Lecture 3: Non-Linear Systems

Overview

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

The topics are:

Overview

- Overview
- Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

The topics are:

- Population Growth and the Logistic Equation.

Overview

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

The topics are:

- Population Growth and the Logistic Equation.
- Linearization and Stability Analysis in 1D.

Overview

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

The topics are:

- Population Growth and the Logistic Equation.
- Linearization and Stability Analysis in 1D.
- Linearization and Stability Analysis in 2D.

Overview

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

The topics are:

- Population Growth and the Logistic Equation.
- Linearization and Stability Analysis in 1D.
- Linearization and Stability Analysis in 2D.
- Population Growth Revisited.

Overview

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

The topics are:

- Population Growth and the Logistic Equation.
- Linearization and Stability Analysis in 1D.
- Linearization and Stability Analysis in 2D.
- Population Growth Revisited.
- Limitations of Linearization.

Overview

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth

The topics are:

- Population Growth and the Logistic Equation.
- Linearization and Stability Analysis in 1D.
- Linearization and Stability Analysis in 2D.
- Population Growth Revisited.
- Limitations of Linearization.

Philosophy: Reality demands non-linear terms,

Overview

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth

The topics are:

- Population Growth and the Logistic Equation.
- Linearization and Stability Analysis in 1D.
- Linearization and Stability Analysis in 2D.
- Population Growth Revisited.
- Limitations of Linearization.

Philosophy: Reality demands non-linear terms, generating effects impossible to model with purely linear systems;

Overview

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth

The topics are:

- Population Growth and the Logistic Equation.
- Linearization and Stability Analysis in 1D.
- Linearization and Stability Analysis in 2D.
- Population Growth Revisited.
- Limitations of Linearization.

Philosophy: Reality demands non-linear terms, generating effects impossible to model with purely linear systems; there's a fidelity/analyzability tradeoff

Overview

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

The topics are:

- Population Growth and the Logistic Equation.
- Linearization and Stability Analysis in 1D.
- Linearization and Stability Analysis in 2D.
- Population Growth Revisited.
- Limitations of Linearization.

Philosophy: Reality demands non-linear terms, generating effects impossible to model with purely linear systems; there's a fidelity/analyzability tradeoff that can often (but not always) be avoided by linearization analysis.

Overview

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis

The topics are:

- Population Growth and the Logistic Equation.
- Linearization and Stability Analysis in 1D.
- Linearization and Stability Analysis in 2D.
- Population Growth Revisited.
- Limitations of Linearization.

Philosophy: Reality demands non-linear terms, generating effects impossible to model with purely linear systems; there's a fidelity/analyzability tradeoff that can often (but not always) be avoided by linearization analysis.

Caveat: I don't know too much about non-linear systems.

Modeling Population Growth

- Overview

 - Modeling Population Growth- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Let's start with one creature:

Modeling Population Growth

- Overview

 - Modeling Population Growth- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Let's start with one creature:

$$
N(0)=1
$$

Modeling Population Growth

- Overview

 - Modeling Population Growth- Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Let's start with one creature:

$$
N(0)=1
$$

Now, imagine the creature has one baby per timestep.

Modeling Population Growth

- Overview

 - Modeling Population Growth- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Let's start with one creature:

$$
N(0)=1
$$

Now, imagine the creature has one baby per timestep.

$$
N(1)=2 .
$$

Modeling Population Growth

- Overview

 - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth- Stability Analysis
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited - Population Growth Revisited - Population Growth Revisited - Population Growth Revisited

Let's start with one creature:

$$
N(0)=1 .
$$

Now, imagine the creature has one baby per timestep.

$$
N(1)=2 .
$$

And then each of these two has one baby, so $N(2)=4$;

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

Let's start with one creature:

$$
N(0)=1 .
$$

Now, imagine the creature has one baby per timestep.

$$
N(1)=2 \text {. }
$$

And then each of these two has one baby, so $N(2)=4$; and $N(3)=8$, etc...

Modeling Population Growth

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Let's start with one creature:

$$
N(0)=1
$$

Now, imagine the creature has one baby per timestep.

$$
N(1)=2 \text {. }
$$

And then each of these two has one baby, so $N(2)=4$; and $N(3)=8$, etc... It's a difference equation, $N_{k}=2 N_{k-1}$, with solution

$$
N(k)=2^{k} N(0) .
$$

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Let's start with one creature:

$$
N(0)=1
$$

Now, imagine the creature has one baby per timestep.

$$
N(1)=2 \text {. }
$$

And then each of these two has one baby, so $N(2)=4$; and $N(3)=8$, etc... It's a difference equation, $N_{k}=2 N_{k-1}$, with solution

$$
N(k)=2^{k} N(0) .
$$

Problem 1 If at each instant any creature has $r d t$ babies, what is the right ODE describing the population growth?

Modeling Population Growth

- Overview

Let's start with one creature:

$$
N(0)=1 .
$$

Now, imagine the creature has one baby per timestep.

$$
N(1)=2 .
$$

And then each of these two has one baby, so $N(2)=4$; and $N(3)=8$, etc... It's a difference equation, $N_{k}=2 N_{k-1}$, with solution

$$
N(k)=2^{k} N(0) .
$$

Problem 1 If at each instant any creature has $r d t$ babies, what is the right ODE describing the population growth?

Answer: $d N=r N d t$, whose solution is?

Modeling Population Growth

- Overview

Let's start with one creature:

$$
N(0)=1 .
$$

Now, imagine the creature has one baby per timestep.

$$
N(1)=2 .
$$

And then each of these two has one baby, so $N(2)=4$; and $N(3)=8$, etc... It's a difference equation, $N_{k}=2 N_{k-1}$, with solution

$$
N(k)=2^{k} N(0) .
$$

Problem 1 If at each instant any creature has $r d t$ babies, what is the right ODE describing the population growth?

Answer: $d N=r N d t$, whose solution is?
$N(t)=e^{r t} N(0)$.

Modeling Population Growth

- Overview

- Modeling Population Growth O Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Question: Why is exponential growth unrealistic?

Modeling Population Growth

- Overview

- Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

> Question: Why is exponential growth unrealistic? Resource limitation: you can't grow forever with finite amount of food, water, space, etc...

Modeling Population Growth

- Overview

- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth

- Modeling Population Growth

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

Question: Why is exponential growth unrealistic? Resource limitation: you can't grow forever with finite amount of food, water, space, etc... Need a new model.

Modeling Population Growth

- Overview

- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited - Population Growth Revisited - Population Growth Revisited - Population Growth Revisited

Question: Why is exponential growth unrealistic? Resource limitation: you can't grow forever with finite amount of food, water, space, etc...
Need a new model. Must produce "resource response:"

Modeling Population Growth

Question: Why is exponential growth unrealistic? Resource limitation: you can't grow forever with finite amount of food, water, space, etc... Need a new model. Must produce "resource response:" fast growth when below resource level, slows as environmental capacity becomes an important limitation.

Modeling Population Growth

Question: Why is exponential growth unrealistic? Resource limitation: you can't grow forever with finite amount of food, water, space, etc...
Need a new model. Must produce "resource response:" fast growth when below resource level, slows as environmental capacity becomes an important limitation.

Modeling Population Growth

Question: Why is exponential growth unrealistic? Resource limitation: you can't grow forever with finite amount of food, water, space, etc...
Need a new model. Must produce "resource response:" fast growth when below resource level, slows as environmental capacity becomes an important limitation.

Question: What's the BIG problem here?

Modeling Population Growth

Question: Why is exponential growth unrealistic? Resource limitation: you can't grow forever with finite amount of food, water, space, etc...
Need a new model. Must produce "resource response:" fast growth when below resource level, slows as environmental capacity becomes an important limitation.

Question: What's the BIG problem here? Answer: Lecture 2 analysis \Rightarrow NO linear system can model resource response.

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

If we start with

$$
\dot{N}=r N
$$

can we multiply by something that builds in environmental capacity?

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

If we start with

$$
\dot{N}=r N
$$

can we multiply by something that builds in environmental capacity?

Suppose K is a measure of capacity, in creature-units. Then

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

If we start with

$$
\dot{N}=r N
$$

can we multiply by something that builds in environmental capacity?

Suppose K is a measure of capacity, in creature-units. Then

$$
1-\frac{N}{K}
$$

is positive when $N<K$ and negative when $N>K$.

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth
- Modeling Population Growth

If we start with

$$
\dot{N}=r N
$$

can we multiply by something that builds in environmental capacity?

Suppose K is a measure of capacity, in creature-units. Then

$$
1-\frac{N}{K}
$$

is positive when $N<K$ and negative when $N>K$. This non-linear ODE:

$$
\dot{N}=r N\left(1-\frac{N}{K}\right)
$$

has the properties we want.

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth
- Modeling Population Growth

If we start with

$$
\dot{N}=r N
$$

can we multiply by something that builds in environmental capacity?

Suppose K is a measure of capacity, in creature-units. Then

$$
1-\frac{N}{K}
$$

is positive when $N<K$ and negative when $N>K$. This non-linear ODE:

$$
\dot{N}=r N\left(1-\frac{N}{K}\right)
$$

has the properties we want. If

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth
- Modeling Population Growth

If we start with

$$
\dot{N}=r N
$$

can we multiply by something that builds in environmental capacity?

Suppose K is a measure of capacity, in creature-units. Then

$$
1-\frac{N}{K}
$$

is positive when $N<K$ and negative when $N>K$. This non-linear ODE:

$$
\dot{N}=r N\left(1-\frac{N}{K}\right)
$$

has the properties we want. If

- N is too big, $>K$, the \dot{N} is negative, the population shrinks.

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth
- Modeling Population Growth

If we start with

$$
\dot{N}=r N
$$

can we multiply by something that builds in environmental capacity?

Suppose K is a measure of capacity, in creature-units. Then

$$
1-\frac{N}{K}
$$

is positive when $N<K$ and negative when $N>K$. This non-linear ODE:

$$
\dot{N}=r N\left(1-\frac{N}{K}\right)
$$

has the properties we want. If

- N is too big, $>K$, the \dot{N} is negative, the population shrinks.
- If $N \ll K, N \sim r N$, with fast growth as we wanted.

Modeling Population Growth

Overview

- Modeling Population Growth
Modeling Population Growth
- Modeling Population Growth
Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth Population Growth
- Modeling Population Growth
Stability Analysis
2D Stability Analysis
Population Growth Revisited
Population Growth Revisited
Population Growth Revisited
Population Growth Revisited Growth Revisited
Population Growth Revisited
- Po

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

$$
\dot{N}=r N\left(1-\frac{N}{K}\right)=r N-\frac{r}{K} N^{2}
$$

is known as the "Logistic equation" and K is called the "carrying capacity" of the environment.

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth

$$
\dot{N}=r N\left(1-\frac{N}{K}\right)=r N-\frac{r}{K} N^{2}
$$

is known as the "Logistic equation" and K is called the "carrying capacity" of the environment.

It is a non-linear first-order differential equation.

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth

$$
\dot{N}=r N\left(1-\frac{N}{K}\right)=r N-\frac{r}{K} N^{2}
$$

is known as the "Logistic equation" and K is called the "carrying capacity" of the environment.

It is a non-linear first-order differential equation. Can be solved analytically a couple of ways.

Modeling Population Growth

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

$$
\dot{N}=r N\left(1-\frac{N}{K}\right)=r N-\frac{r}{K} N^{2}
$$

is known as the "Logistic equation" and K is called the "carrying capacity" of the environment.

It is a non-linear first-order differential equation. Can be solved analytically a couple of ways.

$$
\frac{d N}{N(1-N / K)}=r d t
$$

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth

$$
\dot{N}=r N\left(1-\frac{N}{K}\right)=r N-\frac{r}{K} N^{2}
$$

is known as the "Logistic equation" and K is called the "carrying capacity" of the environment.

