Lecture 2: Analysis and Classification of Linear Systems
The topics of this lecture are:
The topics of this lecture are:

- Classifying solutions to matrix ODEs.
The topics of this lecture are:

- Classifying solutions to matrix ODEs.
- A couple of motivating examples.
The topics of this lecture are:

- Classifying solutions to matrix ODEs.
- A couple of motivating examples.
- Non-Homogenous systems.
The topics of this lecture are:

■ Classifying solutions to matrix ODEs.
■ A couple of motivating examples.
■ Non-Homogenous systems.

The philosophy: dynamic behavioral analysis is controlled by static behavioral analysis.
Let’s review something that Johan did.
Let's review something that Johan did. Suppose that \(\vec{x}(t) = (x_1(t), x_2(t), \ldots, x_n(t)) \in \mathbb{R}^n \) is a trajectory whose update is governed by a linear first-order differential equation.
Let’s review something that Johan did. Suppose that \(\vec{x}(t) = (x_1(t), x_2(t), \ldots, x_n(t)) \in \mathbb{R}^n \) is a trajectory whose update is governed by a linear first-order differential equation. That is,

\[
\frac{dx_1}{dt}(t) = a_{1,1}x_1(t) + a_{1,2}x_2(t) + \ldots + a_{1,n}x_n(t),
\]
Let’s review something that Johan did. Suppose that $\vec{x}(t) = (x_1(t), x_2(t), \ldots, x_n(t)) \in \mathbb{R}^n$ is a trajectory whose update is governed by a linear first-order differential equation. That is,

$$\frac{dx_1}{dt}(t) = a_{1,1}x_1(t) + a_{1,2}x_2(t) + \ldots + a_{1,n}x_n(t),$$

$$\frac{dx_2}{dt}(t) = a_{2,1}x_1(t) + a_{2,2}x_2(t) + \ldots + a_{2,n}x_n(t),$$
Let’s review something that Johan did. Suppose that $\vec{x}(t) = (x_1(t), x_2(t), \ldots, x_n(t)) \in \mathbb{R}^n$ is a trajectory whose update is governed by a linear first-order differential equation. That is,

$$\frac{dx_1}{dt}(t) = a_{1,1}x_1(t) + a_{1,2}x_2(t) + \ldots + a_{1,n}x_n(t),$$

$$\frac{dx_2}{dt}(t) = a_{2,1}x_1(t) + a_{2,2}x_2(t) + \ldots + a_{2,n}x_n(t),$$

...
Let’s review something that Johan did. Suppose that \(\vec{x}(t) = (x_1(t), x_2(t), \ldots, x_n(t)) \in \mathbb{R}^n \) is a trajectory whose update is governed by a linear first-order differential equation. That is,

\[
\frac{dx_1}{dt}(t) = a_{1,1}x_1(t) + a_{1,2}x_2(t) + \ldots + a_{1,n}x_n(t),
\]

\[
\frac{dx_2}{dt}(t) = a_{2,1}x_1(t) + a_{2,2}x_2(t) + \ldots + a_{2,n}x_n(t),
\]

\[
\vdots
\]

\[
\frac{dx_n}{dt}(t) = a_{n,1}x_1(t) + a_{n,2}x_2(t) + \ldots + a_{n,n}x_n(t).
\]
Let's review something that Johan did.
Suppose that $\vec{x}(t) = (x_1(t), x_2(t), \ldots, x_n(t)) \in \mathbb{R}^n$ is a trajectory whose update is governed by a linear first-order differential equation. That is,

$$\frac{dx_1}{dt}(t) = a_{1,1}x_1(t) + a_{1,2}x_2(t) + \ldots + a_{1,n}x_n(t),$$

$$\ldots$$

$$\frac{dx_n}{dt}(t) = a_{n,1}x_1(t) + a_{n,2}x_2(t) + \ldots + a_{n,n}x_n(t).$$

This can be written as

$$\frac{d\vec{x}}{dt}(t) = A\vec{x}$$

where A is the matrix of the $a_{i,j}$'s.
You then learned the solution:
You then learned the solution:

\[\vec{x}(t) = e^{tA} \vec{x}(0). \]
You then learned the solution:

\[\vec{x}(t) = e^{tA} \vec{x}(0). \]

This is meaningful because, after all, if \(A \) is an \(n \)-by-\(n \) matrix, so is \(tA \), and hence so is \(e^{tA} \).
You then learned the solution:

$$\vec{x}(t) = e^{tA} \vec{x}(0).$$

This is meaningful because, after all, if A is an n-by-n matrix, so is tA, and hence so is e^{tA}. So it can act on $\vec{x}(0)$ to produce $\vec{x}(t)$.
You then learned the solution:

\[\vec{x}(t) = e^{tA} \vec{x}(0). \]

This is meaningful because, after all, if \(A \) is an \(n \)-by-\(n \) matrix, so is \(tA \), and hence so is \(e^{tA} \). So it can act on \(\vec{x}(0) \) to produce \(\vec{x}(t) \).

Can we turn our eigen-value analysis of matrices into a qualitative description of the time-limiting behavior of matrix ODEs?
You then learned the solution:

$$\vec{x}(t) = e^{tA}\vec{x}(0).$$

This is meaningful because, after all, if A is an n-by-n matrix, so is tA, and hence so is e^{tA}. So it can act on $\vec{x}(0)$ to produce $\vec{x}(t)$.

Can we turn our eigen-value analysis of matrices into a qualitative description of the time-limiting behavior of matrix ODEs?

Yes. And the answer is perhaps the most fundamental application of mathematics to science.
The 1-D Case

In the 1-D case, it boils down to

\[x(t) = e^{\lambda t} x(0). \]
The 1-D Case

In the 1-D case, it boils down to

\[x(t) = e^{\lambda t} x(0). \]

Now, what does the \(e^{\lambda t} \) do?
The 1-D Case

In the 1-D case, it boils down to

\[x(t) = e^{\lambda t} x(0). \]

Now, what does the \(e^{\lambda t} \) do?

Split into real and imaginary parts: \(\lambda = \lambda_{re} + i\lambda_{im} \)
The 1-D Case

In the 1-D case, it boils down to

\[x(t) = e^{\lambda t} x(0). \]

Now, what does the \(e^{\lambda t} \) do?

Split into real and imaginary parts: \(\lambda = \lambda_r + i\lambda_i \)

Then

\[e^{\lambda t} = e^{\lambda_r t + i\lambda_i t} = e^{\lambda_r t} e^{i\lambda_i t}. \]
The 1-D Case

In the 1-D case, it boils down to

\[x(t) = e^{\lambda t} x(0). \]

Now, what does the \(e^{\lambda t} \) do?

Split into real and imaginary parts: \(\lambda = \lambda_{re} + i\lambda_{im} \)

Then

\[e^{\lambda t} = e^{\lambda_{re}t + i\lambda_{im}t} = e^{\lambda_{re}t} e^{i\lambda_{im}t}. \]

Problem 1 What is \(\lim_{t \to \infty} e^{at} \), qualitatively?
In the 1-D case, it boils down to

\[x(t) = e^{\lambda t} x(0). \]

Now, what does the \(e^{\lambda t} \) do?

Split into real and imaginary parts: \(\lambda = \lambda_{re} + i \lambda_{im} \)

Then

\[e^{\lambda t} = e^{\lambda_{re} t + i \lambda_{im} t} = e^{\lambda_{re} t} e^{i \lambda_{im} t}. \]

Problem 1 What is \(\text{Lim} = \lim_{t \to \infty} e^{at} \), qualitatively?

Answer: If \(a < 0 \), \(\text{Lim} = 0 \); if \(a > 0 \), \(\text{Lim} = \infty \); if \(a = 0 \), \(L = 1 \).
In the 1-D case, it boils down to

\[x(t) = e^{\lambda t} x(0). \]

Now, what does the \(e^{\lambda t} \) do?

Split into real and imaginary parts: \(\lambda = \lambda_{re} + i\lambda_{im} \)

Then

\[e^{\lambda t} = e^{\lambda_{re} t + i\lambda_{im} t} = e^{\lambda_{re} t} e^{i\lambda_{im} t}. \]

Problem 1 What is \(\lim_{t \to \infty} e^{at} \), qualitatively?

Answer: If \(a < 0 \), \(\lim = 0 \); if \(a > 0 \), \(\lim = \infty \); if \(a = 0 \), \(L = 1 \).

Problem 2 What is \(|x(t)| \)?
The 1-D Case

Answer:
The 1-D Case

Answer:

\[|x(t)| \]
The 1-D Case

Answer:

\[|x(t)| = \left[x(t)x(t) \right]^{1/2} \quad \text{– definition of } |x| \]
The 1-D Case

Answer:
\[
|x(t)| = \left[x(t) \overline{x(t)} \right]^{1/2} \quad \text{definition of } |x|
\]
\[
= \left[e^{(\lambda_re + i\lambda_im)t} + (\lambda_re - i\lambda_im)t \right]^{1/2} |x(0)|
\]
The 1-D Case

Answer:

\[|x(t)| \]

\[= \left[x(t)x(t) \right]^{1/2} \quad – \text{definition of } |x| \]

\[= \left[e^{(\lambda_{re} + i\lambda_{im})t + (\lambda_{re} - i\lambda_{im})t} \right]^{1/2} \left| x(0) \right| \]

\[= \left[e^{2\lambda_{re}t} \right]^{1/2} \left| x(0) \right| \quad – \text{imaginary terms cancel, real terms add} \]
The 1-D Case

Answer:

\[|x(t)| = \left(x(t)x(t) \right)^{1/2} \quad \text{– definition of } |x| \]

\[= \left[e^{(\lambda_r + i\lambda_im)t} + (\lambda_r - i\lambda_im)t \right]^{1/2} |x(0)| \]

\[= \left[e^{2\lambda_rt} \right]^{1/2} |x(0)| \quad \text{– imaginary terms cancel, real terms add} \]

\[= e^{\lambda_rt} |x(0)|. \]
The 1-D Case

Answer:

\[|x(t)| = \left[x(t) \overline{x(t)} \right]^{1/2} \quad \text{definition of} \quad |x| \]

\[= \left[e^{(\lambda_{re}+i\lambda_{im})t} + (\lambda_{re} - i\lambda_{im})t \right]^{1/2} |x(0)| \]

\[= e^{2\lambda_{re}t}^{1/2} |x(0)| \quad \text{imaginary terms cancel, real terms add} \]

\[= e^{\lambda_{re}t} |x(0)|. \]

Hence,

\[\lim_{t \to \infty} |x(t)| = \left(\lim_{t \to \infty} e^{\lambda_{re}t} \right) |x(0)| = \begin{cases} 0 & \text{if} \quad \lambda_{re} < 0, \\ \infty & \text{if} \quad \lambda_{re} > 0, \\ |x(0)| & \text{if} \quad \lambda_{re} = 0. \end{cases} \]
The 1-D Case

