts with Nk = 0 for some k.
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Nilpotency

Problem 19 Show that any nilpotent matrix has no non-trivial eigenvectors.

Reason:
■ Suppose Nx = λx and N is nilpotent.
■ Then N lx = λlx for all l.
■ But λl 6= 0 for all l,
■ which conflicts with Nk = 0 for some k.

So we might suspect: nilpotent matrices fill in the “hole” left by
the non-diagonalizable parts of arbitrary matrix.
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Nilpotency

Problem 19 Show that any nilpotent matrix has no non-trivial eigenvectors.

Reason:
■ Suppose Nx = λx and N is nilpotent.
■ Then N lx = λlx for all l.
■ But λl 6= 0 for all l,
■ which conflicts with Nk = 0 for some k.

So we might suspect: nilpotent matrices fill in the “hole” left by
the non-diagonalizable parts of arbitrary matrix.

The lack of eigenvectors of nilpotent matrices could make up
for the missing dimensions in a non-diagonal matrix.
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Nilpotency

Theorem 3 All nilpotent matrices can be put into the standard form – that is
all zeros, except 1s on the “super-diagonal”.
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Nilpotency

Theorem 3 All nilpotent matrices can be put into the standard form – that is
all zeros, except 1s on the “super-diagonal”.

That is, if an n-by-n matrix A is nilpotent of order n − 1, then
there is an invertible matrix S such that
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Nilpotency

Theorem 3 All nilpotent matrices can be put into the standard form – that is
all zeros, except 1s on the “super-diagonal”.

That is, if an n-by-n matrix A is nilpotent of order n − 1, then
there is an invertible matrix S such that

A = S

















0 1 0 0 . . . 0

0 0 1 0 . . . 0
...

...
0 . . . 0 1

0 . . . 0

















S−1 = SNnS−1.
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Nilpotency

Theorem 3 All nilpotent matrices can be put into the standard form – that is
all zeros, except 1s on the “super-diagonal”.

That is, if an n-by-n matrix A is nilpotent of order n − 1, then
there is an invertible matrix S such that

A = S

















0 1 0 0 . . . 0

0 0 1 0 . . . 0
...

...
0 . . . 0 1

0 . . . 0

















S−1 = SNnS−1.

Lower-order nilpotency ⇒ some smaller Ni blocks.
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Nilpotency

Theorem 3 All nilpotent matrices can be put into the standard form – that is
all zeros, except 1s on the “super-diagonal”.

That is, if an n-by-n matrix A is nilpotent of order n − 1, then
there is an invertible matrix S such that

A = S

















0 1 0 0 . . . 0

0 0 1 0 . . . 0
...

...
0 . . . 0 1

0 . . . 0

















S−1 = SNnS−1.

Lower-order nilpotency ⇒ some smaller Ni blocks.

To fill in the “missing eigenvector" gap, let’s add diagonal
matrices to nilpontent matrices.
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A Simple Form

Let λ be any complex number.
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A Simple Form

Let λ be any complex number. Now, let Jλ
n = λIn + Nn.
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A Simple Form

Let λ be any complex number. Now, let Jλ
n = λIn + Nn. This

is the sum of the simplest diagonal and nilpotent matrices.
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A Simple Form

Let λ be any complex number. Now, let Jλ
n = λIn + Nn. This

is the sum of the simplest diagonal and nilpotent matrices.

Jλ
n =

















λ 1 0 0 . . . 0

0 λ 1 0 . . . 0
...

...
0 . . . λ 1

0 . . . λ

















.
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A Simple Form

Let λ be any complex number. Now, let Jλ
n = λIn + Nn. This

is the sum of the simplest diagonal and nilpotent matrices.

Jλ
n =

















λ 1 0 0 . . . 0

0 λ 1 0 . . . 0
...

...
0 . . . λ 1

0 . . . λ

















.

Problem 20 What are the eigenvalues/vectors of Jλ
n ?
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A Simple Form

Let λ be any complex number. Now, let Jλ
n = λIn + Nn. This

is the sum of the simplest diagonal and nilpotent matrices.

Jλ
n =

















λ 1 0 0 . . . 0

0 λ 1 0 . . . 0
...

...
0 . . . λ 1

0 . . . λ

















.

Problem 20 What are the eigenvalues/vectors of Jλ
n ?

Answer: [1 0 . . . 0] is the only eigenvector, with eigenvalue λ.
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A Simple Form

Ok, [1 0 . . . 0] was the only eigenvector of Jλ
n , so it’s not

diagonalizable, etc...
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A Simple Form

Ok, [1 0 . . . 0] was the only eigenvector of Jλ
n , so it’s not

diagonalizable, etc... but,

Problem 21 Compute

(Jλ
n − λIn)n−1.