It is a non-linear first-order differential equation. Can be solved analytically a couple of ways.

$$
\begin{gathered}
\frac{d N}{N(1-N / K)}=r d t \\
\Rightarrow \int \frac{d N}{N(1-N / K)}=r \int d t=r t .
\end{gathered}
$$

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth

$$
\dot{N}=r N\left(1-\frac{N}{K}\right)=r N-\frac{r}{K} N^{2}
$$

is known as the "Logistic equation" and K is called the "carrying capacity" of the environment.

It is a non-linear first-order differential equation. Can be solved analytically a couple of ways.

$$
\begin{gathered}
\frac{d N}{N(1-N / K)}=r d t \\
\Rightarrow \int \frac{d N}{N(1-N / K)}=r \int d t=r t .
\end{gathered}
$$

Problem 2 What is the easiest strategy to evaluate the integral on the LHS?

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Answer: Partial fractions.

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Answer: Partial fractions.

$$
\frac{1}{N(1-N / K)}=\frac{1}{N}+\frac{1}{K-N}
$$

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Answer: Partial fractions.

$$
\frac{1}{N(1-N / K)}=\frac{1}{N}+\frac{1}{K-N} .
$$

Hence

$$
\ln (N)-\ln (K-N)=C^{\prime \prime}+r t
$$

SO

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Answer: Partial fractions.

$$
\frac{1}{N(1-N / K)}=\frac{1}{N}+\frac{1}{K-N} .
$$

Hence

$$
\ln (N)-\ln (K-N)=C^{\prime \prime}+r t
$$

so

$$
\frac{N}{K-N}=C^{\prime} e^{r t}
$$

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Answer: Partial fractions.

$$
\frac{1}{N(1-N / K)}=\frac{1}{N}+\frac{1}{K-N} .
$$

Hence

$$
\ln (N)-\ln (K-N)=C^{\prime \prime}+r t
$$

SO

$$
\frac{N}{K-N}=C^{\prime} e^{r t}
$$

and therefore

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Answer: Partial fractions.

$$
\frac{1}{N(1-N / K)}=\frac{1}{N}+\frac{1}{K-N} .
$$

Hence

$$
\ln (N)-\ln (K-N)=C^{\prime \prime}+r t
$$

SO

$$
\frac{N}{K-N}=C^{\prime} e^{r t}
$$

and therefore

$$
N(t)=\frac{K}{1+C e^{r t}} .
$$

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Answer: Partial fractions.

$$
\frac{1}{N(1-N / K)}=\frac{1}{N}+\frac{1}{K-N} .
$$

Hence

$$
\ln (N)-\ln (K-N)=C^{\prime \prime}+r t
$$

SO

$$
\frac{N}{K-N}=C^{\prime} e^{r t}
$$

and therefore

$$
N(t)=\frac{K}{1+C e^{r t}} .
$$

Problem 3 Solve for C as a function of $N(0)$.

Modeling Population Growth

- Overview- Modeling Population Growth- Modeling Population Growth- Modeling Population Growth- Modeling Population Growth
- Modeling Population Growth- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
- 2D Stability Analysis
- Population Growth Revisited

$$
C=\frac{K}{N(0)}-1 .
$$

Modeling Population Growth

- Overview
- Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Answer:

$$
C=\frac{K}{N(0)}-1 .
$$

So

$$
N(t)=\frac{K N(0)}{N(0)+(K-N(0)) e^{-r t}} .
$$

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

Answer:

$$
C=\frac{K}{N(0)}-1 .
$$

So

$$
N(t)=\frac{K N(0)}{N(0)+(K-N(0)) e^{-r t}} .
$$

This makes good sense. Why?

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Answer:

$$
C=\frac{K}{N(0)}-1 .
$$

So

$$
N(t)=\frac{K N(0)}{N(0)+(K-N(0)) e^{-r t}} .
$$

This makes good sense. Why?
Solution method illustrates "separable" differential equations,

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Answer:

$$
C=\frac{K}{N(0)}-1 .
$$

So

$$
N(t)=\frac{K N(0)}{N(0)+(K-N(0)) e^{-r t}} .
$$

This makes good sense. Why?
Solution method illustrates "separable" differential equations, those re-arrangeable to the form

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Answer:

$$
C=\frac{K}{N(0)}-1 .
$$

So

$$
N(t)=\frac{K N(0)}{N(0)+(K-N(0)) e^{-r t}} .
$$

This makes good sense. Why?
Solution method illustrates "separable" differential equations, those re-arrangeable to the form

$$
\begin{equation*}
d(g(x))=d(h(t)) \tag{1}
\end{equation*}
$$

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Answer:

$$
C=\frac{K}{N(0)}-1 .
$$

So

$$
N(t)=\frac{K N(0)}{N(0)+(K-N(0)) e^{-r t}} .
$$

This makes good sense. Why?
Solution method illustrates "separable" differential equations, those re-arrangeable to the form

$$
\begin{gather*}
d(g(x))=d(h(t)) \tag{1}\\
\Rightarrow g(x)=h(t)+C .
\end{gather*}
$$

Modeling Population Growth

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Answer:

$$
C=\frac{K}{N(0)}-1 .
$$

So

$$
N(t)=\frac{K N(0)}{N(0)+(K-N(0)) e^{-r t}} .
$$

This makes good sense. Why?
Solution method illustrates "separable" differential equations, those re-arrangeable to the form

$$
\begin{gather*}
d(g(x))=d(h(t)) \tag{1}\\
\Rightarrow g(x)=h(t)+C
\end{gather*}
$$

"Integrating factors" are multipliers you add in to get it to form 1, and remove after.

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Let's solve it another way.

Modeling Population Growth

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Let's solve it another way.

Let $M=\frac{1}{N}$.

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth
- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Let's solve it another way.
Let $M=\frac{1}{N}$.
Problem 4 What is the new differential equation in M ?

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth
- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Let's solve it another way.
Let $M=\frac{1}{N}$.
Problem 4 What is the new differential equation in M ?
Answer: $d M=r K-r M$.

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

Let's solve it another way.
Let $M=\frac{1}{N}$.
Problem 4 What is the new differential equation in M ?
Answer: $d M=r K-r M$. And what kind of equation is this?

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

Let's solve it another way.
Let $M=\frac{1}{N}$.
Problem 4 What is the new differential equation in M ?
Answer: $d M=r K-r M$. And what kind of equation is this? Linear inhomogenous.

Modeling Population Growth

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

Let's solve it another way.
Let $M=\frac{1}{N}$.
Problem 4 What is the new differential equation in M ?
Answer: $d M=r K-r M$. And what kind of equation is this? Linear inhomogenous. Solve it!

Modeling Population Growth

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Let's solve it another way.
Let $M=\frac{1}{N}$.
Problem 4 What is the new differential equation in M ?
Answer: $d M=r K-r M$. And what kind of equation is this? Linear inhomogenous. Solve it!

Answer:

$$
M=\frac{1}{K}-C e^{-r t}
$$

whence

$$
N=\frac{K}{1-C K e^{-r t}} .
$$

Modeling Population Growth

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited
- Population Growth Revisited
- Population Growth Revisited
- Population Growth Revisited
- Population Growth Revisited

Let's solve it another way.
Let $M=\frac{1}{N}$.

Problem 4 What is the new differential equation in M ?
Answer: $d M=r K-r M$. And what kind of equation is this? Linear inhomogenous. Solve it!

Answer:

$$
M=\frac{1}{K}-C e^{-r t}
$$

whence

$$
N=\frac{K}{1-C K e^{-r t}} .
$$

Illustrates another method: substitution.

Modeling Population Growth

- Overview

- Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Recall solution

$$
N(t)=\frac{K N(0)}{N(0)+(K-N(0)) e^{-r t}} .
$$

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Recall solution

$$
N(t)=\frac{K N(0)}{N(0)+(K-N(0)) e^{-r t}} .
$$

Problem 5 What is the behavior of N as $t \rightarrow \infty$? What are the fixed points?

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Recall solution

$$
N(t)=\frac{K N(0)}{N(0)+(K-N(0)) e^{-r t}} .
$$

Problem 5 What is the behavior of N as $t \rightarrow \infty$? What are the fixed points?

Answer: $\lim _{t \rightarrow \infty} N(t)=K$, for all $N(0) \geq 0$ except $N(0)=0$ itself;

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Recall solution

$$
N(t)=\frac{K N(0)}{N(0)+(K-N(0)) e^{-r t}} .
$$

Problem 5 What is the behavior of N as $t \rightarrow \infty$? What are the fixed points?

Answer: $\lim _{t \rightarrow \infty} N(t)=K$, for all $N(0) \geq 0$ except $N(0)=0$ itself; \therefore fixed points $=0, K$.

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Recall solution

$$
N(t)=\frac{K N(0)}{N(0)+(K-N(0)) e^{-r t}} .
$$

Problem 5 What is the behavior of N as $t \rightarrow \infty$? What are the fixed points?

Answer: $\lim _{t \rightarrow \infty} N(t)=K$, for all $N(0) \geq 0$ except $N(0)=0$ itself; \therefore fixed points $=0, K$.

Problem 6 Classify the stability of the two fixed points based on trajectories.

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Recall solution

$$
N(t)=\frac{K N(0)}{N(0)+(K-N(0)) e^{-r t}} .
$$

Problem 5 What is the behavior of N as $t \rightarrow \infty$? What are the fixed points?

Answer: $\lim _{t \rightarrow \infty} N(t)=K$, for all $N(0) \geq 0$ except $N(0)=0$ itself; \therefore fixed points $=0, K$.

Problem 6 Classify the stability of the two fixed points based on trajectories.
Answer: 0 is unstable, K is stable.

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth

Recall solution

$$
N(t)=\frac{K N(0)}{N(0)+(K-N(0)) e^{-r t}} .
$$

Problem 5 What is the behavior of N as $t \rightarrow \infty$? What are the fixed points?

Answer: $\lim _{t \rightarrow \infty} N(t)=K$, for all $N(0) \geq 0$ except $N(0)=0$ itself; \therefore fixed points $=0, K$.

Problem 6 Classify the stability of the two fixed points based on trajectories.
Answer: 0 is unstable, K is stable.
Strategy: solve ODE, find asymptotes, fixed points, stability from trajectory behavior.

Modeling Population Growth

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth

Recall solution

$$
N(t)=\frac{K N(0)}{N(0)+(K-N(0)) e^{-r t}} .
$$

Problem 5 What is the behavior of N as $t \rightarrow \infty$? What are the fixed points?

Answer: $\lim _{t \rightarrow \infty} N(t)=K$, for all $N(0) \geq 0$ except $N(0)=0$ itself; \therefore fixed points $=0, K$.

Problem 6 Classify the stability of the two fixed points based on trajectories.
Answer: 0 is unstable, K is stable.
Strategy: solve ODE, find asymptotes, fixed points, stability from trajectory behavior. Why is this a bad strategy?

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Consider the ODE system

$$
\dot{x}=\sin (x)
$$

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth - Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Consider the ODE system

$$
\begin{gathered}
\dot{x}=\sin (x) \\
d t=\frac{d x}{\sin (x)}=\csc (x) d x
\end{gathered}
$$

whence

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth - Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Consider the ODE system

$$
\begin{gathered}
\dot{x}=\sin (x) \\
d t=\frac{d x}{\sin (x)}=\csc (x) d x
\end{gathered}
$$

whence

$$
t=\int \csc (x) d x+C
$$

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Consider the ODE system

$$
\begin{gathered}
\dot{x}=\sin (x) \\
d t=\frac{d x}{\sin (x)}=\csc (x) d x
\end{gathered}
$$

whence

$$
t=\int \csc (x) d x+C .
$$

Question: Does anyone know this integral off the top of their head?