Answer:
\[|x(t)| \]
\[= \left[x(t)x(t) \right]^{1/2} \text{ – definition of } |x| \]
\[= \left[e^{(\lambda_re + i\lambda_im)t} + (\lambda_re - i\lambda_im)t \right]^{1/2} |x(0)| \]
\[= \left[e^{2\lambda_re t} \right]^{1/2} |x(0)| \text{ – imaginary terms cancel, real terms add} \]
\[= e^{\lambda_re t} |x(0)|. \]

Hence,
\[\lim_{t \to \infty} |x(t)| = \left(\lim_{t \to \infty} e^{\lambda_re t} \right) |x(0)| = \begin{cases}
0 & \text{if } \lambda_re < 0, \\
\infty & \text{if } \lambda_re > 0, \\
|x(0)| & \text{if } \lambda_re = 0
\end{cases} \]

So the sign of \(\lambda_re \) controls the magnitude of the steady-state;
The 1-D Case

Answer:
\[|x(t)| = \left[x(t) \overline{x(t)} \right]^{1/2} - \text{definition of } |x| \]
\[= \left[e^{(\lambda_re + i\lambda_im)t + (\lambda_re - i\lambda_im)t} \right]^{1/2} |x(0)| \]
\[= \left[e^{2\lambda_re t} \right]^{1/2} |x(0)| - \text{imaginary terms cancel, real terms add} \]
\[= e^{\lambda_re t} |x(0)|. \]

Hence,
\[\lim_{t \to \infty} |x(t)| = \left(\lim_{t \to \infty} e^{\lambda_re t} \right) |x(0)| = \begin{cases}
0 & \text{if } \lambda_re < 0, \\
\infty & \text{if } \lambda_re > 0, \\
|x(0)| & \text{if } \lambda_re = 0.
\end{cases} \]

So the sign of \(\lambda_re \) controls the magnitude of the steady-state; and there are only three possibilities: contract to 0, blow-up to infinity, or remain the same.
Problem 3 Compute real and imaginary parts of $e^{i\lambda_it}$.
The 1-D Case

Problem 3 Compute real and imaginary parts of $e^{i\lambda mt}$.

Answer: Using

$$e^{i\theta} = \cos(\theta) + i\sin(\theta),$$

Real part: $\cos(\lambda mt)$. Imaginary part: $\sin(\lambda mt)$.
The 1-D Case

Problem 3 Compute real and imaginary parts of $e^{i\lambda mt}$.

Answer: Using

$$e^{i\theta} = \cos(\theta) + i\sin(\theta),$$

Real part: $\cos(\lambda mt)$. Imaginary part: $\sin(\lambda mt)$.

Look at Matlab sim: this part rotates around at frequency λm.
The 1-D Case

Problem 3 Compute real and imaginary parts of $e^{i\lambda_{im}t}$.

Answer: Using

$$e^{i\theta} = \cos(\theta) + isin(\theta),$$

Real part: $\cos(\lambda_{im}t)$. Imaginary part: $\sin(\lambda_{im}t)$.

Look at Matlab sim: this part rotates around at frequency λ_{im}. Aha! So λ_{im} controls the angle, as opposed to the magnitude.
Problem 3 Compute real and imaginary parts of $e^{i\lambda_{im}t}$.

Answer: Using \(e^{i\theta} = \cos(\theta) + isin(\theta) \),

Real part: \(\cos(\lambda_{im}t) \). Imaginary part: \(\sin(\lambda_{im}t) \).

Look at Matlab sim: this part rotates around at frequency \(\lambda_{im} \).
The 1-D Case

Thus:

\[x(t) = e^{\lambda_re^t} \cdot [\cos(\lambda_{im}t) + i\sin(\lambda_{im}t)] \cdot x(0) \]
Thus:

\[x(t) = e^{\lambda_re^t} \cdot [\cos(\lambda_{im}t) + i\sin(\lambda_{im}t)] \cdot x(0) \]

Problem 4 What is this in polar coordinates?
The 1-D Case

Thus:

\[x(t) = e^{\lambda_r t} \cdot [\cos(\lambda_{im} t) + i\sin(\lambda_{im} t)] \cdot x(0) \]

Problem 4 What is this in polar coordinates?

Answer: \((r(t), \theta(t)) = (e^{\lambda_r t}, \lambda_{im} t)\).
The 1-D Case

Thus:

\[x(t) = e^{\lambda r e^t} \cdot [\cos(\lambda im t) + i \sin(\lambda im t)] \cdot x(0) \]

Problem 4 What is this in polar coordinates?

Answer: \((r(t), \theta(t)) = (e^{\lambda r e^t}, \lambda im t)\).

Hence
Thus:

\[x(t) = e^{\lambda re t} \cdot [\cos(\lambda im t) + i\sin(\lambda im t)] \cdot x(0) \]

Problem 4 What is this in polar coordinates?

Answer: \((r(t), \theta(t)) = (e^{\lambda re t}, \lambda im t)\).

Hence

\[x_{t\in[0,\infty]} = \begin{cases}
\text{Outward Spiral} & \text{if } \lambda_{re} > 0, \quad \lambda_{im} \neq 0 \\
\text{Inward Spiral} & \text{if } \lambda_{re} < 0, \quad \lambda_{im} \neq 0 \\
\text{Periodic Rotation} & \text{if } \lambda_{re} = 0, \quad \lambda_{im} \neq 0 \\
\text{Pure Exponential} & \text{if } \lambda_{im} = 0.
\end{cases} \]
Thus:

\[x(t) = e^{\lambda re t} \cdot [\cos(\lambda im t) + i\sin(\lambda im t)] \cdot x(0) \]

Problem 4 What is this in polar coordinates?

Answer: \((r(t), \theta(t)) = (e^{\lambda re t}, \lambda im t)\).

Hence

\[x_{t \in [0, \infty]} = \begin{cases}
\text{Outward Spiral} & \text{if } \lambda re > 0, \lambda im \neq 0 \\
\text{Inward Spiral} & \text{if } \lambda re < 0, \lambda im \neq 0 \\
\text{Periodic Rotation} & \text{if } \lambda re = 0, \lambda im \neq 0 \\
\text{Pure Exponential} & \text{if } \lambda im = 0.
\end{cases} \]

See Matlab simulation.
Now I say: the “right” definition of growth rate for the above process should yield λ_{re}.
Now I say: the “right” definition of growth rate for the above process should yield λ_{re}.

Problem 5 Find a formula that achieves this definition.
Growth and Stability

Now I say: the “right” definition of growth rate for the above process should yield λ_{re}.

Problem 5 Find a formula that achieves this definition.

Answer:

$$\Lambda = \lim_{t \to \infty} \frac{1}{t} \log[|x(t)|].$$
Growth and Stability

Now I say: the “right” definition of growth rate for the above process should yield λ_{re}.

Problem 5 Find a formula that achieves this definition.

Answer:

$$\Lambda = \lim_{t \to \infty} \frac{1}{t} \log|\|x(t)\||.$$

The number Λ is called the *Lyapunov exponent* of the system.
Growth and Stability

Now I say: the “right” definition of growth rate for the above process should yield λ_{re}.

Problem 5 Find a formula that achieves this definition.

Answer:

$$\Lambda = \lim_{t \to \infty} \frac{1}{t} \log|x(t)|.$$

The number Λ is called the *Lyapunov exponent* of the system.

$\Lambda > 0$ is **unstable**; $\Lambda < 0$ is **stable**; $\Lambda = 0$ is **neutrally stable**.
Growth and Stability

Now I say: the “right” definition of growth rate for the above process should yield λ_{re}.

Problem 5 Find a formula that achieves this definition.

Answer:

$$\Lambda = \lim_{t \to \infty} \frac{1}{t} \log |x(t)|.$$

The number Λ is called the *Lyapunov exponent* of the system.

$\Lambda > 0$ is **unstable**; $\Lambda < 0$ is **stable**; $\Lambda = 0$ is **neutrally stable**.

1-D linear systems are characterized by $\Lambda = \lambda_{re}$ – the asymptotic growth rate, and
Growth and Stability

Now I say: the “right” definition of growth rate for the above process should yield λ_{re}.

Problem 5 Find a formula that achieves this definition.

Answer:

$$\Lambda = \lim_{t \to \infty} \frac{1}{t} \log |x(t)|.$$

The number Λ is called the *Lyapunov exponent* of the system.

$\Lambda > 0$ is *unstable*; $\Lambda < 0$ is *stable*; $\Lambda = 0$ is *neutrally stable*.

1-D linear systems are characterized by $\Lambda = \lambda_{re}$ – the asymptotic growth rate, and $\omega = \lambda_{im}$, the natural frequency.
Special Case: 2D Diagonalizable Systems

After Normal-Form-alization, there are only a couple of different classes of real diagonalizable matrixes in 2D.
Special Case: 2D Diagonalizable Systems

After Normal-Form-alization, there are only a couple of different classes of real diagonalizable matrixes in 2D.

$$\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = J^a_1 \oplus J^b_1; \quad \text{and} \quad \begin{bmatrix} \lambda & 0 \\ 0 & \bar{\lambda} \end{bmatrix} = J^\lambda_1 \oplus J^{\bar{\lambda}}_1.$$
Special Case: 2D Diagonalizable Systems

After Normal-Form-alization, there are only a couple of different classes of real diagonalizable matrixes in 2D.

\[
\begin{bmatrix}
a & 0 \\
0 & b
\end{bmatrix} = J_1^a \oplus J_1^b; \quad \text{and} \quad \begin{bmatrix}
\lambda & 0 \\
0 & \overline{\lambda}
\end{bmatrix} = J_1^\lambda \oplus J_1^{\overline{\lambda}}.
\]

The class

\[
\begin{bmatrix}
a & 1 \\
0 & a
\end{bmatrix} = J_2^a
\]

is not diagonalizable.
After Normal-Form-alization, there are only a couple of different classes of real diagonalizable matrixes in 2D.

\[
\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = J_a^a \oplus J_b^b; \quad \text{and} \quad \begin{bmatrix} \lambda & 0 \\ 0 & \bar{\lambda} \end{bmatrix} = J_1^\lambda \oplus J_1^{\bar{\lambda}}.
\]

Further cases:
Special Case: 2D Diagonalizable Systems

After Normal-Form-alization, there are only a couple of different classes of real diagonalizable matrixes in 2D.

\[
\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = J_1^a \oplus J_1^b; \quad \text{and} \quad \begin{bmatrix} \lambda & 0 \\ 0 & \lambda \end{bmatrix} = J_1^\lambda \oplus J_1^{\lambda}.
\]

Further cases:
- \(a < 0, b < 0\) (real)
Special Case: 2D Diagonalizable Systems

After Normal-Form-alization, there are only a couple of different classes of real diagonalizable matrixes in 2D.

\[
\begin{bmatrix}
a & 0 \\
0 & b
\end{bmatrix} = J_1^a \oplus J_1^b; \quad \text{and} \quad \begin{bmatrix}
\lambda & 0 \\
0 & \bar{\lambda}
\end{bmatrix} = J_1^\lambda \oplus J_1^{\bar{\lambda}}.
\]

Further cases:
- \(a < 0, b < 0 \) (real)
- \(a > 0, b > 0 \) (real)
After Normal-Form-alization, there are only a couple of different classes of real diagonalizable matrixes in 2D.