Fast.
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A Simple Form

Ok, [1 0 . . . 0] was the only eigenvector of Jλ
n , so it’s not

diagonalizable, etc... but,

Problem 21 Compute

(Jλ
n − λIn)n−1.

Fast.

Answer: 0, b/c the stuff inside the parentheses is just Nn, the
nilpotent matrix.
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A Simple Form

Ok, [1 0 . . . 0] was the only eigenvector of Jλ
n , so it’s not

diagonalizable, etc... but,

Problem 21 Compute

(Jλ
n − λIn)n−1.

Fast.

Answer: 0, b/c the stuff inside the parentheses is just Nn, the
nilpotent matrix.

Hence, all vectors are “generalized" eigenvectors;
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A Simple Form

Ok, [1 0 . . . 0] was the only eigenvector of Jλ
n , so it’s not

diagonalizable, etc... but,

Problem 21 Compute

(Jλ
n − λIn)n−1.

Fast.

Answer: 0, b/c the stuff inside the parentheses is just Nn, the
nilpotent matrix.

Hence, all vectors are “generalized" eigenvectors; x is a
generalized eigenvector of A with generalized eigenvalue λ if there is a
k such that (A − λIn)k(x) = 0.
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A Simple Form

Ok, [1 0 . . . 0] was the only eigenvector of Jλ
n , so it’s not

diagonalizable, etc... but,

Problem 21 Compute

(Jλ
n − λIn)n−1.

Fast.

Answer: 0, b/c the stuff inside the parentheses is just Nn, the
nilpotent matrix.

Hence, all vectors are “generalized" eigenvectors; x is a
generalized eigenvector of A with generalized eigenvalue λ if there is a
k such that (A − λIn)k(x) = 0.

(.... it a power of k where there was 1 in the original definition)
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A Simple Form

Let’s investigate the behavior of Jλ
n .
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A Simple Form

Let’s investigate the behavior of Jλ
n .

Problem 22 Compute

(Jλ
3 )l







0

1

0






=







λ 1 0

0 λ 1

0 0 λ







l 





0

1

0






.
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A Simple Form

Let’s investigate the behavior of Jλ
n .

Problem 22 Compute

(Jλ
3 )l







0

1
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=







λ 1 0

0 λ 1

0 0 λ
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0

1
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.

Answer:






lλl−1

λl

0






.
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A Simple Form

Let’s investigate the behavior of Jλ
n .

Problem 22 Compute

(Jλ
3 )l
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λ 1 0

0 λ 1
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Answer:






lλl−1

λl

0






.

(Aside: doesn’t it remind you of derivatives?)
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A Simple Form

Pictorially:
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Problem 23 What angle does this make with the x-axis, as l → ∞?
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A Simple Form

x−axis

[  nλ λ 0] 
n−1 n

y−axis

Problem 23 What angle does this make with the x-axis, as l → ∞?

Answer:

lim
l→∞

cos−1

(

nλn−1

√

(nλn−1)2 + (λn)2
=

n√
n2 + λ2

)

= cos−1(1) = 0.
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Now, if you compute

(Jλ
3 )l
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0 λ 1
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Now, if you compute

(Jλ
3 )l







0
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,

You get






(l(l − 1)/2)λl−2

lλl−1
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O(λ
n
)

O(λ2

n2 )






.



● Overview

More Linear Algebra

● Matrices Represent ALOT

● The Main Point

● A Practical Problem

● Commutativity

● Commutativity

● Commutativity

● Rotation Matrices

● Rotation Matrices

● Commutativity

● Commutativity

● Commutativity

● Commutativity

● Commutativity

● Commutativity

● Eigenbases

● Eigenbases

● Eigenbases

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Behavioral Eigen-Analysis

● Nilpotency

● Nilpotency

● Nilpotency

● Nilpotency

● A Simple Form

● A Simple Form

● A Simple Form

● A Simple Form

● A Simple Form

● Putting it All Together

● Putting it All Together

- p. 35/38

A Simple Form

Now, if you compute

(Jλ
3 )l







0

0

1






=







λ 1 0

0 λ 1

0 0 λ







l 





0

0

1






,

You get






(l(l − 1)/2)λl−2

lλl−1

λl






∝







1

O(λ
n
)

O(λ2

n2 )






.