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Consider the ODE system

$$
\begin{gathered}
\dot{x}=\sin (x) \\
d t=\frac{d x}{\sin (x)}=\csc (x) d x
\end{gathered}
$$

whence

$$
t=\int \csc (x) d x+C .
$$

Question: Does anyone know this integral off the top of their head? It turns out:

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Consider the ODE system

$$
\begin{gathered}
\dot{x}=\sin (x) \\
d t=\frac{d x}{\sin (x)}=\csc (x) d x
\end{gathered}
$$

whence

$$
t=\int \csc (x) d x+C .
$$

Question: Does anyone know this integral off the top of their head? It turns out:

$$
t=-\ln [|\csc (x)+\cot (x)|]+C
$$

SO

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Consider the ODE system

$$
\begin{gathered}
\dot{x}=\sin (x) \\
d t=\frac{d x}{\sin (x)}=\csc (x) d x
\end{gathered}
$$

whence

$$
t=\int \csc (x) d x+C .
$$

Question: Does anyone know this integral off the top of their head? It turns out:

$$
t=-\ln [|\csc (x)+\cot (x)|]+C
$$

SO

$$
t=\ln \left[\left|\frac{\csc (x(0))+\cot (x(0))}{\csc (x(t))+\cot (x(t))}\right|\right] .
$$

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Consider the ODE system

$$
\begin{gathered}
\dot{x}=\sin (x) \\
d t=\frac{d x}{\sin (x)}=\csc (x) d x
\end{gathered}
$$

whence

$$
t=\int \csc (x) d x+C .
$$

Question: Does anyone know this integral off the top of their head? It turns out:

$$
t=-\ln [|\csc (x)+\cot (x)|]+C
$$

SO

$$
t=\ln \left[\left|\frac{\csc (x(0))+\cot (x(0))}{\csc (x(t))+\cot (x(t))}\right|\right] \cdot \text { Ugh. }
$$

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Stability Analysis - Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Not only does it have ratios of weird trigonometric functions,

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

> Not only does it have ratios of weird trigonometric functions, it's implicit in x !

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Stability Analysis - Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Not only does it have ratios of weird trigonometric functions, it's implicit in x !

Useless (unless you're von Neumann).

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth

Not only does it have ratios of weird trigonometric functions, it's implicit in x !

Useless (unless you're von Neumann).
Now consider:

$$
\ddot{x}=-x-\mu\left(x^{2}-1\right) \dot{x}
$$

a non-linearly damped harmonic oscillator.

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth

Not only does it have ratios of weird trigonometric functions, it's implicit in x !

Useless (unless you're von Neumann).
Now consider:

$$
\ddot{x}=-x-\mu\left(x^{2}-1\right) \dot{x},
$$

a non-linearly damped harmonic oscillator. Analytic solutions to this equation - the "van der Pol" oscillator - are unknown (or really hard).

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth

Not only does it have ratios of weird trigonometric functions, it's implicit in x !

Useless (unless you're von Neumann).
Now consider:

$$
\ddot{x}=-x-\mu\left(x^{2}-1\right) \dot{x},
$$

a non-linearly damped harmonic oscillator. Analytic solutions to this equation - the "van der Pol" oscillator - are unknown (or really hard).

So our first strategy was bad for two reasons:

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Not only does it have ratios of weird trigonometric functions, it's implicit in x !

Useless (unless you're von Neumann).
Now consider:

$$
\ddot{x}=-x-\mu\left(x^{2}-1\right) \dot{x},
$$

a non-linearly damped harmonic oscillator. Analytic solutions to this equation - the "van der Pol" oscillator - are unknown (or really hard).

So our first strategy was bad for two reasons:

- Even when ODE is solvable, the answer can be opaque.

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth

Not only does it have ratios of weird trigonometric functions, it's implicit in x !

Useless (unless you're von Neumann).
Now consider:

$$
\ddot{x}=-x-\mu\left(x^{2}-1\right) \dot{x},
$$

a non-linearly damped harmonic oscillator. Analytic solutions to this equation - the "van der Pol" oscillator - are unknown (or really hard).

So our first strategy was bad for two reasons:

- Even when ODE is solvable, the answer can be opaque.
- Often ODE is unsolvable.

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Problem 7 What are the fixed points points of the system

$$
\dot{N}=r N\left(1-\frac{N}{K}\right) ?
$$

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Problem 7 What are the fixed points points of the system

$$
\dot{N}=r N\left(1-\frac{N}{K}\right) ?
$$

Answer: $\dot{N}=0 \Rightarrow r N(1-N / K)=0 \Rightarrow N=0, N=K$.

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
- Stability Analysis

Problem 7 What are the fixed points points of the system

$$
\dot{N}=r N\left(1-\frac{N}{K}\right) ?
$$

Answer: $\dot{N}=0 \Rightarrow r N(1-N / K)=0 \Rightarrow N=0, N=K$.
For stability at $N=0$, consider

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
- Stability Analysis

Problem 7 What are the fixed points points of the system

$$
\dot{N}=r N\left(1-\frac{N}{K}\right) ?
$$

Answer: $\dot{N}=0 \Rightarrow r N(1-N / K)=0 \Rightarrow N=0, N=K$.
For stability at $N=0$, consider

$$
\dot{N}=r N-(r / K) N^{2} .
$$

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
- Stability Analysis

Problem 7 What are the fixed points points of the system

$$
\dot{N}=r N\left(1-\frac{N}{K}\right) ?
$$

Answer: $\dot{N}=0 \Rightarrow r N(1-N / K)=0 \Rightarrow N=0, N=K$.
For stability at $N=0$, consider

$$
\dot{N}=r N-(r / K) N^{2} .
$$

Key point: stability is a first-order effect in N -

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
- Stability Analysis

Problem 7 What are the fixed points points of the system

$$
\dot{N}=r N\left(1-\frac{N}{K}\right) ?
$$

Answer: $\dot{N}=0 \Rightarrow r N(1-N / K)=0 \Rightarrow N=0, N=K$.
For stability at $N=0$, consider

$$
\dot{N}=r N-(r / K) N^{2} .
$$

Key point: stability is a first-order effect in N - so the extremely easy computation

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis

Problem 7 What are the fixed points points of the system

$$
\dot{N}=r N\left(1-\frac{N}{K}\right) ?
$$

Answer: $\dot{N}=0 \Rightarrow r N(1-N / K)=0 \Rightarrow N=0, N=K$.
For stability at $N=0$, consider

$$
\dot{N}=r N-(r / K) N^{2} .
$$

Key point: stability is a first-order effect in N - so the extremely easy computation

$$
\dot{N}=r N+O\left(N^{2}\right)
$$

is sufficient to see system unstable at 0 ,

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis

Problem 7 What are the fixed points points of the system

$$
\dot{N}=r N\left(1-\frac{N}{K}\right) ?
$$

Answer: $\dot{N}=0 \Rightarrow r N(1-N / K)=0 \Rightarrow N=0, N=K$.
For stability at $N=0$, consider

$$
\dot{N}=r N-(r / K) N^{2} .
$$

Key point: stability is a first-order effect in N - so the extremely easy computation

$$
\dot{N}=r N+O\left(N^{2}\right)
$$

is sufficient to see system unstable at 0 , since $r>0$.

Stability Analysis

Overview
Modeling Population Growth
Modeling Population Growth

- Modeling Population Growth
Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
Modeling Population Growth
Stability Analysis
2D Stability Analysis
2D Stability Analysis
- 2D Stability Analysis
2D Stability Analysis
- 2D Stability Analysis
Population Growth Revisited
- Population Growth Revisited
Population Growth Revisited
Population Growth Revisited
- Population Growth Revisited
Population Growth Revisited
- Ma

Now, why exactly is stability a first-order effect in x ?

Stability Analysis

- Overview - Modeling Population Growth	
- Modeling Population Growth	
	- Modeling Population Growth
	- Stability Analysis
	- Stability Analysis
	- Stability Analysis
- Stability Analysis	
	- Stability Analysis
- Stability Analysis	
- Stability Analysis	
-2D Stability Analysis	
- Population Growth Revisited	
	- Population Growth Revisited
	- Population Growth Revisited

Now, why exactly is stability a first-order effect in x ?

Plot of dx/dt vs x
("phase plane")

Stability Analysis

- Overview - Modeling Population Growth	
- Modeling Population Growth	
	- Modeling Population Growth
	- Stability Analysis
	- Stability Analysis
	- Stability Analysis
- Stability Analysis	
	- Stability Analysis
- Stability Analysis	
- Stability Analysis	
-2D Stability Analysis	
- Population Growth Revisited	
	- Population Growth Revisited
	- Population Growth Revisited

Now, why exactly is stability a first-order effect in x ?

Stability Analysis

- Overview
- Modeling Population Growth
Modeling Population Growth
- Modeling Population Growth
Modeling Population Growth
Stability Analysis
- Stability Analysis
Stability Analysis
- Stability Analysis
2D Stability Analysis
2D Stability Analysis
- 2D Stability Analysis
2D Stability Analysis
- 2D Stability Analysis
- Population Growth Revisited
- Population Growth Revisited
- Population Growth Revisited
Population Growth Revisited
- Population Growth Revisited
- Population Growth Revisited
-
- Modeling Population Growth

Modeling Population Growth

- Stability Analysis
- Stability Analysis
- Stability Analysis

Stability Analysis
Stability Analysis

Stability Analysis

- Stability Analysis
- Stability Analysis

Stability Analysis
-2D Stilit Ans
-2D Stability Analysis
-2D Stability Analysis
2D Stability Analysis
-2D Stability Analysis

- Population Growth Revisited

Population Growt Revisited

- Population Growth Revisited
- Population Growth Revisited

Positive slope around fixed point \Rightarrow

Plot of dx/dt vs x

("phase plane")

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Positive slope around fixed point \Rightarrow unstable fixed point.

Stability Analysis

Overview
Modeling Population Growth
Modeling Population Growth

- Modeling Population Growth
Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
Modeling Population Growth
Stability Analysis
2D Stability Analysis
2D Stability Analysis
- 2D Stability Analysis
2D Stability Analysis
- 2D Stability Analysis
Population Growth Revisited
- Population Growth Revisited
Population Growth Revisited
Population Growth Revisited
- Population Growth Revisited
Population Growth Revisited
- Ma
- Modeling Population Growth

Modeling Population Growth

- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis

Stability Analysis

- Stability Analysis
- Stability Analysis
- Stability Analysis

Stabili Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
2D Stability Analysis
2D Stability Analysis

- Population Growth Revisited
- Population Growth Revisited
- Population Growth Revisited
- Population Growth Revisited

Negative slope around fixed point \Rightarrow

Plot of dx/dt vs x
 ("phase plane")

Stability Analysis

Overview
Modeling Population Growth
Modeling Population Growth

- Modeling Population Growth
Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
Modeling Population Growth
Stability Analysis
2D Stability Analysis
2D Stability Analysis
- 2D Stability Analysis
2D Stability Analysis
- 2D Stability Analysis
Population Growth Revisited
- Population Growth Revisited
Population Growth Revisited
Population Growth Revisited
- Population Growth Revisited
Population Growth Revisited
- Ma
- Modeling Population Growth

Modeling Population Growth

- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis

Stability Analysis

- Stability Analysis
- Stability Analysis
- Stability Analysis

Stability Analysis
-2D Stilit Ans
-2D Stability Analysis
-2D Stability Analysis
2D Stability Analysis
-2D Stability Analysis

- Population Growth Revisited

Population Growt Revisited

- Population Growth Revisited
- Population Growth Revisited

Negative slope around fixed point \Rightarrow stable fixed point.