\[
\begin{bmatrix}
a & 0 \\ 0 & b
\end{bmatrix} = J_1^a \oplus J_1^b; \quad \text{and} \quad \begin{bmatrix}
\lambda & 0 \\ 0 & \bar{\lambda}
\end{bmatrix} = J_1^\lambda \oplus J_1^{\bar{\lambda}}.
\]

Further cases:

- \(a < 0, b < 0 \) (real)
- \(a > 0, b > 0 \) (real)
- \(a < 0, b > 0 \) or \(a > 0, b < 0 \). (real)
After Normal-Form-alization, there are only a couple of different classes of real diagonalizable matrixes in 2D.

\[
\begin{bmatrix}
 a & 0 \\
 0 & b
\end{bmatrix} = J_1^a \oplus J_1^b; \quad \text{and} \quad \begin{bmatrix}
 \lambda & 0 \\
 0 & \bar{\lambda}
\end{bmatrix} = J_1^\lambda \oplus J_1^{\bar{\lambda}}.
\]

Further cases:
- \(a < 0, b < 0\) (real)
- \(a > 0, b > 0\) (real)
- \(a < 0, b > 0\) or \(a > 0, b < 0\). (real)
- \(a = 0\) or \(b = 0\) (real)
Special Case: 2D Diagonalizable Systems

After Normal-Form-alization, there are only a couple of different classes of real diagonalizable matrixes in 2D.

\[
\begin{bmatrix}
a & 0 \\
0 & b
\end{bmatrix} = J^a_1 \oplus J^b_1; \quad \text{and} \quad \begin{bmatrix}
\lambda & 0 \\
0 & \bar{\lambda}
\end{bmatrix} = J^\lambda_1 \oplus J^\bar{\lambda}_1.
\]

Further cases:
- \(a < 0, b < 0\) (real)
- \(a > 0, b > 0\) (real)
- \(a < 0, b > 0\) or \(a > 0, b < 0\). (real)
- \(a = 0\) or \(b = 0\) (real)
- \(\lambda_{re} < 0\) (complex)
Special Case: 2D Diagonalizable Systems

After Normal-Form-alization, there are only a couple of different classes of real diagonalizable matrixes in 2D.

\[
\begin{bmatrix}
a & 0 \\
0 & b
\end{bmatrix} = J_1^a \oplus J_1^b; \quad \text{and} \quad \begin{bmatrix}
\lambda & 0 \\
0 & \bar{\lambda}
\end{bmatrix} = J_1^\lambda \oplus J_1^{\bar{\lambda}}.
\]

Further cases:

- \(a < 0, b < 0 \) (real)
- \(a > 0, b > 0 \) (real)
- \(a < 0, b > 0 \) or \(a > 0, b < 0 \). (real)
- \(a = 0 \) or \(b = 0 \) (real)
- \(\lambda_{re} < 0 \) (complex)
- \(\lambda_{re} > 0 \) (complex)
After Normal-Form-alization, there are only a couple of different classes of real diagonalizable matrixes in 2D.

\[
\begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} = J^a_1 \oplus J^b_1; \quad \text{and} \quad \begin{bmatrix} \lambda & 0 \\ 0 & \bar{\lambda} \end{bmatrix} = J^\lambda_1 \oplus J^{\bar{\lambda}}_1.
\]

Further cases:
- \(a < 0, b < 0 \) (real)
- \(a > 0, b > 0 \) (real)
- \(a < 0, b > 0 \) or \(a > 0, b < 0 \). (real)
- \(a = 0 \) or \(b = 0 \) (real)
- \(\lambda_{re} < 0 \) (complex)
- \(\lambda_{re} > 0 \) (complex)
- \(\lambda_{re} = 0 \) (complex)
Stable Nodes

Supposing $a < 0$, $b < 0$, trajectories in the system look like:
Supposing \(a < 0, b < 0 \), trajectories in the system look like:

Stable fixed point

converging at exp. rate \(a \)

converging at exp. rate \(b \)
Supposing $a < 0$, $b < 0$, trajectories in the system look like:

Stable fixed point

if $a > b$
angle tends toward x–axis
Supposing $a < 0, b < 0$, trajectories in the system look like:

Note: a) $\text{trace} = a + b < 0$,

if $a > b$
angle tends
toward x–axis

Stable fixed point
Stable Nodes

Supposing $a < 0, b < 0$, trajectories in the system look like:

Note: a) trace $= a + b < 0$, b) $det = ab > 0$,
Stable Nodes

Supposing $a < 0, b < 0$, trajectories in the system look like:

Note: a) $\text{trace} = a + b < 0$, b) $\text{det} = ab > 0$, c) $\text{discriminant} = tr^2 - 4det = (a - b)^2 \geq 0$.
Unstable Nodes

Supposing $a > 0$, $b > 0$, trajectories in the system look like:
Supposing $a > 0$, $b > 0$, trajectories in the system look like:
Supposing $a > 0, b > 0$, trajectories in the system look like:

Unstable fixed point

if $a > b$

angle tends to x–axis
Unstable Nodes

Supposing $a > 0, b > 0$, trajectories in the system look like:

Note: a) trace $= a + b > 0$,
Unstable Nodes

Supposing $a > 0, b > 0$, trajectories in the system look like:

Note: a) $\text{trace} = a + b > 0$, b) $\det = ab > 0$,
Unstable Nodes

Supposing $a > 0, b > 0$, trajectories in the system look like:

\[\text{if a > b} \]
\[\text{angle tends to x-axis} \]

Unstable fixed point

Note: a) trace = $a + b > 0$, b) det = $ab > 0$, c) discriminant = $tr^2 - 4det = (a - b)^2 \geq 0$.
Saddle Points

Suppose $a > 0, b < 0$ (wlog); trajectories in the system look like:
Saddle Points

Suppose $a > 0, b < 0$ (wlog); trajectories in the system look like:

- converging at exp. rate b
- diverging at exp. rate a
- Quasi-stable fixed point (Saddle point)
Saddle Points

Suppose $a > 0, b < 0$ (wlog); trajectories in the system look like:
Suppose $a > 0, b < 0$ (wlog); trajectories in the system look like:

Note: a) trace could be anything,
Saddle Points

Suppose $a > 0, b < 0$ (wlog); trajectories in the system look like:

Note: a) trace could be anything, b) $\det = ab < 0$,
Saddle Points

Suppose $a > 0, b < 0$ (wlog); trajectories in the system look like:

```
Suppose \( a > 0, b < 0 \) (wlog); trajectories in the system look like:
```

Note: a) trace could be anything, b) \(\det = ab < 0 \), c) discriminant \(\geq 0 \).
Degenerate Case 1

Suppose $a = 0, b < 0$ (wlog); trajectories in the system look like:
Suppose \(a = 0, b < 0 \) (wlog); trajectories in the system look like:

![Diagram of trajectories converging at an exponential rate]
Suppose \(a = 0, b < 0 \) (wlog); trajectories in the system look like:

Note: a) trace < 0,
Degenerate Case 1

Suppose $a = 0, b < 0$ (wlog); trajectories in the system look like:

Note: a) trace < 0, b) $\det = ab = 0$,

\[y \]
\[\downarrow \downarrow \downarrow \]
\[\text{converging at exp. rate } b \]
\[\text{Line of Stable Fixed Points} \]
\[\uparrow \uparrow \uparrow \uparrow \]
\[x \]
Degenerate Case 1

Suppose $a = 0, b < 0$ (wlog); trajectories in the system look like:

Note: a) trace < 0, b) $\det = ab = 0$, c) discriminant ≥ 0.
Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:
Degenerate Case 2

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:
Suppose \(a = 0, b > 0 \) (wlog); trajectories in the system look like:

Note: a) trace > 0,
Degenerate Case 2

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

![Diagram showing trajectories](attachment:image.png)

Note: a) trace > 0, b) det = $ab = 0$,

x-axis

$\text{Line of Unstable Fixed Points}$

y-axis
Degenerate Case 2

Suppose $a = 0, b > 0$ (wlog); trajectories in the system look like:

Note: a) trace > 0, b) det $= ab = 0$, c) discriminant ≥ 0.
Inward Spiral

Suppose $\lambda_{im} > 0$, $\lambda_{re} < 0$; trajectories in the system look like:
Inward Spiral

Suppose $\lambda_{im} > 0$, $\lambda_{re} < 0$; trajectories in the system look like:

![Inward Spiral Diagram]
Suppose $\lambda_{im} > 0, \lambda_{re} < 0$; trajectories in the system look like:
Suppose $\lambda_{im} > 0, \lambda_{re} < 0$; trajectories in the system look like:
Suppose $\lambda_{im} > 0, \lambda_{re} < 0$; trajectories in the system look like:

Note: a) trace $= 2\lambda_{re} < 0$,

Stable Fixed Point
Suppose $\lambda_{im} > 0$, $\lambda_{re} < 0$; trajectories in the system look like:

Note: a) $\text{trace} = 2\lambda_{re} < 0$, b) $\det = |\lambda|^2 \geq 0$,

Inward Spiral
Inward Spiral

Suppose $\lambda_{im} > 0, \lambda_{re} < 0$; trajectories in the system look like:

Note: a) $\text{trace} = 2\lambda_{re} < 0$, b) $\text{det} = |\lambda|^2 \geq 0$, c) discriminant $= -4\lambda_{im}^2 < 0$.
Outward Spiral

Suppose $\lambda_{im} > 0$, $\lambda_{re} > 0$; trajectories in the system look like:
Suppose \(\lambda_{im} > 0, \lambda_{re} > 0 \); trajectories in the system look like:
Suppose $\lambda_{im} > 0, \lambda_{re} > 0$; trajectories in the system look like:

Note: a) $\text{trace} = 2\lambda_{re} > 0,$
Suppose $\lambda_{im} > 0, \lambda_{re} > 0$; trajectories in the system look like:

Note: a) trace = $2\lambda_{re} > 0$, b) det = $|\lambda|^2 \geq 0$,

Unstable Fixed Point
Outward Spiral

Suppose $\lambda_{im} > 0$, $\lambda_{re} > 0$; trajectories in the system look like:

Note: a) $\text{trace} = 2\lambda_{re} > 0$, b) $\text{det} = |\lambda|^2 \geq 0$, c) discriminant $= -4\lambda_{im}^2 < 0$.
Suppose $\lambda_{im} > 0$, $\lambda_{re} = 0$; trajectories in the system look like:
Suppose $\lambda_{im} > 0, \lambda_{re} = 0$; trajectories in the system look like:
Suppose $\lambda_{im} > 0, \lambda_{re} = 0$; trajectories in the system look like:

Note: a) trace $= 2\lambda_{re} = 0,$
Pure Rotation

Suppose $\lambda_{im} > 0$, $\lambda_{re} = 0$; trajectories in the system look like:

Note: a) $\text{trace} = 2\lambda_{re} = 0$, b) $\text{det} = |\lambda_{im}|^2 \geq 0$,

Neutral Fixed Point

$\lambda_{im} > 0$, $\lambda_{re} = 0$; trajectories in the system look like:

Note: a) $\text{trace} = 2\lambda_{re} = 0$, b) $\text{det} = |\lambda_{im}|^2 \geq 0$,
Pure Rotation