Just as above, as l → ∞, the angle with x-axis moves toward
zero.
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Now, if you compute
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Just as above, as l → ∞, the angle with x-axis moves toward
zero. Conclusion: Jλ

n “pushes" all the generalized
eigenvectors down (asymptotically) to a true eigenvector.
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Putting it All Together

The most celebrated and powerful result of linear algebra is
now in reach.
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Putting it All Together

The most celebrated and powerful result of linear algebra is
now in reach.

Theorem 4 (The Jordan Normal Form) Given any matrix A, there is an
invertible matrix S such that A = SDS−1, where

D =













Jλ1

n1
0 0 . . . 0

0 Jλ2

n2
0 . . . 0

...
...

0 . . . 0 Jλk

nk
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Putting it All Together

The most celebrated and powerful result of linear algebra is
now in reach.

Theorem 4 (The Jordan Normal Form) Given any matrix A, there is an
invertible matrix S such that A = SDS−1, where

D =













Jλ1

n1
0 0 . . . 0

0 Jλ2

n2
0 . . . 0

...
...

0 . . . 0 Jλk

nk













.

I.e.: in the right basis, all matrices are of block-diagonal form,
where the blocks are sums of constant and standard nilpotent
matrices.
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Putting it All Together

The most celebrated and powerful result of linear algebra is
now in reach.

Theorem 4 (The Jordan Normal Form) Given any matrix A, there is an
invertible matrix S such that A = SDS−1, where

D =













Jλ1

n1
0 0 . . . 0

0 Jλ2

n2
0 . . . 0

...
...

0 . . . 0 Jλk

nk













.

I.e.: in the right basis, all matrices are of block-diagonal form,
where the blocks are sums of constant and standard nilpotent
matrices.
D is the as-diagonalized-as-possible version of A.
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If A is actually diagonalizable, ni = block size = 1, λi are
actual eigenvalues; rows with same eigenvalues collect into
eigenspaces.
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If A is actually diagonalizable, ni = block size = 1, λi are
actual eigenvalues; rows with same eigenvalues collect into
eigenspaces.

In general, λi are generalized eigenvalues and like-valued
blocks collect into generalized eigenspaces.
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If A is actually diagonalizable, ni = block size = 1, λi are
actual eigenvalues; rows with same eigenvalues collect into
eigenspaces.

In general, λi are generalized eigenvalues and like-valued
blocks collect into generalized eigenspaces.

Restated, all vectors in a given J-block correspond to a single
true eigenvector with eigenvalue λ
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If A is actually diagonalizable, ni = block size = 1, λi are
actual eigenvalues; rows with same eigenvalues collect into
eigenspaces.

In general, λi are generalized eigenvalues and like-valued
blocks collect into generalized eigenspaces.

Restated, all vectors in a given J-block correspond to a single
true eigenvector with eigenvalue λ and multiplicity ni.
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If A is actually diagonalizable, ni = block size = 1, λi are
actual eigenvalues; rows with same eigenvalues collect into
eigenspaces.

In general, λi are generalized eigenvalues and like-valued
blocks collect into generalized eigenspaces.

Restated, all vectors in a given J-block correspond to a single
true eigenvector with eigenvalue λ and multiplicity ni.

Problem 24 In the above terms, how many true eigenvectors does D have?
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Putting it All Together
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If A is actually diagonalizable, ni = block size = 1, λi are
actual eigenvalues; rows with same eigenvalues collect into
eigenspaces.

In general, λi are generalized eigenvalues and like-valued
blocks collect into generalized eigenspaces.

Restated, all vectors in a given J-block correspond to a single
true eigenvector with eigenvalue λ and multiplicity ni.

Problem 24 In the above terms, how many true eigenvectors does D have?

Answer: k = number of blocks.
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The final behavioral analysis:
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■ Generalized eigenvectors get pushed “up" their J-block,

asymptotically collapsing to a corresponding true
eigenvector.

■ Eigenvectors of real eigenvalues get stretched.
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■ Eigenvectors of complex eigenvalues get rotated and
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■ Eigenvectors of complex eigenvalues get rotated and
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■ Collapse, dilation, and rotation rates controlled by

eigenvalues.
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The final behavioral analysis:
■ Generalized eigenvectors get pushed “up" their J-block,

asymptotically collapsing to a corresponding true
eigenvector.

■ Eigenvectors of real eigenvalues get stretched.
■ Eigenvectors of complex eigenvalues get rotated and

stretched.
■ Collapse, dilation, and rotation rates controlled by

eigenvalues.
These are the only possible behaviors of a linear system.
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