Plot of dx/dt vs x

("phase plane")

Stability Analysis

- Overview- Modeling Population Growth- Modeling Population Growth- Modeling Population Growth- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
Modeling Population Growth
- Modeling Population Growth
- Stability Analysis
- Stability Analysis
- Stability Analysis
Stability Analysis
Stability Analysis
- Stability Analysis- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis- Stability Analysis-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis-2D Stability Analysis-2D Stability Analysis- Population Growth Revisited- Population Growth Revisited
- Population Growth Revisited
- Population Growth Revisited
Population Grown Revisited- Population Growth Revisited

If

$$
\dot{x}=f(x)
$$

then -

Stability Analysis

- Overview- Modeling Population Growth
- Modeling Population Growth- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth- Modeling Population Growth- Modeling Population Growth- Stability Analysis- Stability Analysis
- Stability Analysis- Stability Analysis
- Stability Analysis- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis-2D Stability Analysis
-2D Stability Analysis
- Population Growth Revisited- Population Growth Revisited
- Population Growth Revisited
- Population Growth Revisited
Population Growin Revisited

If

$$
\dot{x}=f(x)
$$

then -

Problem 8 Write the Taylor series for f in x around fixed point $x_{f p}$.

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis - Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

If

$$
\dot{x}=f(x)
$$

then -

Problem 8 Write the Taylor series for f in x around fixed point $x_{f p}$.
Answer: for $x \in\left[x_{f p}-\epsilon, x_{f p}+\epsilon\right]$,

$$
f(x)=f^{\prime}\left(x_{f p}\right)\left(x-x_{f p}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{f p}\right)\left(x-x_{f p}\right)^{2}+O\left(\left(x-x_{f p}\right)^{3}\right) .
$$

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis - Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

If

$$
\dot{x}=f(x)
$$

then -

Problem 8 Write the Taylor series for f in x around fixed point $x_{f p}$.
Answer: for $x \in\left[x_{f p}-\epsilon, x_{f p}+\epsilon\right]$,
$f(x)=f^{\prime}\left(x_{f p}\right)\left(x-x_{f p}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{f p}\right)\left(x-x_{f p}\right)^{2}+O\left(\left(x-x_{f p}\right)^{3}\right)$.
Why is there no zeroth-order term?

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis - Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

If

$$
\dot{x}=f(x)
$$

then -

Problem 8 Write the Taylor series for f in x around fixed point $x_{f p}$.
Answer: for $x \in\left[x_{f p}-\epsilon, x_{f p}+\epsilon\right]$,
$f(x)=f^{\prime}\left(x_{f p}\right)\left(x-x_{f p}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{f p}\right)\left(x-x_{f p}\right)^{2}+O\left(\left(x-x_{f p}\right)^{3}\right)$.
Why is there no zeroth-order term?
Because $x_{f p}$ is a fixed point, so $f\left(x_{f p}\right)=0$.

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Thus for $x \in\left(x_{f p}-\epsilon, x_{f p}+\epsilon\right)$,
$\frac{d x}{d t}=f^{\prime}\left(x_{f p}\right)\left(x-x_{f p}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{f p}\right)\left(x-x_{f p}\right)^{2}+O\left(\left(x-x_{f p}\right)^{3}\right)$.

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis

Thus for $x \in\left(x_{f p}-\epsilon, x_{f p}+\epsilon\right)$,
$\frac{d x}{d t}=f^{\prime}\left(x_{f p}\right)\left(x-x_{f p}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{f p}\right)\left(x-x_{f p}\right)^{2}+O\left(\left(x-x_{f p}\right)^{3}\right)$.
Hence, locally,

$$
x(t)=\text { Solution to First RHS Term }+ \text { Small Correction } .
$$

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Thus for $x \in\left(x_{f p}-\epsilon, x_{f p}+\epsilon\right)$,

$$
\frac{d x}{d t}=f^{\prime}\left(x_{f p}\right)\left(x-x_{f p}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{f p}\right)\left(x-x_{f p}\right)^{2}+O\left(\left(x-x_{f p}\right)^{3}\right) .
$$

Hence, locally,

$$
x(t)=\text { Solution to First RHS Term }+ \text { Small Correction } .
$$

Question: what is the form of the first RHS term?

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis

Thus for $x \in\left(x_{f p}-\epsilon, x_{f p}+\epsilon\right)$,

$$
\frac{d x}{d t}=f^{\prime}\left(x_{f p}\right)\left(x-x_{f p}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{f p}\right)\left(x-x_{f p}\right)^{2}+O\left(\left(x-x_{f p}\right)^{3}\right) .
$$

Hence, locally,

$$
x(t)=\text { Solution to First RHS Term }+ \text { Small Correction } .
$$

Question: what is the form of the first RHS term?
Answer: linear!

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis

Thus for $x \in\left(x_{f p}-\epsilon, x_{f p}+\epsilon\right)$,

$$
\frac{d x}{d t}=f^{\prime}\left(x_{f p}\right)\left(x-x_{f p}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{f p}\right)\left(x-x_{f p}\right)^{2}+O\left(\left(x-x_{f p}\right)^{3}\right) .
$$

Hence, locally,

$$
x(t)=\text { Solution to First RHS Term }+ \text { Small Correction } .
$$

Question: what is the form of the first RHS term?
Answer: linear! Thus, if $x(0)-x_{f p}$ is small,

Stability Analysis

- Overview

- Modeling Population Growth - Modeling Population Growth
- Stability Analysis

Thus for $x \in\left(x_{f p}-\epsilon, x_{f p}+\epsilon\right)$,

$$
\frac{d x}{d t}=f^{\prime}\left(x_{f p}\right)\left(x-x_{f p}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{f p}\right)\left(x-x_{f p}\right)^{2}+O\left(\left(x-x_{f p}\right)^{3}\right) .
$$

Hence, locally,

$$
x(t)=\text { Solution to First RHS Term }+ \text { Small Correction } .
$$

Question: what is the form of the first RHS term?
Answer: linear! Thus, if $x(0)-x_{f p}$ is small,

$$
x(t) \sim x_{f p}+e^{f^{\prime}\left(x_{f p}\right) t}\left(x(0)-x_{f p}\right) .
$$

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis

Thus for $x \in\left(x_{f p}-\epsilon, x_{f p}+\epsilon\right)$,

$$
\frac{d x}{d t}=f^{\prime}\left(x_{f p}\right)\left(x-x_{f p}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{f p}\right)\left(x-x_{f p}\right)^{2}+O\left(\left(x-x_{f p}\right)^{3}\right) .
$$

Hence, locally,

$$
x(t)=\text { Solution to First RHS Term }+ \text { Small Correction } .
$$

Question: what is the form of the first RHS term?
Answer: linear! Thus, if $x(0)-x_{f p}$ is small,

$$
x(t) \sim x_{f p}+e^{f^{\prime}\left(x_{f p}\right) t}\left(x(0)-x_{f p}\right) .
$$

Thus, if $f^{\prime}\left(x_{f p}\right)<0$, displacement from $x_{f p}$ shrinks (at least locally).

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis

Thus for $x \in\left(x_{f p}-\epsilon, x_{f p}+\epsilon\right)$,

$$
\frac{d x}{d t}=f^{\prime}\left(x_{f p}\right)\left(x-x_{f p}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{f p}\right)\left(x-x_{f p}\right)^{2}+O\left(\left(x-x_{f p}\right)^{3}\right) .
$$

Hence, locally,

$$
x(t)=\text { Solution to First RHS Term }+ \text { Small Correction } .
$$

Question: what is the form of the first RHS term?
Answer: linear! Thus, if $x(0)-x_{f p}$ is small,

$$
x(t) \sim x_{f p}+e^{f^{\prime}\left(x_{f p}\right) t}\left(x(0)-x_{f p}\right) .
$$

Thus, if $f^{\prime}\left(x_{f p}\right)<0$, displacement from $x_{f p}$ shrinks (at least locally). If $f^{\prime}\left(x_{f p}\right)>0$, displacement grows.

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

We have a new strategy for analysis of non-linear ODEs:

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis

O Stability Analysis

- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- 2D Stability Analysis
-2D Stability Analysis
- 2D Stability Analysis
- 2D Stability Analysis
- 2D Stability Analysis
- Population Growth Revisited

We have a new strategy for analysis of non-linear ODEs:

- Solve $f(x)=0$ for fixed points.

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

We have a new strategy for analysis of non-linear ODEs:

- Solve $f(x)=0$ for fixed points.
- Write a Taylor series for f in x around fixed points.

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

We have a new strategy for analysis of non-linear ODEs:

- Solve $f(x)=0$ for fixed points.
- Write a Taylor series for f in x around fixed points.
- Keep the first term. ("Linearization")

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth

We have a new strategy for analysis of non-linear ODEs:

- Solve $f(x)=0$ for fixed points.
- Write a Taylor series for f in x around fixed points.
- Keep the first term. ("Linearization")
- Analyze signs for stability.

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth

We have a new strategy for analysis of non-linear ODEs:

- Solve $f(x)=0$ for fixed points.
- Write a Taylor series for f in x around fixed points.
- Keep the first term. ("Linearization")
- Analyze signs for stability.
- Plot on a phase-plane graph, and complete rough trajectory sketches.

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

We have a new strategy for analysis of non-linear ODEs:

- Solve $f(x)=0$ for fixed points.
- Write a Taylor series for f in x around fixed points.
- Keep the first term. ("Linearization")
- Analyze signs for stability.
- Plot on a phase-plane graph, and complete rough trajectory sketches.

It's both easy (or easier) to do and gives the insight we wanted anyway.

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
- 2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
- 2D Stability Analysis
- 2D Stability Analysis
- Population Growth Revisited

Let's go back to the logistic equation.

Stability Analysis

- Overview

- Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Let's go back to the logistic equation.

We wrote down

$$
\dot{N}=f(N)=r N-(r / K) N^{2}=r(N-0)+O\left((N-0)^{2}\right) .
$$

Stability Analysis

- Overview

- Modeling Population Growth - Modeling Population Growth
- Stability Analysis

Let's go back to the logistic equation.
We wrote down

$$
\dot{N}=f(N)=r N-(r / K) N^{2}=r(N-0)+O\left((N-0)^{2}\right) .
$$

This was the Taylor series around fp $N=0$.

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis

Let's go back to the logistic equation.
We wrote down

$$
\dot{N}=f(N)=r N-(r / K) N^{2}=r(N-0)+O\left((N-0)^{2}\right) .
$$

This was the Taylor series around fp $N=0$.
Since $r=f^{\prime}(N)>0,0$ was an unstable fixed point.

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis

Let's go back to the logistic equation.
We wrote down

$$
\dot{N}=f(N)=r N-(r / K) N^{2}=r(N-0)+O\left((N-0)^{2}\right) .
$$

This was the Taylor series around $\mathrm{fp} N=0$.
Since $r=f^{\prime}(N)>0,0$ was an unstable fixed point.
Now, look at other fixed point, $N=K$.

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis

Let's go back to the logistic equation.
We wrote down

$$
\dot{N}=f(N)=r N-(r / K) N^{2}=r(N-0)+O\left((N-0)^{2}\right) .
$$

This was the Taylor series around $\mathrm{fp} N=0$.
Since $r=f^{\prime}(N)>0,0$ was an unstable fixed point.
Now, look at other fixed point, $N=K$.

Problem 9 What is the Taylor series of f around K ?

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis

Let's go back to the logistic equation.
We wrote down

$$
\dot{N}=f(N)=r N-(r / K) N^{2}=r(N-0)+O\left((N-0)^{2}\right) .
$$

This was the Taylor series around $\mathrm{fp} N=0$.
Since $r=f^{\prime}(N)>0,0$ was an unstable fixed point.
Now, look at other fixed point, $N=K$.
Problem 9 What is the Taylor series of f around K ?
Answer: $\dot{N}=-r(N-K)+O\left((N-K)^{2}\right)$.