Suppose $\lambda_{im} > 0, \lambda_{re} = 0$; trajectories in the system look like:

Note: a) $\text{trace} = 2\lambda_{re} = 0$, b) $\text{det} = |\lambda_{im}|^2 \geq 0$, c) discriminant $=-4\lambda_{im}^2 \leq 0$.
2-D Special Case

- \(a < 0, b < 0 \) (real) – exponential decay
2-D Special Case

- $a < 0, b < 0$ (real) – exponential decay
- $a > 0, b > 0$ (real) – exponential growth
2-D Special Case

- \(a < 0, b < 0 \) (real) – exponential decay
- \(a > 0, b > 0 \) (real) – exponential growth
- \(a < 0, b > 0 \) or \(a > 0, b < 0 \). (real) – equilibrium chemistry
2-D Special Case

- $a < 0, b < 0$ (real) – exponential decay
- $a > 0, b > 0$ (real) – exponential growth
- $a < 0, b > 0$ or $a > 0, b < 0$. (real) – equilibrium chemistry
- $a = 0$ or $b = 0$ (real)
2-D Special Case

- $a < 0$, $b < 0$ (real) – exponential decay
- $a > 0$, $b > 0$ (real) – exponential growth
- $a < 0$, $b > 0$ or $a > 0$, $b < 0$. (real) – equilibrium chemistry
- $a = 0$ or $b = 0$ (real)
- $\lambda re < 0$ – damped oscillator (complex)
2-D Special Case

- $a < 0, b < 0$ (real) – exponential decay
- $a > 0, b > 0$ (real) – exponential growth
- $a < 0, b > 0$ or $a > 0, b < 0$. (real) – equilibrium chemistry
- $a = 0$ or $b = 0$ (real)
- $\lambda_{re} < 0$ – damped oscillator (complex)
- $\lambda_{re} > 0$ (complex)
2-D Special Case

- $a < 0, b < 0$ (real) – exponential decay
- $a > 0, b > 0$ (real) – exponential growth
- $a < 0, b > 0$ or $a > 0, b < 0$. (real) – equilibrium chemistry
- $a = 0$ or $b = 0$ (real)
- $\lambda_{re} < 0$ – damped oscillator (complex)
- $\lambda_{re} > 0$ (complex)
- $\lambda_{re} = 0$ – harmonic oscillator (complex)
2-D Special Case

Figure 1: Taken from Strogatz p. 137
We’ve not dealt with nilpotency; but it’s *important*.
Nilpotency

We’ve not dealt with nilpotency; but it’s *important*. For diagonalizable systems, the solutions were of the form:

\[\vec{y}(t) = \sum_{i=1}^{n} e^{\lambda_i t} y_i(0) \epsilon_i. \]
Nilpotency

We’ve not dealt with nilpotency; but it’s *important*. For diagonalizable systems, the solutions were of the form:

\[\vec{y}(t) = \sum_{i=1}^{n} e^{\lambda_i t} y_i(0) \epsilon_i. \]

Problem 6 Compute \(e^{N_2 t} \) where \(N_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \) is the standard 2x2 nilpotent matrix.
We’ve not dealt with nilpotency; but it’s *important*. For diagonalizable systems, the solutions were of the form:

$$\vec{y}(t) = \sum_{i=1}^{n} e^{\lambda_i t} \vec{y}_i(0) \epsilon_i.$$

Problem 6 Compute $e^{N_2 t}$ where $N_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is the standard 2x2 nilpotent matrix.

Answer: $\begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix}$.
We’ve not dealt with nilpotency; but it’s *important*. For diagonalizable systems, the solutions were of the form:

\[\vec{y}(t) = \sum_{i=1}^{n} e^{\lambda_i t} \vec{y}_i(0) \vec{e}_i. \]

Problem 6 Compute \(e^{N_2 t} \) where \(N_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \) is the standard 2x2 nilpotent matrix.

Answer: \(\begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \). Key point – it has a polynomial (as opposed to exponential) term.
Nilpotency

We’ve not dealt with nilpotency; but it’s important.
For diagonalizable systems, the solutions were of the form:

\[\vec{y}(t) = \sum_{i=1}^{n} e^{\lambda_i t} \vec{y}_i(0) \epsilon_i. \]

Problem 6 Compute \(e^{N_2 t} \) where \(N_2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \) is the standard 2x2 nilpotent matrix.

Answer: \(\begin{bmatrix} 1 & t \\ 0 & 1 \end{bmatrix} \). Key point – it has a polynomial (as opposed to exponential) term.

Problem 7 Now compute \(e^{N_n t} \) where \(N_n \) is the \(n \)-by-\(n \) matrix with 1s on the super-diagonal and zeros elsewhere.
Nilpotency

Answer:

\[
\begin{bmatrix}
1 & t & \frac{1}{2}t^2 & \frac{1}{3!}t^3 & \ldots & \frac{1}{n!}t^n \\
0 & 1 & t & \frac{1}{2}t^2 & \ldots & \frac{1}{(n-1)!}t^{n-1} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \ldots & 0 & 1
\end{bmatrix}
\]
Nilpotency

Answer:

\[
\begin{bmatrix}
1 & t & \frac{1}{2}t^2 & \frac{1}{3!}t^3 & \ldots & \frac{1}{n!}t^n \\
0 & 1 & t & \frac{1}{2}t^2 & \ldots & \frac{1}{(n-1)!}t^{n-1} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & 1
\end{bmatrix}
\]

So, there is growth – but no component grows as fast as exponential.
Nilpotency

Answer:

\[
\begin{bmatrix}
1 & t & \frac{1}{2}t^2 & \frac{1}{3!}t^3 & \ldots & \frac{1}{n!}t^n \\
0 & 1 & t & \frac{1}{2}t^2 & \ldots & \frac{1}{(n-1)!}t^{n-1} \\
\vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\
0 & 0 & \ldots & 0 & 1
\end{bmatrix}
\]

So, there is growth – but no component grows as fast as exponential.

Writing it out, this says that the solutions of

\[
\frac{d\vec{y}}{dt} = N_n \vec{y}
\]

is

\[
y_i(t) = y_i(0) + y_{i+1}(0)t + \frac{t^2}{2}y_{i+2}(0) + \ldots + \frac{t^{n-i+1}}{n!}y_n(0).
\]
Nilpotency

In the 3-by-3 case, this becomes:
Nilpotency

In the 3-by-3 case, this becomes:

\[y_1(t) = y_1(0) + y_2(0)t + \frac{1}{2}y_3(0)t^2 \]
In the 3-by-3 case, this becomes:

\[y_1(t) = y_1(0) + y_2(0)t + \frac{1}{2}y_3(0)t^2 \]

\[y_2(t) = y_2(0) + y_3(0)t \]

and
Nilpotency

In the 3-by-3 case, this becomes:

\[y_1(t) = y_1(0) + y_2(0)t + \frac{1}{2}y_3(0)t^2 \]
\[y_2(t) = y_2(0) + y_3(0)t \]
and
\[y_3(t) = y_3(0). \]
Nilpotency

In the 3-by-3 case, this becomes:

\[y_1(t) = y_1(0) + y_2(0)t + \frac{1}{2}y_3(0)t^2 \]

\[y_2(t) = y_2(0) + y_3(0)t \]

and

\[y_3(t) = y_3(0). \]

Question: What does this remind you of? (Need a hint? Replace \(y_1 \) with \(x \), \(y_2 \) with \(v \) and \(y_3 \) with \(-g\) or \(a\). See now?)
Nilpotency

In the 3-by-3 case, this becomes:

\[y_1(t) = y_1(0) + y_2(0)t + \frac{1}{2}y_3(0)t^2 \]

\[y_2(t) = y_2(0) + y_3(0)t \]

and

\[y_3(t) = y_3(0). \]

Question: What does this remind you of? (Need a hint? Replace \(y_1 \) with \(x \), \(y_2 \) with \(v \) and \(y_3 \) with \(-g\) or \(a \). See now?)

Of course! Projectile motion from basic physics:

\[x(t) = x(0) + v(0)t + \frac{1}{2}at^2; \quad v(t) = v(0) + at \]

\[a(t) = a(0) = a. \]
Nilpotency

In the 3-by-3 case, this becomes:

\[x(t) = x(0) + v(0)t + \frac{1}{2}at^2; \quad v(t) = v(0) + at \]

\[a(t) = a(0) = a. \]

Newton’s law

\[\ddot{x} = a = -g \]

becomes
Nilpotency

In the 3-by-3 case, this becomes:

\[
x(t) = x(0) + v(0)t + \frac{1}{2}at^2; \quad v(t) = v(0) + at
\]

\[a(t) = a(0) = a.\]

Newton's law

\[
\ddot{x} = a = -g
\]

becomes

\[
\begin{bmatrix}
\dot{x} \\
\dot{v} \\
\dot{a}
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
v \\
a
\end{bmatrix}.
\]
Nilpotency

In the 3-by-3 case, this becomes:

\[x(t) = x(0) + v(0)t + \frac{1}{2}at^2; \quad v(t) = v(0) + at \]

\[a(t) = a(0) = a. \]

Newton’s law

\[\ddot{x} = a = -g \]

becomes

\[
\begin{bmatrix}
\dot{x} \\
\dot{v} \\
\dot{a}
\end{bmatrix} =
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
x \\
v \\
a
\end{bmatrix}.
\]

This is why it is important to understand nilpotency.
Problem 8 Compute $e^{J \lambda t}$ where $J \lambda$ was the Jordan-block explored in the previous lecture. Hint: use the fact that the diagonal commutes with the off-diagonal).
Nilpotency

Problem 8 Compute $e^{J^\lambda_n t}$ where J^λ_n was the Jordan-block explored in the previous lecture. Hint: use the fact that the diagonal commutes with the off-diagonal).

Answer:

$$e^{(\lambda I_n + N_n)t} = e^{\lambda t} \begin{bmatrix} 1 & t & \frac{1}{2} t^2 & \frac{1}{3!} t^3 & \ldots & \frac{1}{n!} t^n \\ 0 & 1 & t & \frac{1}{2} t^2 & \ldots & \frac{1}{(n-1)!} t^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 & 1 \end{bmatrix}.$$
Nilpotency

Problem 8 Compute $e^{J^\lambda_n t}$ where J^λ_n was the Jordan-block explored in the previous lecture. Hint: use the fact that the diagonal commutes with the off-diagonal).

Answer:

$$e^{(\lambda I_n + N_n)t} = e^{\lambda t} \begin{bmatrix}
1 & t & \frac{1}{2} t^2 & \frac{1}{3!} t^3 & \ldots & \frac{1}{n!} t^n \\
0 & 1 & t & \frac{1}{2} t^2 & \ldots & \frac{1}{(n-1)!} t^{n-1} \\
0 & 0 & \ldots & 0 & 1
\end{bmatrix}.$$

Generally, nilpotent matrices have similar dynamics to diagonalizable ones ... but different growth rates (i.e. some t^i polynomial terms).
Real Eigenvalues

So much for two dimensions.
So much for two dimensions.