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis

Let's go back to the logistic equation.
We wrote down

$$
\dot{N}=f(N)=r N-(r / K) N^{2}=r(N-0)+O\left((N-0)^{2}\right) .
$$

This was the Taylor series around $\mathfrak{f p} N=0$.
Since $r=f^{\prime}(N)>0,0$ was an unstable fixed point.
Now, look at other fixed point, $N=K$.
Problem 9 What is the Taylor series of f around K ?
Answer: $\dot{N}=-r(N-K)+O\left((N-K)^{2}\right)$.
Since $-r<0, K$ is a stable fixed point.

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

We can actually learn more.

Stability Analysis

- Modeling Population Growth- Modeling Population Growth- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
Modeling Population Growth
- Modeling Population Growth
- Stability Analysis
- Stability Analysis
- Stability Analysis- Stability Analysis
- Stability Analysis
- Stability Analysis- Stability Analysis
- Stability Analysis
- Stability Analysis
Stability Analysis
- Stability Analysis-2D Stability Analysis-2D Stability Analysis
-2D Stability Analysis-2D Stability Analysis
-2D Stability Analysis
- Population Growth Revisited- Population Growth Revisited
- Population Growth Revisited
- Population Growth Revisited
- Population Growth Revisited

We can actually learn more. Taking the derivative of $f(N)$, we get

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

We can actually learn more.

Taking the derivative of $f(N)$, we get

$$
f^{\prime}(N)=r-\frac{2 r N}{K} .
$$

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

We can actually learn more.
Taking the derivative of $f(N)$, we get

$$
f^{\prime}(N)=r-\frac{2 r N}{K} .
$$

Solving $f^{\prime}(N)=0$ gives

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

We can actually learn more.
Taking the derivative of $f(N)$, we get

$$
f^{\prime}(N)=r-\frac{2 r N}{K} .
$$

Solving $f^{\prime}(N)=0$ gives

$$
N=\frac{K}{2} .
$$

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
- Stability Analysis - Stability Analysis
- Stability Analysis
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

We can actually learn more.
Taking the derivative of $f(N)$, we get

$$
f^{\prime}(N)=r-\frac{2 r N}{K} .
$$

Solving $f^{\prime}(N)=0$ gives

$$
N=\frac{K}{2} .
$$

For $N<K / 2, f^{\prime}(N)>0$; for $N>K / 2, f^{\prime}(N)<0$.

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth

We can actually learn more.
Taking the derivative of $f(N)$, we get

$$
f^{\prime}(N)=r-\frac{2 r N}{K} .
$$

Solving $f^{\prime}(N)=0$ gives

$$
N=\frac{K}{2} .
$$

For $N<K / 2, f^{\prime}(N)>0$; for $N>K / 2, f^{\prime}(N)<0$.
This info, along with the stability calculations, allows us to qualitatively map out trajectories.

Stability Analysis

- Overview- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth- Modeling Population Growth
- Modeling Population Growth
Modeling Population Growth
- Modeling Population Growth- Stability Analysis- Stability Analysis
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited
- Population Growth Revisited

t

Stability Analysis

- Overview- Modeling Population Growth
- Modeling Population Growth- Modeling Population Growth
- Stability Analysis
O Stability Analysis
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Stability Analysis

[^0]

Stability Analysis

Overview

- Modeling Population Growth
Stability Analysis
2D Stability Analysis
Population Growth Revisited
- Population Growth Revisited
Population Growth Revisited
Population Growth Revisith Revisisted
- Powth Revisited
-

- Modeling Population Growth

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Stability Analysis
- Stability Analysis

Stability Analysis

- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis

Stabitiy Analysis
-2D Stilit Ans
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis

- Population Growth Revisited

Stability Analysis

Overview

- Modeling Population Growth
Stability Analysis
2D Stability Analysis
Population Growth Revisited
- Population Growth Revisited
Population Growth Revisited
Population Growth Revisith Revisisted
- Powth Revisited
-

- Modeling Population Growth

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Stability Analysis
- Stability Analysis

Stability Analysis

- Stability Analysis

Stability Analysis

- Stability Analysis
- Stability Analysis

Stabitiy Analysis
-2D Stilit Ans
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis

- Population Growth Revisited

Stability Analysis

Overview

- Modeling Population Growth
Stability Analysis
2D Stability Analysis
Population Growth Revisited
- Population Growth Revisited
Population Growth Revisited
Population Growth Revisith Revisisted
- Powth Revisited
-

- Modeling Population Growth

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth

Modeling Population Growth

- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis

Stabity Anaysis
Stability Analysis

- Stability Analysis
- Stability Analysis

Stabitiy Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
2D Stability Analysis

- Population Growth Revisited

Stability Analysis

- Overview
- Modeling Population Growth
Modeling Population Growth
- Modeling Population Growth
Modeling Population Growth
Stability Analysis
- Stability Analysis
- Stability Analysis
Stability Analysis
Stability Analysis
-2D Stability Analysis
2D Stability Analysis
- 2D Stability Analysis
2D Stability Analysis
- 2D Stability Analysis
- Population Growth Revisited
Population Growth Revisited
- Population Growth Revisited
Population Growth Revisited
- Population Growth Revisited
- Population Growth Revisited
-

- Modeling Population Growth

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth

Modeling Population Growth

- Stability Analysis

Stabitiy Analysis
-2D Stilit Ans
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis

- Population Growth Revisited
- Population Growth Revisited

Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- 2D Stability Analysis
- 2D Stability Analysis
-2D Stability Analysis
- 2D Stability Analysis
- Population Growth Revisited

Recall the other example:

$$
\dot{x}=\sin (x)
$$

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
- 2D Stability Analysis
- Population Growth Revisited

Recall the other example:

$$
\dot{x}=\sin (x)
$$

Problem 10 What are the fixed points, with stabilities, of this example?

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Recall the other example:

$$
\dot{x}=\sin (x)
$$

Problem 10 What are the fixed points, with stabilities, of this example?
Answer: $\sin (x)=0$ at $x=\pi i$, for all i.

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Recall the other example:

$$
\dot{x}=\sin (x)
$$

Problem 10 What are the fixed points, with stabilities, of this example?
Answer: $\sin (x)=0$ at $x=\pi i$, for all i.
FP is unstable for $2 \pi i$, since $\sin ^{\prime}(x)=\cos (x)$, and $\cos (2 \pi i)=1>0$.

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Recall the other example:

$$
\dot{x}=\sin (x)
$$

Problem 10 What are the fixed points, with stabilities, of this example?
Answer: $\sin (x)=0$ at $x=\pi i$, for all i.
FP is unstable for $2 \pi i$, since $\sin ^{\prime}(x)=\cos (x)$, and $\cos (2 \pi i)=1>0$. FP is stable for $\pi(2 i+1)$ since $\cos (\pi(2 i+1))=-1<0$.

Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Recall the other example:

$$
\dot{x}=\sin (x)
$$

Problem 10 What are the fixed points, with stabilities, of this example?

2D Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
- 2D Stability Analysis
- 2D Stability Analysis
- Population Growth Revisited

So much for 1-D stability analysis.

2D Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis

O2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis

- Population Growth Revisited

So much for 1-D stability analysis.
Do we need to review multi-variable Taylor expansions?

2D Stability Analysis

- Overview

- Modeling Population Growth - Modeling Population Growth
- Stability Analysis

So much for 1-D stability analysis.
Do we need to review multi-variable Taylor expansions?
The 2-variable version of Taylor expansion is:

$$
\begin{aligned}
f(x, y)= & f\left(x_{0}, y_{0}\right) \\
& +\left.\frac{\partial f}{\partial x}\right|_{\left(x_{0}, y_{0}\right)} \cdot\left(x-x_{0}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)} \cdot\left(y-y_{0}\right) \\
& +O\left(\left(x-x_{0}\right)^{2},\left(y-y_{0}\right)^{2}\right) .
\end{aligned}
$$

2D Stability Analysis

- Overview

- Modeling Population Growth - Modeling Population Growth
- Stability Analysis

So much for 1-D stability analysis.
Do we need to review multi-variable Taylor expansions?
The 2-variable version of Taylor expansion is:

$$
\begin{align*}
f(x, y)= & f\left(x_{0}, y_{0}\right) \\
& +\left.\frac{\partial f}{\partial x}\right|_{\left(x_{0}, y_{0}\right)} \cdot\left(x-x_{0}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)} \cdot\left(y-y_{0}\right) \tag{2}\\
& +O\left(\left(x-x_{0}\right)^{2},\left(y-y_{0}\right)^{2}\right) .
\end{align*}
$$

I.e., zeroth-order + first-order + higher order terms.

2D Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis

So much for 1-D stability analysis.
Do we need to review multi-variable Taylor expansions?
The 2-variable version of Taylor expansion is:

$$
\begin{align*}
f(x, y)= & f\left(x_{0}, y_{0}\right) \\
& +\left.\frac{\partial f}{\partial x}\right|_{\left(x_{0}, y_{0}\right)} \cdot\left(x-x_{0}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)} \cdot\left(y-y_{0}\right) \tag{2}\\
& +O\left(\left(x-x_{0}\right)^{2},\left(y-y_{0}\right)^{2}\right) .
\end{align*}
$$

I.e., zeroth-order + first-order + higher order terms.

Problem 11 Compute the Taylor expansion to second order for $f(x, y)=\sin (x y)$ about $(0,1)$.

2D Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Now, let's say we're given a 2-variable first-order differential equation, like:

2D Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Now, let's say we're given a 2-variable first-order differential equation, like:

$$
\dot{x}=f(x, y) ; \dot{y}=g(x, y) .
$$

2D Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited - Population Growth Revisited - Population Growth Revisited - Population Growth Revisited

Now, let's say we're given a 2-variable first-order differential equation, like:

$$
\dot{x}=f(x, y) ; \dot{y}=g(x, y) .
$$

Linear 2×2 matrices are a special case of this.

2D Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis

Now, let's say we're given a 2-variable first-order differential equation, like:

$$
\dot{x}=f(x, y) ; \dot{y}=g(x, y) .
$$

Linear 2×2 matrices are a special case of this.

Problem 12 Write

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

in the above form.

2D Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

Now, let's say we're given a 2-variable first-order differential equation, like:

$$
\dot{\mathscr{X}}=f(\mathscr{X}, \boldsymbol{y}) ; \dot{y}=g(\mathscr{X}, \boldsymbol{y})
$$

Linear 2×2 matrices are a special case of this.

Problem 12 Write

$$
\left[\begin{array}{c}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

in the above form.
Answer: $f(x, y)=a x+b y$ and $g(x, y)=c x+d y$.

2D Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Now, let's say we're given a 2-variable first-order differential equation, like:

$$
\dot{x}=f(x, y) ; \dot{y}=g(x, y) .
$$

Linear 2×2 matrices are a special case of this.

Problem 12 Write

$$
\left[\begin{array}{l}
\dot{x} \\
\dot{y}
\end{array}\right]=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

in the above form.
Answer: $f(x, y)=a x+b y$ and $g(x, y)=c x+d y$.
We want to generalize the linearization process from 1-D to 2-D.

2D Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Suppose $\left(x_{f p}, y_{f p}\right)$ is a fixed point of the system, i.e.

$$
f\left(x_{f p}, y_{f p}\right)=g\left(x_{f p}, y_{f p}\right)=0 .
$$

2D Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis

Suppose ($x_{f p}, y_{f p}$) is a fixed point of the system, i.e.

$$
f\left(x_{f p}, y_{f p}\right)=g\left(x_{f p}, y_{f p}\right)=0 .
$$

Now, let's use Taylor series as we did before;

2D Stability Analysis

- Overview

- Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis

Suppose $\left(x_{f p}, y_{f p}\right)$ is a fixed point of the system, i.e.

$$
f\left(x_{f p}, y_{f p}\right)=g\left(x_{f p}, y_{f p}\right)=0 .
$$

Now, let's use Taylor series as we did before; First on f

$$
\begin{align*}
f(x, y)= & f\left(x_{f p}, y_{f p}\right) \\
& +\left.\frac{\partial f}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f p}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f p}\right) \\
& +O\left(\left(x-x_{f p}\right)^{2},\left(y-y_{f p}\right)^{2}\right) \tag{3}
\end{align*}
$$

2D Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis

Suppose $\left(x_{f p}, y_{f p}\right)$ is a fixed point of the system, i.e.

$$
f\left(x_{f p}, y_{f p}\right)=g\left(x_{f p}, y_{f p}\right)=0 .
$$

Now, let's use Taylor series as we did before; First on f

$$
\begin{align*}
f(x, y)= & f\left(x_{f p}, y_{\left.f_{p}\right)}\right. \\
& +\left.\frac{\partial f}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f p}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f p}\right) \\
& +O\left(\left(x-x_{f_{p}}\right)^{2},\left(y-y_{f_{p}}\right)^{2}\right) . \tag{3}\\
f(x, y)= & \left.\frac{\partial f}{\partial x}\right|_{\left(x_{\left.f_{p}, y_{f p}\right)}\right) \cdot\left(x-x_{f_{p}}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f p}\right)} \tag{4}\\
& +O\left(\left(x-x_{f_{p}}\right)^{2},\left(y-y_{f_{p}}\right)^{2}\right) .
\end{align*}
$$

2D Stability Analysis

- Overview

- Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis

Suppose $\left(x_{f p}, y_{f p}\right)$ is a fixed point of the system, i.e.

$$
f\left(x_{f p}, y_{f p}\right)=g\left(x_{f p}, y_{f p}\right)=0 .
$$

Now, let's use Taylor series as we did before; then on g

$$
\begin{align*}
g(x, y)= & g\left(x_{f p}, y_{f_{p}}\right) \\
& +\left.\frac{\partial g}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f p}\right)+\left.\frac{\partial g}{\partial y}\right|_{\left(x_{f}, y_{f p}\right)} \cdot\left(y-y_{f_{p}}\right) \\
& +O\left(\left(x-x_{f_{p}}\right)^{2},\left(y-y_{f_{p}}\right)^{2}\right) . \tag{3}
\end{align*}
$$

2D Stability Analysis

- Overview

- Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis

Suppose $\left(x_{f p}, y_{f p}\right)$ is a fixed point of the system, i.e.

$$
f(\mathscr{X} f p, \mathscr{Y} f)=Q(\mathscr{X} f p, \mathcal{Y} f p)=0
$$

Now, let's use Taylor series as we did before; then on g

$$
\begin{align*}
g(x, y)= & g\left(x_{f p}, y_{f p}\right) \\
& +\left.\frac{\partial g}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f p}\right)+\left.\frac{\partial g}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f p}\right) \\
& +O\left(\left(x-x_{f p}\right)^{2},\left(y-y_{f p}\right)^{2}\right) . \tag{3}\\
g(x, y)= & \left.\frac{\partial g}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{\left.f_{p}\right)}+\left.\frac{\partial g}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{\left.f_{p}\right)}\right)\right. \tag{4}\\
& +O\left(\left(x-x_{f p}\right)^{2},\left(y-y_{f p}\right)^{2}\right) .
\end{align*}
$$

2D Stability Analysis

- Overview- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth- Modeling Population Growth
- Modeling Population Growth
Modeling Population Growth
- Modeling Population Growth- Stability Analysis- Stability Analysis
- Stability Analysis- Stability Analysis
- Stability Analysis
- Stability Analysis- Stability Analysis
- Stability Analysis
- Stability Analysis
Stability Analysis
- Stability Analysis- 2D Stability Analysis-2D Stability Analysis-2D Stability Analysis

Summarizing what we know:

2D Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
- Population Growth Revisited
- Population Growth Revisited - Population Growth Revisited - Population Growth Revisited - Population Growth Revisited - Population Growth Revisited

Summarizing what we know:

$$
f(x, y)=\frac{\partial f}{\partial x}\left|\left(x_{f_{p} p}, y_{f}\right) \cdot\left(x-x_{f_{p}}\right)+\frac{\partial f}{\partial y}\right|_{\left(x_{f}, y_{f p}\right)} \cdot\left(y-y_{f_{p}}\right)+\text { HOT }
$$

and

2D Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis

Summarizing what we know:

$$
f(x, y)=\left.\frac{\partial f}{\partial x}\right|_{\left(x_{f p}, y_{f_{p}}\right)} \cdot\left(x-x_{f_{p}}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f_{p}}\right)+H O T
$$

and
$g(x, y)=\left.\frac{\partial g}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f p}\right)+\left.\frac{\partial g}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f_{p}}\right)+$ HOT.

2D Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis

Summarizing what we know:

$f(x, y)=\left.\frac{\partial f}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f p}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f p}\right)+H O T$
and
$g(x, y)=\left.\frac{\partial g}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f p}\right)+\left.\frac{\partial g}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f p}\right)+$ HOT.
Another way to write this is

2D Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis

Summarizing what we know:

$$
f(x, y)=\left.\frac{\partial f}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f_{p}}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f_{p}}\right)+\text { HOT }
$$

and
$g(x, y)=\left.\frac{\partial g}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f_{p}}\right)+\left.\frac{\partial g}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f_{p}}\right)+$ HOT.
Another way to write this is

$$
x(t)-x_{f p}=\left.\frac{\partial f}{\partial x}\right|_{\left(x_{f}, y_{f p}\right)} \cdot\left(x-x_{f_{p}}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f_{p}}\right)+H O T ;
$$

2D Stability Analysis

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis

Summarizing what we know:

$$
f(x, y)=\left.\frac{\partial f}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f_{p}}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f_{p}}\right)+\text { HOT }
$$

and
$g(x, y)=\left.\frac{\partial g}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f p}\right)+\left.\frac{\partial g}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f p}\right)+$ HOT.
Another way to write this is

$$
x(t)-x_{f p}=\left.\frac{\partial f}{\partial x}\right|_{\left(x_{f}, y_{f p}\right)} \cdot\left(x-x_{f_{p}}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{f p}, y_{f}\right)} \cdot\left(y-y_{f p}\right)+H O T ;
$$

and

2D Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis

Summarizing what we know:

$$
f(x, y)=\left.\frac{\partial f}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f_{p}}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f_{p}}\right)+\text { HOT }
$$

and
$g(x, y)=\left.\frac{\partial g}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f p}\right)+\left.\frac{\partial g}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f_{p}}\right)+$ HOT.
Another way to write this is

$$
x(t)-x_{f p}=\left.\frac{\partial f}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f p}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f p}\right)+H O T
$$

and
$y(t)-y_{f_{p}}=\left.\frac{\partial g}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f p}\right)+\left.\frac{\partial g}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f p}\right)+$ HOT.

2D Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis

Stare at that for a moment, forgetting the HOTs:

$$
\begin{aligned}
& x(t)-x_{f_{p}}=\left.\frac{\partial f}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f_{p}}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{\left.f_{p}\right)}\right) \\
& y(t)-y_{f p}=\left.\frac{\partial g}{\partial x}\right|_{\left(x_{f p}, y_{f}\right)} \cdot\left(x-x_{f p}\right)+\left.\frac{\partial g}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{\left.f_{p}\right)}\right) .
\end{aligned}
$$

2D Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis

Stare at that for a moment, forgetting the HOTs:

$$
\begin{aligned}
& x(t)-x_{f p}=\left.\frac{\partial f}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f_{p}}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{\left.f_{p}\right)}\right) \\
& y(t)-y_{f_{p}}=\left.\frac{\partial g}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f p}\right)+\left.\frac{\partial g}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f p}\right) .
\end{aligned}
$$

Question: What kind of equation is this?

2D Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis

Stare at that for a moment, forgetting the HOTs:

$$
\begin{aligned}
& x(t)-x_{f_{p}}=\left.\frac{\partial f}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f_{p}}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{\left.f_{p}\right)}\right) \\
& y(t)-y_{f_{p}}=\left.\frac{\partial g}{\partial x}\right|_{\left(x_{f p}, y_{f}\right)} \cdot\left(x-x_{f p}\right)+\left.\frac{\partial g}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f p}\right) .
\end{aligned}
$$

Question: What kind of equation is this?

Answer: A 2D matrix ODE! Namely,

2D Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis

Stare at that for a moment, forgetting the HOTs:

$$
\begin{aligned}
& x(t)-x_{f p}=\left.\frac{\partial f}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f_{p}}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{\left.f_{p}\right)}\right) \\
& y(t)-y_{f_{p}}=\left.\frac{\partial g}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f p}\right)+\left.\frac{\partial g}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f p}\right) .
\end{aligned}
$$

Question: What kind of equation is this?

Answer: A 2D matrix ODE! Namely,

$$
\left[\begin{array}{l}
\dot{u} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right]_{\left(x_{0}, y_{0}\right)}\left[\begin{array}{l}
u \\
v
\end{array}\right]+H O T
$$

where $u=x-x_{f p}$ and $v=y-y_{f p}$.

2D Stability Analysis

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis

Stare at that for a moment, forgetting the HOTs:

$$
\begin{aligned}
& x(t)-x_{f p}=\left.\frac{\partial f}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f_{p}}\right)+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{\left.f_{p}\right)}\right) \\
& y(t)-y_{f_{p}}=\left.\frac{\partial g}{\partial x}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(x-x_{f p}\right)+\left.\frac{\partial g}{\partial y}\right|_{\left(x_{f p}, y_{f p}\right)} \cdot\left(y-y_{f p}\right) .
\end{aligned}
$$

Question: What kind of equation is this?
Answer: A 2D matrix ODE! Namely,

$$
\left[\begin{array}{l}
\dot{u} \\
\dot{v}
\end{array}\right]=\left[\begin{array}{ll}
\frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\
\frac{\partial g}{\partial x} & \frac{\partial g}{\partial y}
\end{array}\right]_{\left(x_{0}, y_{0}\right)}\left[\begin{array}{l}
u \\
v
\end{array}\right]+H O T
$$

where $u=x-x_{f p}$ and $v=y-y_{f p}$.
But we know all about these!

Population Growth Revisited

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis

Now suppose there are two species, competing for resources.

Population Growth Revisited

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis

Now suppose there are two species, competing for resources. Assume:

Population Growth Revisited

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis

Now suppose there are two species, competing for resources. Assume:

- Each species alone obeys logistic growth, with one faster than the other. Say, rabbits (fast) vs. albatross (slow).

Population Growth Revisited

Now suppose there are two species, competing for resources. Assume:

- Each species alone obeys logistic growth, with one faster than the other. Say, rabbits (fast) vs. albatross (slow).
- Species interact analogously to chemicals ("mass action"), preventing each other from eating resources and thereby lowering growth rates - but albatross are better competitors and suffer less than rabbits.

Population Growth Revisited

Now suppose there are two species, competing for resources. Assume:

- Each species alone obeys logistic growth, with one faster than the other. Say, rabbits (fast) vs. albatross (slow).
- Species interact analogously to chemicals ("mass action"), preventing each other from eating resources and thereby lowering growth rates - but albatross are better competitors and suffer less than rabbits.

A model that formalizes these assumptions is:

$$
\dot{x}=x\left(r_{1}-x-c_{1} y\right) ; \dot{y}=y\left(r_{2}-c_{2} x-y\right)
$$

where x is rabbits, y is albatross, $r_{1}>r_{2}, c_{1}>c_{2}, c_{1} c_{2}>1$, $r_{1}<c_{1} r_{2}$, and $r_{2}<c_{2} r_{1}$.