Now suppose:

\[
\frac{d\vec{x}}{dt}(t) = A\vec{x}
\]

for some matrix \(A \) with a real eigenbasis.
Real Eigenvalues

So much for two dimensions.

Now suppose:

\[
\frac{d\vec{x}}{dt}(t) = A\vec{x}
\]

for some matrix \(A \) with a real eigenbasis.

Problem 9 Write \(A = SDS^{-1} \). Find a linear change-of-variables from \(\vec{x} \mapsto \vec{y} \) such that

\[
\frac{d\vec{y}}{dt}(t) = D\vec{y}.
\]
Real Eigenvalues

So much for two dimensions.

Now suppose:

\[\frac{d\vec{x}}{dt}(t) = A\vec{x} \]

for some matrix \(A \) with a real eigenbasis.

Problem 9 Write \(A = SDS^{-1} \). Find a linear change-of-variables from \(\vec{x} \mapsto \vec{y} \) such that

\[\frac{d\vec{y}}{dt}(t) = D\vec{y} \]

Answer: \(\vec{y}(t) = S^{-1}\vec{x}(t) \), which works because
Real Eigenvalues

So much for two dimensions.

Now suppose:

\[
\frac{d\vec{x}}{dt}(t) = A\vec{x}
\]

for some matrix A with a real eigenbasis.

Problem 9 Write $A = SDS^{-1}$. Find a linear change-of-variables from $\vec{x} \mapsto \vec{y}$ such that

\[
\frac{d\vec{y}}{dt}(t) = D\vec{y}.
\]

Answer: $\vec{y}(t) = S^{-1}\vec{x}(t)$, which works because

\[
\frac{d\vec{x}}{dt} = \frac{d(S\vec{y})}{dt} = S\frac{d\vec{y}}{dt}.
\]
So much for two dimensions.

Now suppose:

\[\frac{d\vec{x}}{dt}(t) = A\vec{x} \]

for some matrix \(A \) with a real eigenbasis.

Problem 9 Write \(A = SDS^{-1} \). Find a linear change-of-variables from \(\vec{x} \leftrightarrow \vec{y} \) such that

\[\frac{d\vec{y}}{dt}(t) = D\vec{y}. \]

Answer: \(\vec{y}(t) = S^{-1}\vec{x}(t) \), which works because

\[\frac{d\vec{x}}{dt} = \frac{d(S\vec{y})}{dt} = S\frac{d\vec{y}}{dt}. \]

\[A\vec{x} = SDS^{-1}\vec{x} = SDS^{-1}S\vec{y} = SD\vec{y}. \]
Real Eigenvalues

So much for two dimensions.

Now suppose:

\[
\frac{d\vec{x}}{dt}(t) = A\vec{x}
\]

for some matrix \(A \) with a real eigenbasis.

Problem 9 Write \(A = SDS^{-1} \). Find a linear change-of-variables from \(\vec{x} \mapsto \vec{y} \) such that

\[
\frac{d\vec{y}}{dt}(t) = D\vec{y}.
\]

Answer: \(\vec{y}(t) = S^{-1}\vec{x}(t) \), which works because

\[
\frac{d\vec{x}}{dt} = \frac{d(S\vec{y})}{dt} = S \frac{d\vec{y}}{dt}.
\]

\[
A\vec{x} = SDS^{-1} \vec{x} = SDS^{-1} S\vec{y} = SD\vec{y}.
\]

Thus \(S \frac{d\vec{y}}{dt} = SD\vec{y} \Rightarrow \frac{d\vec{y}}{dt} = D\vec{y} \).
Assume D is all real, with diagonal elements r_i in decreasing order.
Assume D is all real, with diagonal elements r_i in decreasing order.

\[
\frac{d\vec{y}}{dt} = \begin{bmatrix}
 r_1 &= r_{max} & 0 & 0 & \ldots & 0 \\
 0 & r_2 & 0 & \ldots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \ldots & 0 & r_n &= r_{min}
\end{bmatrix} \vec{y}.
\]
Real Eigenvalues

Assume D is all real, with diagonal elements r_i in decreasing order.

$$\frac{d\vec{y}}{dt} = \begin{bmatrix} r_1 = r_{max} & 0 & 0 & \ldots & 0 \\ 0 & r_2 & 0 & \ldots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & r_n = r_{min} \end{bmatrix} \vec{y}.$$

This is equivalent to an *uncoupled* set of linear first-order ODEs.

Problem 10 What are they?
Real Eigenvalues

Assume D is all real, with diagonal elements r_i in decreasing order.

\[
\frac{d\vec{y}}{dt} = \begin{bmatrix}
 r_1 = r_{\text{max}} & 0 & 0 & \ldots & 0 \\
 0 & r_2 & 0 & \ldots & 0 \\
 & \vdots & & \ddots & \vdots \\
 0 & 0 & \ldots & 0 & r_n = r_{\text{min}}
\end{bmatrix} \vec{y}.
\]

This is equivalent to an *uncoupled* set of linear first-order ODEs.

Problem 10 What are they?

Answer: \[
\frac{dy_i}{dt}(t) = r_i y(t)
\]
Thus (as you’ve seen with Johan)
Thus (as you’ve seen with Johan)

\[\vec{y}(t) = \begin{bmatrix} e^{r_1 t} & 0 & 0 & \ldots & 0 \\ 0 & e^{r_2 t} & 0 & \ldots & 0 \\ \vdots \\ 0 & 0 & \ldots & 0 & e^{r_n t} \end{bmatrix} \vec{y}. \]
Real Eigenvalues

Thus (as you’ve seen with Johan)

\[
\vec{y}(t) = \begin{bmatrix}
e^{r_1 t} & 0 & 0 & \cdots & 0 \\
0 & e^{r_2 t} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \cdots & 0 & e^{r_n t}
\end{bmatrix}\vec{y}.
\]

Or, written out:

\[
\vec{y}(t) = \sum_{i=1}^{n} e^{r_i t} y_i(0) \epsilon_i.
\]
Thus (as you’ve seen with Johan)

\[
\vec{y}(t) = \begin{bmatrix}
e^{r_1 t} & 0 & 0 & \ldots & 0 \\
0 & e^{r_2 t} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & e^{r_n t}
\end{bmatrix} \vec{y}.
\]

Therefore:

\[
|\vec{y}(t)| = (e^{2r_1 t} + e^{2r_2 t} + \ldots + e^{2r_n t})^{1/2} |y(0)|.
\]
Thus (as you’ve seen with Johan)

\[\vec{y}(t) = \begin{bmatrix} e^{r_1 t} & 0 & 0 & \ldots & 0 \\ 0 & e^{r_2 t} & 0 & \ldots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \ldots & 0 & e^{r_n t} \end{bmatrix} \vec{y}. \]

Therefore:

\[|\vec{y}(t)| = (e^{2r_1 t} + e^{2r_2 t} + \ldots + e^{2r_n t})^{1/2} |\vec{y}(0)|. \]

Problem 11 What is \(\lim_{t \to \infty} |\vec{y}(t)| \)?
Thus (as you’ve seen with Johan)

\[
\vec{y}(t) = \begin{bmatrix}
e^{r_1 t} & 0 & 0 & \ldots & 0 \\
0 & e^{r_2 t} & 0 & \ldots & 0 \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
0 & 0 & \ldots & 0 & e^{r_n t}
\end{bmatrix} \vec{y}.
\]

Therefore:

\[
|\vec{y}(t)| = (e^{2r_1 t} + e^{2r_2 t} + \ldots + e^{2r_n t})^{1/2} |y(0)|.
\]

Problem 11 What is \(\lim_{t \to \infty} |\vec{y}(t)| \)?

Answer:

\[
\lim_{t \to \infty} |\vec{y}(t)| = \begin{cases}
\infty & \text{if } r_i > 0 \text{ for some } i \\
m|y(0)| & m = \text{number of } r_i \text{ equal to 0}
\end{cases}
\]
Now, let’s compute the Lyapunov exponent:
Real Eigenvalues

\[\Lambda = \lim_{t \to \infty} \frac{1}{t} \log [||y(t)||] = \lim_{t \to \infty} \frac{1}{2t} \log \left[\sum_{i=1}^{n} e^{2r_i t} \right]. \]
Real Eigenvalues

\[\lambda = \lim_{t \to \infty} \frac{1}{t} \log[|\vec{y}(t)|] = \lim_{t \to \infty} \frac{1}{2t} \log \left[\sum_{i=1}^{n} e^{2r_i t} \right]. \]

Now, pull out the \(r_{max} \) terms in the sum term:
Real Eigenvalues

\[\Lambda = \lim_{t \to \infty} \frac{1}{t} \log[|\vec{y}(t)|] = \lim_{t \to \infty} \frac{1}{2t} \log \left[\sum_{i=1}^{n} e^{2r_{i}t} \right]. \]

Now, pull out the \(r_{\text{max}} \) terms in the sum term:

\[\sum_{i=1}^{n} e^{2r_{i}t} = e^{2r_{\text{max}}t} \left(N + \sum_{i>n_{1}} e^{2(r_{i} - r_{\text{max}})t} \right) \]

where \(N \) is the dimension of the \(r_{\text{max}} \) eigenspace.
Real Eigenvalues

\[\Lambda = \lim_{t \to \infty} \frac{1}{t} \log \left[|\mathbf{y}(t)| \right] = \lim_{t \to \infty} \frac{1}{2t} \log \left[\sum_{i=1}^{n} e^{2r_i t} \right]. \]

Now, pull out the \(r_{\text{max}} \) terms in the sum term:

\[\sum_{i=1}^{n} e^{2r_i t} = e^{2r_{\text{max}} t} \left(N + \sum_{i>n_1}^{n} e^{2(r_i - r_{\text{max}})t} \right) \]

where \(N \) is the dimension of the \(r_{\text{max}} \) eigenspace.

\[\frac{1}{2t} \log \left[\sum_{i=1}^{n} e^{2r_i t} \right] = r_{\text{max}} + \frac{1}{2t} \log \left[N + \sum_{i>n_1}^{n} e^{2(r_i - r_{\text{max}})t} \right], \]
Real Eigenvalues

\[\Lambda = \lim_{t \to \infty} \frac{1}{t} \log[|\vec{y}(t)|] = \lim_{t \to \infty} \frac{1}{2t} \log \left[\sum_{i=1}^{n} e^{2r_i t} \right]. \]

Now, pull out the \(r_{\text{max}} \) terms in the sum term:

\[\sum_{i=1}^{n} e^{2r_i t} = e^{2r_{\text{max}} t} \left(N + \sum_{i>n_1}^{n} e^{2(r_i-r_{\text{max}})t} \right) \]

where \(N \) is the dimension of the \(r_{\text{max}} \) eigenspace.

\[\frac{1}{2t} \log \left[\sum_{i=1}^{n} e^{2r_i t} \right] = r_{\text{max}} + \frac{1}{2t} \log \left[N + \sum_{i>n_1}^{n} e^{2(r_i-r_{\text{max}})t} \right], \]

and since \(r_i < r_{\text{max}} \), the RHS \(\to \frac{1}{2t} \log(N) \to 0 \) as \(t \to \infty \).
Real Eigenvalues

\[\Lambda = \lim_{t \to \infty} \frac{1}{t} \log(|\vec{y}(t)|) = \lim_{t \to \infty} \frac{1}{2t} \log \left(\sum_{i=1}^{n} e^{2r_{i}t} \right) . \]

Now, pull out the \(r_{\text{max}} \) terms in the sum term:

\[\sum_{i=1}^{n} e^{2r_{i}t} = e^{2r_{\text{max}}t} \left(N + \sum_{i>n_{1}}^{n} e^{2(r_{i}-r_{\text{max}})t} \right) \]

where \(N \) is the dimension of the \(r_{\text{max}} \) eigenspace.

\[\frac{1}{2t} \log \left(\sum_{i=1}^{n} e^{2r_{i}t} \right) = r_{\text{max}} + \frac{1}{2t} \log \left(N + \sum_{i>n_{1}}^{n} e^{2(r_{i}-r_{\text{max}})t} \right), \]

and since \(r_{i} < r_{\text{max}} \), the RHS \(\to \frac{1}{2t} \log(N) \to 0 \) as \(t \to \infty \).