Population Growth Revisited

Now suppose there are two species, competing for resources. Assume:

- Each species alone obeys logistic growth, with one faster than the other. Say, rabbits (fast) vs. albatross (slow).
- Species interact analogously to chemicals ("mass action"), preventing each other from eating resources and thereby lowering growth rates - but albatross are better competitors and suffer less than rabbits.

A model that formalizes these assumptions is:

$$
\dot{x}=x\left(r_{1}-x-c_{1} y\right) ; \dot{y}=y\left(r_{2}-c_{2} x-y\right)
$$

where x is rabbits, y is albatross, $r_{1}>r_{2}, c_{1}>c_{2}, c_{1} c_{2}>1$, $r_{1}<c_{1} r_{2}$, and $r_{2}<c_{2} r_{1}$.

This is the well-known Lotka-Volterra model; the constant relationships have meaning we'll understand.

Population Growth Revisited

- Overview

- Modeling Population Growth
- Stability Analysis
- 2D Stability Analysis
-2D Stability Analysis
- 2D Stability Analysis
- 2D Stability Analysis
- 2D Stability Analysis
- Population Growth Revisited

Problem 13 Compute the fixed points of this model.

Population Growth Revisited

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis

Problem 13 Compute the fixed points of this model.
Answer: $(x, y)=(0,0),\left(0, r_{2}\right),\left(r_{1}, 0\right)$, and

$$
\left(\frac{r_{1}-c_{1} r_{2}}{1-c_{1} c_{2}}, \frac{\left.r_{2}-r_{1} c_{2}\right)}{1-c_{1} c_{2}}\right)
$$

Population Growth Revisited

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis

Problem 13 Compute the fixed points of this model.
Answer: $(x, y)=(0,0),\left(0, r_{2}\right),\left(r_{1}, 0\right)$, and

$$
\left(\frac{r_{1}-c_{1} r_{2}}{1-c_{1} c_{2}}, \frac{\left.r_{2}-r_{1} c_{2}\right)}{1-c_{1} c_{2}}\right)
$$

The derivatives matrix is

$$
\left[\begin{array}{cc}
r_{1}-2 x-c_{1} y & c_{1} x \\
-c_{2} y & r_{2}-c_{2} x-2 y
\end{array}\right] .
$$

Population Growth Revisited

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis

Problem 13 Compute the fixed points of this model.
Answer: $(x, y)=(0,0),\left(0, r_{2}\right),\left(r_{1}, 0\right)$, and

$$
\left(\frac{r_{1}-c_{1} r_{2}}{1-c_{1} c_{2}}, \frac{\left.r_{2}-r_{1} c_{2}\right)}{1-c_{1} c_{2}}\right)
$$

The derivatives matrix is

$$
\left[\begin{array}{cc}
r_{1}-2 x-c_{1} y & c_{1} x \\
-c_{2} y & r_{2}-c_{2} x-2 y
\end{array}\right] .
$$

So now let's do the fixed point analysis one by one.

Population Growth Revisited

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited
- Population Growth Revisited

At $(0,0)$, the linearization matrix is

Population Growth Revisited

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited
- Population Growth Revisited

At $(0,0)$, the linearization matrix is

$$
\left[\begin{array}{cc}
r_{1}-2 \cdot 0-c_{1} \cdot 0 & c_{1} \cdot 0 \\
-c_{2} \cdot 0 & r_{2}-c_{2} \cdot 0-2 \cdot 0
\end{array}\right]=\left[\begin{array}{cc}
r_{1} & 0 \\
0 & r_{2}
\end{array}\right] .
$$

Population Growth Revisited

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited
- Population Growth Revisited

At $(0,0)$, the linearization matrix is

$$
\left[\begin{array}{cc}
r_{1}-2 \cdot 0-c_{1} \cdot 0 & c_{1} \cdot 0 \\
-c_{2} \cdot 0 & r_{2}-c_{2} \cdot 0-2 \cdot 0
\end{array}\right]=\left[\begin{array}{cc}
r_{1} & 0 \\
0 & r_{2}
\end{array}\right] .
$$

Since $r_{1}, r_{2}>0$, this is an unstable node. (Makes biological sense.) Since $r_{1}>r_{2}$, trajectories leave (0,0) parallel to r_{2} direction.

Population Growth Revisited

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

At $(0,0)$, the linearization matrix is

$$
\left[\begin{array}{cc}
r_{1}-2 \cdot 0-c_{1} \cdot 0 & c_{1} \cdot 0 \\
-c_{2} \cdot 0 & r_{2}-c_{2} \cdot 0-2 \cdot 0
\end{array}\right]=\left[\begin{array}{cc}
r_{1} & 0 \\
0 & r_{2}
\end{array}\right]
$$

Since $r_{1}, r_{2}>0$, this is an unstable node. (Makes biological sense.) Since $r_{1}>r_{2}$, trajectories leave (0,0) parallel to r_{2} direction.

Population Growth Revisited

- Overview
- Modeling Population Growth
- Modeling Population Growth
Modeling Population Growth
- Modeling Population Growth
Stability Analysis
Stability Analysis
Stability Analysis
Stability Analysis
Stability Analysis
Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
Stability Analysis
- Stability Analysis
2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
- 2D Stability Analysis
- Population Growth Revisited
-

At $\left(0, r_{2}\right)$, the linearization matrix is

Population Growth Revisited

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited
- Population Growth Revisited
- Population Growth Revisited - Population Growth Revisited
- Population Growth Revisited

At $\left(0, r_{2}\right)$, the linearization matrix is

$$
\left[\begin{array}{cc}
r_{1}-c_{1} r_{2} & 0 \\
-c_{2} r_{2} & -r_{2}
\end{array}\right]
$$

Population Growth Revisited

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

At $\left(0, r_{2}\right)$, the linearization matrix is

$$
\left[\begin{array}{cc}
r_{1}-c_{1} r_{2} & 0 \\
-c_{2} r_{2} & -r_{2}
\end{array}\right]
$$

Since $r_{1}<c_{1} r_{2}$ and $-r_{2}<0$, this is an stable node.

Population Growth Revisited

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

At $\left(0, r_{2}\right)$, the linearization matrix is

$$
\left[\begin{array}{cc}
r_{1}-c_{1} r_{2} & 0 \\
-c_{2} r_{2} & -r_{2}
\end{array}\right]
$$

Since $r_{1}<c_{1} r_{2}$ and $-r_{2}<0$, this is an stable node.

Population Growth Revisited

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited
- Population Growth Revisited
- Population Growth Revisited
- Population Growth Revisited

At $\left(r_{1}, 0\right)$, the linearization matrix is

Population Growth Revisited

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited
- Population Growth Revisited - Population Growth Revisited - Population Growth Revisited

At $\left(r_{1}, 0\right)$, the linearization matrix is

$$
\left[\begin{array}{cc}
-r_{1} & c_{1} r_{1} \\
0 & r_{2}-c_{2} r_{1}
\end{array}\right]
$$

Population Growth Revisited

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited
- Population Growth Revisited - Population Growth Revisited - Population Growth Revisited

At $\left(r_{1}, 0\right)$, the linearization matrix is

$$
\left[\begin{array}{cc}
-r_{1} & c_{1} r_{1} \\
0 & r_{2}-c_{2} r_{1}
\end{array}\right]
$$

Since $-r_{1}<0$ and $r_{2}<c_{2} r_{1}$ this is also a stable node. (Again, competitive exclusion.)

Population Growth Revisited

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited
- Population Growth Revisited - Population Growth Revisited - Population Growth Revisited - Population Growth Revisited

At $\left(r_{1}, 0\right)$, the linearization matrix is

$$
\left[\begin{array}{cc}
-r_{1} & c_{1} r_{1} \\
0 & r_{2}-c_{2} r_{1}
\end{array}\right]
$$

Since $-r_{1}<0$ and $r_{2}<c_{2} r_{1}$ this is also a stable node. (Again, competitive exclusion.)

Population Growth Revisited

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited
- Population Growth Revisited
- Population Growth Revisited
- Population Growth Revisited

At $\left(\left(r_{1}-c_{1} r_{2}\right) /\left(1-c_{1} c_{2}\right),\left(r_{2}-r_{1} c_{2}\right) /\left(1-c_{1} c_{2}\right)\right)$, the linearization matrix can be seen (after some algebra) to be

Population Growth Revisited

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

At $\left(\left(r_{1}-c_{1} r_{2}\right) /\left(1-c_{1} c_{2}\right),\left(r_{2}-r_{1} c_{2}\right) /\left(1-c_{1} c_{2}\right)\right)$, the linearization matrix can be seen (after some algebra) to be

$$
\left[\begin{array}{cc}
\frac{c_{1} r_{2}-r_{1}}{1-c_{1} c_{2}} & \frac{c_{1}\left(r_{1}-c_{1} r_{2}\right)}{1-c_{1} c_{2}} \\
\frac{-c_{2}\left(r_{2}-r_{1} c_{2}\right.}{1-c_{1} c_{2}} & \frac{r_{1} c_{2}-r_{2}}{1-c_{1} c_{2}}
\end{array}\right]
$$

Population Growth Revisited

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

At $\left(\left(r_{1}-c_{1} r_{2}\right) /\left(1-c_{1} c_{2}\right),\left(r_{2}-r_{1} c_{2}\right) /\left(1-c_{1} c_{2}\right)\right)$, the linearization matrix can be seen (after some algebra) to be

$$
\left[\begin{array}{cc}
\frac{c_{1} r_{2}-r_{1}}{1} c_{1} c_{1} c_{2} c_{2} & \frac{c_{1}\left(r_{1}-c_{1} r_{2}\right)}{1-c_{1} c_{2}} \\
\frac{-c_{2}\left(r_{2}-r_{1}\right.}{1-c_{1} c_{2}} & \frac{r_{1} c_{2}-r_{2}}{1-c_{1} c_{2}}
\end{array}\right] .
$$

Trace is negative; determinant is negative; hence it's a ...

Population Growth Revisited

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

At $\left(\left(r_{1}-c_{1} r_{2}\right) /\left(1-c_{1} c_{2}\right),\left(r_{2}-r_{1} c_{2}\right) /\left(1-c_{1} c_{2}\right)\right)$, the linearization matrix can be seen (after some algebra) to be

Population Growth Revisited

- Overview

- Modeling Population Growth
- Stability Analysis
- 2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
- 2D Stability Analysis
- 2D Stability Analysis
- Population Growth Revisited

Putting all this together, we get:

Population Growth Revisited

- Overview
Modeling Population Growth
Modeling Population Growth
Modeling Population Growth
- Modeling Population Growth
Modeling Population Growth
- Modeling Population Growth
Modeling Population Growth
- Modeling Population Growth
Stability Analysis
2D Stability Analysis
2D Stability Analysis
2D Stability Analysis
2D Stability Analysis
- 2D Stability Analysis
Population Growth Revisited
- Population Growth Revisited
Population Growth Revisited
- Population Growth Revisited
Population Growth Revisited
- Population Growth Revisited
-

Putting all this together, we get:

Population Growth Revisited

[^1]Putting all this together, we get:

Limitations of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Consider the system (Strogatz p. 153)

$$
\dot{x}=-y+a x\left(x^{2}+y^{2}\right) ; \quad \dot{y}=x+a y\left(x^{2}+y^{2}\right)
$$

where a is a parameter.

Limitations of Linearization

- Overview

- Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Consider the system (Strogatz p. 153)

$$
\dot{x}=-y+a x\left(x^{2}+y^{2}\right) ; \quad \dot{y}=x+a y\left(x^{2}+y^{2}\right)
$$

where a is a parameter. One obvious fixed point is at $(0,0)$.

Limitations of Linearization

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

Consider the system (Strogatz p. 153)

$$
\dot{x}=-y+a x\left(x^{2}+y^{2}\right) ; \quad \dot{y}=x+a y\left(x^{2}+y^{2}\right)
$$

where a is a parameter. One obvious fixed point is at $(0,0)$.