Hence, \(\Lambda = r_{\text{max}} \); the largest eigenvalue controls growth rate.
Real Eigenvalues

Consider:
Consider:

\[(e^{r_1 t} y_1(0), e^{r_2 t} y_2(0), \ldots, e^{r_n t} y_n(0))\]
Real Eigenvalues

Consider:

\[(e^{r_1 t}y_1(0), e^{r_2 t}y_2(0), \ldots, e^{r_n t}y_n(0))\]

Now, normalize by \(e^{r_1 t}\); this gives
Consider:

\[(e^{r_1 t} y_1(0), e^{r_2 t} y_2(0), \ldots, e^{r_n t} y_n(0)) \]

Now, normalize by \(e^{r_1 t} \); this gives

\[(y_1(0), y_2(0), \ldots, y_N(0), e^{(r_{N+1} - r_{\max}) t}, \ldots, e^{(r_n - r_{\max}) t}). \]
Real Eigenvalues

Consider:

\[(e^{r_1 t}y_1(0), e^{r_2 t}y_2(0), \ldots, e^{r_n t}y_n(0))\]

Now, normalize by \(e^{r_1 t}\); this gives

\[(y_1(0), y_2(0), \ldots, y_N(0), e^{(r_{N+1} - r_{\text{max}})t}, \ldots, e^{(r_n - r_{\text{max}})t}).\]

Question: As \(t \to \infty\), what does this become?
Real Eigenvalues

Consider:

\[(e^{r_1t}y_1(0), e^{r_2t}y_2(0), \ldots, e^{r_nt}y_n(0))\]

Now, normalize by \(e^{r_1t}\); this gives

\[(y_1(0), y_2(0), \ldots, y_N(0), e^{(r_{N+1}-r_{max})t}, \ldots, e^{(r_n-r_{max})t}).\]

Question: As \(t \to \infty\), what does this become?

Answer: \((y_1(0), y_2(0), \ldots, y_N(0), 0, 0, \ldots, 0)\), since \(r_i - r_{max} < 0\).
Consider:\n\[(e^{r_1 t} y_1(0), e^{r_2 t} y_2(0), \ldots, e^{r_n t} y_n(0))\]

Now, normalize by \(e^{r_1 t}\); this gives
\[(y_1(0), y_2(0), \ldots, y_N(0), e^{(r_{N+1} - r_{max}) t}, \ldots, e^{(r_n - r_{max}) t}).\]

Question: As \(t \to \infty\), what does this become?

Answer: \((y_1(0), y_2(0), \ldots, y_N(0), 0, 0, \ldots, 0)\), since \(r_i - r_{max} < 0\).

This is the projection of \(\vec{y}(0)\) onto the \(r_{max}\)-eigenspace.
Real Eigenvalues

- x-projection
 $(1,1) \rightarrow (1,0)$

- y-projection
 $(1,1) \rightarrow (0,1)$
Real Eigenvalues
Real Eigenvalues

Consider:

\[(e^{r_1 t}y_1(0), e^{r_2 t}y_2(0), \ldots, e^{r_n t}y_n(0))\]

Now, normalize by \(e^{r_1 t}\); this gives

\[(y_1(0), y_2(0), \ldots, y_N(0), e^{(r_{N+1}-r_{max})t}, \ldots, e^{(r_n-r_{max})t}).\]

Question: As \(t \to \infty\), what does this become?

Answer: \((y_1(0), y_2(0), \ldots, y_N(0), 0, 0, \ldots, 0)\), since \(r_i - r_{max} < 0\).

This is the projection of \(\vec{y}'(0)\) onto the \(r_{max}\)-eigenspace.
Real Eigenvalues

Consider:

\[(e^{r_1 t} y_1(0), e^{r_2 t} y_2(0), \ldots, e^{r_n t} y_n(0))\]

Now, normalize by \(e^{r_1 t}\); this gives

\[(y_1(0), y_2(0), \ldots, y_N(0), e^{(r_{N+1} - r_{\text{max}}) t}, \ldots, e^{(r_n - r_{\text{max}}) t}).\]

Question: As \(t \to \infty\), what does this become?

Answer: \((y_1(0), y_2(0), \ldots, y_N(0), 0, 0, \ldots, 0)\), since
\(r_i - r_{\text{max}} < 0\).

This is the projection of \(\vec{y}'(0)\) onto the \(r_{\text{max}}\)-eigenspace.
Thus, \(r_{\text{max}}\) not only controls growth rate, but vectors started
anywhere converge to the \(r_{\text{max}}\)-eigenspace exponentially quickly.
Let me rephrase that *extremely important* comment:
Let me rephrase that *extremely important* comment:

The largest eigenvalue, r_{max} controls the asymptotic growth rate, as well as direction, of the system.
Real Eigenvalues

Let me rephrase that *extremely important* comment:

The largest eigenvalue, r_{max} controls the asymptotic growth rate, as well as direction, of the system.

Hence, asymptotically, the system behaves like the system restricted to the r_{max} eigen-space:
Let me rephrase that extremely important comment:

The largest eigenvalue, \(r_{\text{max}} \), controls the asymptotic growth rate, as well as direction, of the system.

Hence, asymptotically, the system behaves like the system restricted to the \(r_{\text{max}} \) eigen-space:

\[
\frac{d\vec{y}}{dt} \sim \begin{bmatrix}
0 & 1 & \cdots & 0 \\
0 & 0 & \cdots & 1 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{bmatrix}
\begin{bmatrix}
r_{\text{max}} \\
0 \\
\vdots \\
0
\end{bmatrix} \vec{y}.
\]
Let me rephrase that *extremely important* comment:

The largest eigenvalue, r_{max} controls the asymptotic growth rate, as well as direction, of the system.

Hence, asymptotically, the system behaves like the system *restricted* to the r_{max} eigen-space:

$$\frac{d\vec{y}}{dt} \sim \begin{bmatrix} r_{max} I_N & 0_{N,n-N} \\ 0_{n-N,N} & 0_{n-N} \end{bmatrix} \vec{y}.$$

But lo! In the long-run, all real-eigenvalue systems thus behave as if they were several independent copies of 1-D systems with growth (or decay) rate r_{max}.
Complex Eigenvalues

Recall real matrices only have non-real eigenvalues in conjugate pairs.
Complex Eigenvalues

Recall real matrices only have non-real eigenvalues in conjugate pairs.

Problem 12 Let

\[A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}. \]

Compute \(e^{At} \). (Hint: use diagonal form found in previous lecture.)
Recall real matrices only have non-real eigenvalues in conjugate pairs.

Problem 12 Let

\[A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}. \]

Compute \(e^{At} \). (Hint: use diagonal form found in previous lecture.)

Answer:

\[e^{at} \begin{bmatrix} \cos(bt) + i\sin(bt) & 0 \\ 0 & \cos(bt) - i\sin(bt) \end{bmatrix}. \]
Complex Eigenvalues

Recall real matrices only have non-real eigenvalues in conjugate pairs.

Problem 12 Let

\[A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}. \]

Compute \(e^{At} \). (Hint: use diagonal form found in previous lecture.)

Answer:

\[e^{at} \begin{bmatrix} \cos(bt) + i\sin(bt) & 0 \\ 0 & \cos(bt) - i\sin(bt) \end{bmatrix}. \]

This is a pair of *out of phase waves* with *natural frequency* \(b \) – spirals going to zero if \(a < 0 \), to \(\infty \) if \(a > 0 \), and periodic if \(a = 0 \).
Recall real matrices only have non-real eigenvalues in conjugate pairs.

Problem 12 Let

\[A = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}. \]

Compute \(e^{At} \). (Hint: use diagonal form found in previous lecture.)

Answer:

\[e^{at} \begin{bmatrix} \cos(bt) + i\sin(bt) & 0 \\ 0 & \cos(bt) - i\sin(bt) \end{bmatrix}. \]

This is a pair of *out of phase waves with natural frequency* \(b \) – spirals going to zero if \(a < 0 \), to \(\infty \) if \(a > 0 \), and periodic if \(a = 0 \).

(See Matlab simulation)
Now, what if we have multiple 2x2 non-real blocks? (Think back to the $r_1, \ldots, r_k, c_1, \overline{c_1}, c_2, \overline{c_2}, \ldots, c_m, \overline{c_m}$ listing of eigenvalues.)
Now, what if we have multiple 2x2 non-real blocks? (Think back to the $r_1, \ldots, r_k, c_1, \overline{c_1}, c_2, \overline{c_2}, \ldots, c_m, \overline{c_m}$ listing of eigenvalues.)

The general solution is:
Now, what if we have multiple 2x2 non-real blocks? (Think back to the \(r_1, \ldots, r_k, c_1, \overline{c_1}, c_2, \overline{c_2}, \ldots, c_m, \overline{c_m} \) listing of eigenvalues.)

The general solution is:

\[
\begin{bmatrix}
exp\left(\begin{bmatrix}
c_1 & 0 \\
0 & \overline{c_1}
\end{bmatrix}\right) & 0 & \ldots & 0 \\
0 & exp\left(\begin{bmatrix}
c_2 & 0 \\
0 & \overline{c_2}
\end{bmatrix}\right) & \ldots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \ldots & exp\left(\begin{bmatrix}
c_m & 0 \\
0 & \overline{c_m}
\end{bmatrix}\right)
\end{bmatrix}
\]
Now, what if we have multiple 2x2 non-real blocks? (Think back to the $r_1, \ldots, r_k, c_1, \overline{c_1}, c_2, \overline{c_2}, \ldots, c_m, \overline{c_m}$ listing of eigenvalues.)

The general solution is:

\[
\begin{align*}
&= e^{a_1 t} \begin{bmatrix} \cos(b_1 t) + isin(b_1 t) & 0 \\ 0 & \cos(b_1 t) - isin(b_1 t) \end{bmatrix} \\
&= e^{a_2 t} \begin{bmatrix} \cos(b_2 t) + isin(b_2 t) & 0 \\ 0 & \cos(b_2 t) - isin(b_2 t) \end{bmatrix} \\
&= e^{a_m t} \begin{bmatrix} \cos(b_m t) + isin(b_m t) & 0 \\ 0 & \cos(b_m t) - isin(b_m t) \end{bmatrix}
\end{align*}
\]
Now, what if we have multiple 2x2 non-real blocks? (Think back to the \(r_1, \ldots, r_k, c_1, c_1, c_2, c_2, \ldots, c_m, c_m \) listing of eigenvalues.)

The general solution is:

\[
\begin{align*}
\mathbf{x}(t) &= e^{a_1 t} \begin{bmatrix} \cos(b_1 t) + i\sin(b_1 t) & 0 \\
0 & \cos(b_1 t) - i\sin(b_1 t) \end{bmatrix} + \mathbf{x}_2(t) + \mathbf{x}_m(t) \\
\mathbf{x}_2(t) &= e^{a_2 t} \begin{bmatrix} \cos(b_2 t) + i\sin(b_2 t) & 0 \\
0 & \cos(b_2 t) - i\sin(b_2 t) \end{bmatrix} \\
\mathbf{x}_m(t) &= e^{a_m t} \begin{bmatrix} \cos(b_m t) + i\sin(b_m t) & 0 \\
0 & \cos(b_m t) - i\sin(b_m t) \end{bmatrix}
\end{align*}
\]

where \(a_i = Re(c_i) \) and \(b_i = Im(c_i) \).
Now, by arguments precisely like in the real case, the eigenvalues with highest real part, a_{max}, completely win out asymptotically.
Now, by arguments precisely like in the real case, the eigenvalues with highest real part, a_{max}, completely win out asymptotically. We’re left with:

$$e^{a_{max}t} \left(\begin{bmatrix} e^{ib_1t} & 0 \\ 0 & e^{-ib_1t} \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} e^{ib_Nt} & 0 \\ 0 & e^{-ib_Nt} \end{bmatrix} \right)$$
Complex Eigenvalues

Now, by arguments precisely like in the real case, the eigenvalues with highest real part, a_{max}, completely win out asymptotically. We’re left with:

$$e^{a_{max} t} \left(\begin{bmatrix} e^{ib_1 t} & 0 \\ 0 & e^{-ib_1 t} \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} e^{ib_N t} & 0 \\ 0 & e^{-ib_N t} \end{bmatrix} \right)$$

where N is the number of different conjugate-pairs with highest real part.
Complex Eigenvalues

Now, by arguments precisely like in the real case, the eigenvalues with highest real part, a_{max}, completely win out asymptotically. We’re left with:

$$e^{a_{max}t} \left(\begin{bmatrix} e^{ib_1t} & 0 \\ 0 & e^{-ib_1t} \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} e^{ib_Nt} & 0 \\ 0 & e^{-ib_Nt} \end{bmatrix} \right)$$

where N is the number of different conjugate-pairs with highest real part.

Just as before, these systems also get asymptotically projected onto the eigenspace associated with maximum real part eigenvalue; and growth rate is a_{max}.
Now, by arguments precisely like in the real case, the eigenvalues with highest real part, a_{max}, completely win out asymptotically. We’re left with:

$$e^{a_{max}t} \left(\begin{array}{cc} e^{ib_1t} & 0 \\ 0 & e^{-ib_1t} \end{array} \right) \oplus \cdots \oplus \begin{array}{cc} e^{ib_Nt} & 0 \\ 0 & e^{-ib_Nt} \end{array}$$

where N is the number of different conjugate-pairs with highest real part.

Just as before, these systems also get asymptotically projected onto the eigenspace associated with maximum real part eigenvalue; and growth rate is a_{max}.

What’s left to know:
Now, by arguments precisely like in the real case, the eigenvalues with highest real part, a_{max}, completely win out asymptotically. We’re left with:

$$e^{a_{max} t} \left(\begin{bmatrix} e^{ib_1 t} & 0 \\ 0 & e^{-ib_1 t} \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} e^{ib_N t} & 0 \\ 0 & e^{-ib_N t} \end{bmatrix} \right)$$

where N is the number of different conjugate-pairs with highest real part.

Just as before, these systems also get asymptotically projected onto the eigenspace associated with maximum real part eigenvalue; and growth rate is a_{max}.

What’s left to know: When is there a natural frequency?
Figure 2: A torus. (Donut!)
Natural Frequencies

Figure 3: The two loops of a torus.
Figure 4: Torus = square with both wrap-arounds.
Figure 5: Equally-marked edges are identified.
Figure 6: First make a tube.
Natural Frequencies

Figure 7: Then connect up the tube to make a donut.
Now, suppose you drew a line on the torus-square.
Now, suppose you drew a line on the torus-square.
Now, suppose you drew a line on the torus-square.
Now, suppose you drew a line on the torus-square.
Now, suppose you drew a line on the torus-square.
Now, suppose you drew a line on the torus-square.
It eventually could return to 0 and become periodic.
It eventually could return to 0 and become periodic.
Natural Frequencies

Figure 8: Trajectory viewed in actual torus view.
Question: Assuming each square side has length 1, what is the condition on the slope r of the line for its trajectory to become periodic?
Question: Assuming each square side has length 1, what is the condition on the slope r of the line for its trajectory to become periodic?

Figure 9: Slope is 2.
Question: Assuming each square side has length 1, what is the condition on the slope \(r \) of the line for its trajectory to become periodic?

Figure 9: Slope is 2.
Natural Frequencies

Question: Assuming each square side has length 1, what is the condition on the slope r of the line for its trajectory to become periodic?

Answer: The trajectory is periodic IFF r is rational, i.e. $r \in \mathbb{Q}$.
Natural Frequencies

Question: Assuming each square side has length 1, what is the condition on the slope r of the line for its trajectory to become periodic?

Answer: The trajectory is periodic IFF r is rational, i.e. $r \in \mathbb{Q}$.

Question: What happens if r is irrational and therefore aperiodic?
Natural Frequencies

Question: Assuming each square side has length 1, what is the condition on the slope \(r \) of the line for its trajectory to become periodic?

Answer: The trajectory is periodic IFF \(r \) is rational, i.e. \(r \in \mathbb{Q} \).

Question: What happens if \(r \) is irrational and therefore aperiodic?

Answer: The trajectory is \textit{ergodic} – that is, it comes arbitrary close to any point in the square, filling up the space. (See Matlab simulation).
Question: Assuming each square side has length 1, what is the condition on the slope r of the line for its trajectory to become periodic?

Answer: The trajectory is periodic IFF r is rational, i.e. $r \in \mathbb{Q}$.

Question: What happens if r is irrational and therefore aperiodic?

Answer: The trajectory is *ergodic* – that is, it comes arbitrary close to any point in the square, filling up the space. (See Matlab simulation).

Now we apply this to the ODE system.
Recall our system of interest:
Recall our system of interest:

\[e^{a_{\text{max}} t} \left(\left[\begin{array}{cc} e^{ib_1 t} & 0 \\ 0 & e^{-ib_1 t} \end{array} \right] \oplus \cdots \oplus \left[\begin{array}{cc} e^{ib_N t} & 0 \\ 0 & e^{-ib_N t} \end{array} \right] \right) \]
Recall our system of interest:

\[e^{a_{\text{max}} t} \left(\left[\begin{array}{cc} e^{ib_1 t} & 0 \\ 0 & e^{-ib_1 t} \end{array} \right] \oplus \cdots \oplus \left[\begin{array}{cc} e^{ib_N t} & 0 \\ 0 & e^{-ib_N t} \end{array} \right] \right) \]

\(a_{\text{max}} \) was largest real-part of eigenvalues and \(b_1,\ldots,N \) are (positive) imaginary parts of the various eigenvalues \(c_i \) with \(\Re(\lambda) = a_{\text{max}} \).
Recall our system of interest:

\[e^{a_{\text{max}} t} \left(\begin{bmatrix} e^{ib_1 t} & 0 \\ 0 & e^{-ib_1 t} \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} e^{ib_N t} & 0 \\ 0 & e^{-ib_N t} \end{bmatrix} \right) \]

\(a_{\text{max}} \) was largest real-part of eigenvalues and \(b_1, \ldots, N \) are (positive) imaginary parts of the various eigenvalues \(c_i \) with \(\text{Re} (\lambda) = a_{\text{max}} \).

Normalizing by \(e^{a_{\text{max}} t} \) gives
Recall our system of interest:

\[e^{a_{\text{max}}t} \left(\left[e^{ib_1t} \ 0 \right] \oplus \cdots \oplus \left[e^{ib_Nt} \ 0 \right] \right) \]

\(a_{\text{max}} \) was largest real-part of eigenvalues and \(b_1,\ldots,N \) are (positive) imaginary parts of the various eigenvalues \(c_i \) with \(\text{Re}(\lambda) = a_{\text{max}}. \)

Normalizing by \(e^{a_{\text{max}}t} \) gives

\[\left(\left[e^{ib_1t} \ 0 \right] \oplus \cdots \oplus \left[e^{ib_Nt} \ 0 \right] \right) \]
Recall our system of interest:

\[e^{a_{\text{max}} t} \left(\left[e^{i b_1 t} \ 0 \right] \oplus \cdots \oplus \left[e^{i b_N t} \ 0 \right] \right) \]

\(a_{\text{max}} \) was largest real-part of eigenvalues and \(b_1,\ldots,N \) are (positive) imaginary parts of the various eigenvalues \(c_i \) with \(\Re(\lambda) = a_{\text{max}} \).

Normalizing by \(e^{a_{\text{max}} t} \) gives

\[\left(\left[e^{i b_1 t} \ 0 \right] \oplus \cdots \oplus \left[e^{i b_N t} \ 0 \right] \right) \]

Problem 13 What “space” does this (normalized) trajectory happen on? (Don’t answer this yet, unless you’re sure.)
Natural Frequencies

Each of the c^{ibt} terms is a periodic trajectory on the circle.
Natural Frequencies

Each of the e^{ibt} terms is a periodic trajectory on the circle.

Problem 14 What is the period of the trajectory? I.e., what is the smallest positive T for which $e^{ibt}(t+T) = e^{ibt}$?
Natural Frequencies

Each of the e^{ibt} terms is a periodic trajectory on the circle.

Problem 14 What is the period of the trajectory? I.e., what is the smallest positive T for which $e^{ibt}(t+T) = e^{ibt}$?

Answer: $T_i = 2\pi/b_i$, since $e^{ibt}(t+2\pi/b_i) = e^{ibt+2\pi i} = e^{ibt}$.
Natural Frequencies

Each of the e^{ibt} terms is a periodic trajectory on the circle.

Problem 14 What is the period of the trajectory? I.e., what is the smallest positive T for which $e^{ibt}(t+T) = e^{ibt}$?

Answer: $T_i = 2\pi/b_i$, since $e^{ib_i(t+2\pi/b_i)} = e^{ibt+2\pi i} = e^{ibt}$. Another way to see it: period*frequency = 2π.
Natural Frequencies

Each of the e^{ib_it} terms is a periodic trajectory on the circle.

Problem 14 What is the period of the trajectory? I.e., what is the smallest positive T for which $e^{ib_i(t+T)} = e^{ib_it}$?

Answer: $T_i = 2\pi/b_i$, since $e^{ib_i(t+2\pi/b_i)} = e^{ib_it+2\pi i} = e^{ib_it}$.

Another way to see it: period*frequency = 2π.

Now, think of the torus as Circle \times Circle.
Each of the e^{ib_it} terms is a periodic trajectory on the circle.

Problem 14 What is the period of the trajectory? I.e., what is the smallest positive T for which $e^{ib_i(t+T)} = e^{ib_it}$?

Answer: $T_i = 2\pi/b_i$, since $e^{ib_i(t+2\pi/b_i)} = e^{ib_it+2\pi i} = e^{ib_it}$.

Another way to see it: period*frequency $= 2\pi$.

![Diagram of a periodic trajectory on a circle](image-url)
Each of the $e^{ib_i t}$ terms is a periodic trajectory on the circle.

Problem 14 What is the period of the trajectory? I.e., what is the smallest positive T for which $e^{ib_i (t+T)} = e^{ib_i t}$?

Answer: $T_i = 2\pi / b_i$, since $e^{ib_i (t+2\pi / b_i)} = e^{ib_i t+2\pi i} = e^{ib_i t}$.

Another way to see it: $\text{period} \times \text{frequency} = 2\pi$.
Each of the e^{ib_it} terms is a periodic trajectory on the circle.

Problem 14 What is the period of the trajectory? I.e., what is the smallest positive T for which $e^{ib_i(t+T)} = e^{ib_it}$?

Answer: $T_i = 2\pi/b_i$, since $e^{ib_i(t+2\pi/b_i)} = e^{ib_it+2\pi i} = e^{ib_it}$. Another way to see it: period*frequency $= 2\pi$.
Now, answer problem 13, on what spaces does the trajectory

\[
\left(\begin{bmatrix} e^{ib_1 t} & 0 \\ 0 & e^{-ib_1 t} \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} e^{ib_N t} & 0 \\ 0 & e^{-ib_N t} \end{bmatrix}\right)
\]

lie?
Natural Frequencies

Now, answer problem 13, on what spaces does the trajectory

\[
\left(\begin{bmatrix} e^{ib_1t} & 0 \\ 0 & e^{-ib_1t} \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} e^{ib_Nt} & 0 \\ 0 & e^{-ib_Nt} \end{bmatrix} \right)
\]

(1)

lie?

Answer: on the \(2N\)-dimensional version of the torus, one circle for each exponential term.
Natural Frequencies

Now, answer problem 13, on what spaces does the trajectory

\[
\left(\begin{array}{cc}
 e^{ib_1t} & 0 \\
 0 & e^{-ib_1t}
\end{array} \right) \oplus \ldots \oplus \left(\begin{array}{cc}
 e^{ib_Nt} & 0 \\
 0 & e^{-ib_Nt}
\end{array} \right)
\]

lie?

Answer: on the \(2N\)-dimensional version of the torus, one circle for each exponential term.

Applying the principle we learned a moment ago, we see:
Natural Frequencies

Now, answer problem 13: on what spaces does the trajectory
\[
\left(\begin{bmatrix} e^{ib_1 t} & 0 \\ 0 & e^{-ib_1 t} \end{bmatrix} \oplus \cdots \oplus \begin{bmatrix} e^{ib_N t} & 0 \\ 0 & e^{-ib_N t} \end{bmatrix} \right)
\]
lie?

Answer: on the \(2N\)-dimensional version of the torus, one circle for each exponential term.

Applying the principle we learned a moment ago, we see:

Trajectory 1 has a natural frequency IFF the numbers \(b_i\) are rationally related – that is, if \(b_i/b_j\) is a rational number for all \(i, j\).
Now, answer problem 13, on what spaces does the trajectory

\[
\begin{pmatrix}
e^{ib_1t} & 0 \\
0 & e^{-ib_1t}
\end{pmatrix} \oplus \cdots \oplus
\begin{pmatrix}
e^{ib_Nt} & 0 \\
0 & e^{-ib_Nt}
\end{pmatrix}
\]

(1)

lie?

Answer: on the \(2N\)-dimensional version of the torus, one circle for each exponential term.

Applying the principle we learned a moment ago, we see:

Trajectory 1 has a natural frequency IFF the numbers \(b_i\) are rationally related – that is, if \(b_i/b_j\) is a rational number for all \(i, j\). Otherwise, the system hits all points (is ergodic) in at least one dimension.
Putting it All Together

We now have a complete description of all the behaviors of a diagonal linear system.
Putting it All Together

We now have a *complete description* of all the behaviors of a diagonal linear system.

To wit:
Putting it All Together

We now have a *complete description* of all the behaviors of a diagonal linear system.

To wit:

- All trajectories project exponentially quickly down onto the top eigenspace A^{Top} (i.e. the one with highest real-part to its eigenvalue, a_{max}).
Putting it All Together

We now have a complete description of all the behaviors of a diagonal linear system.

To wit:

- All trajectories project exponentially quickly down onto the top eigenspace A^{Top} (i.e. the one with highest real-part to its eigenvalue, a_{max}).
- The system grows with Lyapunov exponent given by a_{max}.
Putting it All Together

We now have a complete description of all the behaviors of a diagonal linear system.

To wit:
- All trajectories project exponentially quickly down onto the top eigenspace A^{Top} (i.e. the one with highest real-part to its eigenvalue, a_{max}).
- The system grows with Lyapunov exponent given by a_{max}.
- Each real eigenvalue consists of exponential growth or decay.
We now have a complete description of all the behaviors of a diagonal linear system.

To wit:
- All trajectories project exponentially quickly down onto the top eigenspace A^{Top} (i.e. the one with highest real-part to its eigenvalue, a_{max}).
- The system grows with Lyapunov exponent given by a_{max}.
- Each real eigenvalue consists of exponential growth or decay.
- Each complex eigenvalue pair consists of two out-of-phase spiral or standing waves.
Putting it All Together

We now have a complete description of all the behaviors of a diagonal linear system.

To wit:

- All trajectories project exponentially quickly down onto the top eigenspace A^{Top} (i.e. the one with highest real-part to its eigenvalue, a_{max}).
- The system grows with Lyapunov exponent given by a_{max}.
- Each real eigenvalue consists of exponential growth or decay.
- Each complex eigenvalue pair consists of two out-of-phase spiral or standing waves.
- The system possesses an overall natural frequency only when the imaginary parts of eigenvectors of A^{Top} are rationally related; and is ergodic in some dimension(s) otherwise.
Inhomogenous Equations

So far we’ve dealt with what are known as “homogenous equations":
Inhomogenous Equations

So far we’ve dealt with what are known as “homogenous equations”:

\[
\frac{d\vec{x}}{dt} = A\vec{x} + \vec{0}.
\]
Inhomogenous Equations

So far we’ve dealt with what are known as “homogenous equations”:

\[
\frac{d\vec{x}}{dt} = A\vec{x} + 0.
\]

But what about so-called inhomogenous equations like:

\[
\frac{d\vec{x}}{dt} = A\vec{x} + \vec{K}
\]

where \(\vec{K} \) is a constant vector?
Inhomogenous Equations

So far we’ve dealt with what are known as “homogenous equations”:

\[\frac{d\vec{x}}{dt} = A\vec{x} + 0. \]

But what about so-called inhomogenous equations like:

\[\frac{d\vec{x}}{dt} = A\vec{x} + K \]

where \(K \) is a constant vector?

Problem 15 Write the kinematics equations from before as a 2x2 in-homogenous equation.
Inhomogenous Equations

So far we’ve dealt with what are known as “homogenous equations”:

\[
\frac{d\vec{x}}{dt} = A\vec{x} + 0.
\]

But what about so-called inhomogenous equations like:

\[
\frac{d\vec{x}}{dt} = A\vec{x} + K
\]

where \(K \) is a constant vector?

Problem 15 Write the kinematics equations from before as a 2x2 in-homogenous equation.

Answer: \[
\begin{bmatrix}
\dot{x} \\
\dot{v}
\end{bmatrix} = \begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix} \begin{bmatrix}
x \\
v
\end{bmatrix} + \begin{bmatrix}
0 \\
a
\end{bmatrix}.
\]
Inhomogenous Equations

How to solve such equations? Actually, there's a really simple strategy, even if $K(t)$ is a function of time.
Inhomogenous Equations

How to solve such equations? Actually, there’s a really simple strategy, even if $K(t)$ is a function of time.

Suppose the equation is

$$\dot{\vec{x}} = A\vec{x} + \vec{f}(t).$$
Inhomogenous Equations

How to solve such equations? Actually, there’s a really simple strategy, even if \(K(t) \) is a function of time.

Suppose the equation is

\[
\dot{x} = Ax + f(t).
\]

Let’s guess a form for the answer; how about

\[
\bar{x}(t) = e^{tA}(\bar{x}(0) + \bar{g}(t)).
\]
Inhomogenous Equations

How to solve such equations? Actually, there's a really simple strategy, even if $K(t)$ is a function of time.

Suppose the equation is

$$\dot{x} = A\vec{x} + \vec{f}(t).$$

Let's guess a form for the answer; how about

$$\vec{x}(t) = e^{tA}(\vec{x}(0) + \vec{g}(t)).$$

Problem 16 Solve for \vec{g} that makes the above guess work.
Inhomogenous Equations

How to solve such equations? Actually, there’s a really simple strategy, even if $K(t)$ is a function of time.

Suppose the equation is

$$\ddot{x} = A\dot{x} + \vec{f}(t).$$

Let’s guess a form for the answer; how about

$$\vec{x}(t) = e^{tA}(\vec{x}(0) + \vec{g}(t)).$$

Problem 16 Solve for \vec{g} that makes the above guess work.

Answer: $\vec{g}(t) = \int e^{-sA}\vec{f}(s)\,ds.$
Inhomogenous Equations

How to solve such equations? Actually, there’s a really simple strategy, even if $K(t)$ is a function of time.

Suppose the equation is

$$\dot{x} = A\vec{x} + \vec{f}(t).$$

Let’s guess a form for the answer; how about

$$\vec{x}(t) = e^{tA}(\vec{x}(0) + \vec{g}(t)).$$

Problem 16 Solve for \vec{g} that makes the above guess work.

Answer: $\vec{g}(t) = \int e^{-sA}\vec{f}(s)ds$. Thus:

$$\vec{x}(t) = e^{tA}\vec{x}(0) + \int_0^t e^{(t-s)A}\vec{f}(s)ds.$$
Inhomogenous Equations

How to solve such equations? Actually, there's a really simple strategy, even if $K(t)$ is a function of time.

Suppose the equation is

$$\dot{\vec{x}} = A\vec{x} + \vec{f}(t).$$

Let's guess a form for the answer; how about

$$\vec{x}(t) = e^{tA}(\vec{x}(0) + \vec{g}(t)).$$

Problem 16 Solve for \vec{g} that makes the above guess work.

Answer: $\vec{g}(t) = \int e^{-sA}\vec{f}(s)ds$. Thus:

$$\vec{x}(t) = e^{tA}\vec{x}(0) + \int_0^t e^{(t-s)A}\vec{f}(s)ds.$$

Homogenous solution + correction, known as "Variation of Constants" formula.