Problem 14 Compute the derivates matrix for this system (easily!).

Limitations of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Consider the system (Strogatz p. 153)

$$
\dot{x}=-y+a x\left(x^{2}+y^{2}\right) ; \quad \dot{y}=x+a y\left(x^{2}+y^{2}\right)
$$

where a is a parameter. One obvious fixed point is at $(0,0)$.
Problem 14 Compute the derivates matrix for this system (easily!).
Answer: Ignoring non-linear terms (since we're at $(0,0)$) gives

$$
\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

Limitations of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Consider the system (Strogatz p. 153)

$$
\dot{x}=-y+a x\left(x^{2}+y^{2}\right) ; \quad \dot{y}=x+a y\left(x^{2}+y^{2}\right)
$$

where a is a parameter. One obvious fixed point is at $(0,0)$.
Problem 14 Compute the derivates matrix for this system (easily!).
In diagonal form:

$$
\left[\begin{array}{ll}
i & 0 \\
0 & i
\end{array}\right]
$$

predicting that

Limitations of Linearization

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth

Consider the system (Strogatz p. 153)

$$
\dot{x}=-y+a x\left(x^{2}+y^{2}\right) ; \quad \dot{y}=x+a y\left(x^{2}+y^{2}\right)
$$

where a is a parameter. One obvious fixed point is at $(0,0)$.

Problem 14 Compute the derivates matrix for this system (easily!).
In diagonal form:

predicting that the system will rotate around the center for all values of a.
However ...

Limitations of Linearization

- Overview

- Modeling Population Growth - Modeling Population Growth
- Stability Analysis
- 2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
- 2D Stability Analysis
- 2D Stability Analysis
- Population Growth Revisited

Let's say we have the intuition to put

$$
\dot{x}=-y+a x\left(x^{2}+y^{2}\right) ; \quad \dot{y}=x+a y\left(x^{2}+y^{2}\right)
$$

in polar form.

Limitations of Linearization

- Overview

- Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

Let's say we have the intuition to put

$$
\dot{x}=-y+a x\left(x^{2}+y^{2}\right) ; \quad \dot{y}=x+a y\left(x^{2}+y^{2}\right)
$$

in polar form.
Question: How would we do that? What does x go to? y ?

Limitations of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Let's say we have the intuition to put

$$
\dot{x}=-y+a x\left(x^{2}+y^{2}\right) ; \quad \dot{y}=x+a y\left(x^{2}+y^{2}\right)
$$

in polar form.
Question: How would we do that? What does x go to? y ?
Answer: $x \mapsto r \cos (\theta)$ and $y \mapsto r \sin (\theta)$.

Limitations of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Let's say we have the intuition to put

$$
\dot{x}=-y+a x\left(x^{2}+y^{2}\right) ; \quad \dot{y}=x+a y\left(x^{2}+y^{2}\right)
$$

in polar form.
Question: How would we do that? What does x go to? y ?
Answer: $x \mapsto r \cos (\theta)$ and $y \mapsto r \sin (\theta)$.
Plugging this in gives us an equivalent system in $\dot{r}, \dot{\theta}$, namely:

Limitations of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Let's say we have the intuition to put

$$
\dot{x}=-y+a x\left(x^{2}+y^{2}\right) ; \quad \dot{y}=x+a y\left(x^{2}+y^{2}\right)
$$

in polar form.
Question: How would we do that? What does x go to? y ?
Answer: $x \mapsto r \cos (\theta)$ and $y \mapsto r \sin (\theta)$.
Plugging this in gives us an equivalent system in $\dot{r}, \dot{\theta}$, namely:

$$
\dot{r}=a r^{3} ; \quad \dot{\theta}=1 .
$$

Limitations of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Let's say we have the intuition to put

$$
\dot{x}=-y+a x\left(x^{2}+y^{2}\right) ; \quad \dot{y}=x+a y\left(x^{2}+y^{2}\right)
$$

in polar form.
Question: How would we do that? What does x go to? y ?
Answer: $x \mapsto r \cos (\theta)$ and $y \mapsto r \sin (\theta)$.
Plugging this in gives us an equivalent system in $\dot{r}, \dot{\theta}$, namely:

$$
\dot{r}=a r^{3} ; \quad \dot{\theta}=1 .
$$

This is a decoupled system and can be analytically solved.

Limitations of Linearization

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Obviously: $\theta(t)=t+\theta(0)$.

Limitations of Linearization

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
- 2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
- 2D Stability Analysis
- 2D Stability Analysis
- Population Growth Revisited

Obviously: $\theta(t)=t+\theta(0)$.

Problem 15 What is the solution to $\dot{r}=a r^{3}$? Hint: bring the r to the LHS and integrate.

Limitations of Linearization

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

Obviously: $\theta(t)=t+\theta(0)$.

Problem 15 What is the solution to $\dot{r}=a r^{3}$? Hint: bring the r to the LHS and integrate.

Answer:

$$
r(t)=\frac{r(0)}{\sqrt{1-2 r^{2}(0) a t}} .
$$

Limitations of Linearization

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth
- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Obviously: $\theta(t)=t+\theta(0)$.

Problem 15 What is the solution to $\dot{r}=a r^{3}$? Hint: bring the r to the LHS and integrate.

Answer:

$$
r(t)=\frac{r(0)}{\sqrt{1-2 r^{2}(0) a t}} .
$$

But this is an inward spiral if $a<0$ and an outward spiral if $a>0$.

Limitations of Linearization

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

Obviously: $\theta(t)=t+\theta(0)$.

Problem 15 What is the solution to $\dot{r}=a r^{3}$? Hint: bring the r to the LHS and integrate.

Answer:

$$
r(t)=\frac{r(0)}{\sqrt{1-2 r^{2}(0) a t}} .
$$

But this is an inward spiral if $a<0$ and an outward spiral if $a>0$.

Thus: linearization is sometimes qualitatively wrong.

Limitations of Linearization

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth

Obviously: $\theta(t)=t+\theta(0)$.

Problem 15 What is the solution to $\dot{r}=a r^{3}$? Hint: bring the r to the LHS and integrate.

Answer:

$$
r(t)=\frac{r(0)}{\sqrt{1-2 r^{2}(0) a t}} .
$$

But this is an inward spiral if $a<0$ and an outward spiral if $a>0$.

Thus: linearization is sometimes qualitatively wrong.
What are the bad (sensitive) cases?

Limitations of Linearization

[^2]

Limitations of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Question: Where on this picture was the bad example we just saw?

Limitations of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Answer: A pure rotation, on the stable/unstable boundary.

Limitations of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Question: Where were the correct examples, from the population model?

Limitations of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Answer: One was an unstable node.

Limitations of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Answer: Another was a stable node.

Limitations of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Answer: As was the third.

Limitations of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Answer: And the fourth was a saddle.

Limits of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

Theorem 1 (Hartman-Grobman, etc...) Linearization is accurate in 2D if and only if - you can draw a small circle around the point and still be in the same region in the 2-D classification diagram. That is, if you're not on the border. If you are on the border, small non-linear perturbations can qualitatively change the behavior.

Limits of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited
- Population Growth Revisited - Population Growth Revisited - Population Growth Revisited - Population Growth Revisited - Population Growth Revisited

This is in the middle of a region.

Limits of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited
- Population Growth Revisited - Population Growth Revisited - Population Growth Revisited - Population Growth Revisited - Population Growth Revisited

So will accurately predict dynamics.

Limits of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited
- Population Growth Revisited

This one,

Limits of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

and this one,

Limits of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

and this one,

Limits of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

and this one,

Limits of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

are also all accurate.

Limits of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited
- Population Growth Revisited - Population Growth Revisited - Population Growth Revisited - Population Growth Revisited - Population Growth Revisited

These border cases may be wrong about shape (i.e. spiral vs. saddle vs. node)

Limits of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

... but not about stability, since they're isolated from the stability dividing line.

Limits of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

This border case (pure rotation) is the worst ... here, linearization may mispredict shape and stability.

Limitations of Linearization

- Overview

- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Most cases are not on the border,

Limitations of Linearization

- Overview

- Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited

Most cases are not on the border, So linearization is "usually" close enough ...

Limitations of Linearization

- Overview

- Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited
"Linearization may not be perfect, but it sure is close enough for government work."
- Tom, United Technologies aerospace engineer (Pratt \& Whitney), retired.

Summary

- Overview- Modeling Population Growth- Modeling Population Growth- Modeling Population Growth
Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
Modeling Population Growth
- Modeling Population Growth- Stability Analysis- Stability Analysis- Stability Analysis- Stability Analysis
- Stability Analysis- Stability Analysis- Stability Analysis
- Stability Analysis
- Stability Analysis- Stability Analysis- Stability Analysis-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis-2D Stability Analysis-2D Stability Analysis- Population Growth Revisited- Population Growth Revisited- Population Growth Revisited
- Population Growth Revisited
- Population Growth Revisited
We:

Summary

- Overview- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth
Modeling Population Growth
- Modeling Population Growth
- Stability Analysis
- Stability Analysis
- Stability Analysis- Stability Analysis
- Stability Analysis
- Stability Analysis- Stability Analysis
- Stability Analysis
- Stability Analysis- Stability Analysis
- Stability Analysis-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis-2D Stability Analysis
- Population Growth Revisited- Population Growth Revisited
- Population Growth Revisited
- Population Growth Revisited- Population Growth Revisited
We:
- Analyzed and classified behavior of static linear systems,

Summary

- Overview- Modeling Population Growth- Modeling Population Growth- Modeling Population Growth- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth- Modeling Population Growth- Stability Analysis- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis
- Stability Analysis- Stability Analysis
- Stability Analysis
- Stability Analysis- Stability Analysis
- Stability Analysis-2D Stability Analysis
-2D Stability Analysis
-2D Stability Analysis
2D Stability Analysis
-2D Stability Analysis
- Population Growth Revisited- Population Growth Revisited
- Population Growth Revisited
- Population Growth Revisited
Population Growth Revisited- Population Growth Revisited

We:

- Analyzed and classified behavior of static linear systems,
- and saw a canonical form that made them transparent.

Summary

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth
- Stability Analysis
-2D Stability Analysis
- Population Growth Revisited - Population Growth Revisited

We:

- Analyzed and classified behavior of static linear systems,
- and saw a canonical form that made them transparent.
- Used that form to classify the dynamical behavior of linear ODEs.

Summary

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth

We:

- Analyzed and classified behavior of static linear systems,
- and saw a canonical form that made them transparent.
- Used that form to classify the dynamical behavior of linear ODEs.
- and drew a picture of all 2-d systems.

Summary

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth

We:

- Analyzed and classified behavior of static linear systems,
- and saw a canonical form that made them transparent.
- Used that form to classify the dynamical behavior of linear ODEs.
- and drew a picture of all 2-d systems.
- Saw phenomena not captured by linear systems,

Summary

- Overview

- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth

We:

- Analyzed and classified behavior of static linear systems,
- and saw a canonical form that made them transparent.
- Used that form to classify the dynamical behavior of linear ODEs.
- and drew a picture of all 2-d systems.
- Saw phenomena not captured by linear systems,
- developed a method for (partially) analyzing them,

Summary

- Overview
- Modeling Population Growth
- Modeling Population Growth
- Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth - Modeling Population Growth

We:

- Analyzed and classified behavior of static linear systems,
- and saw a canonical form that made them transparent.
- Used that form to classify the dynamical behavior of linear ODEs.
- and drew a picture of all 2-d systems.
- Saw phenomena not captured by linear systems,
- developed a method for (partially) analyzing them,
- and probed the limits of the method.

Summary

- Overview

- Modeling Population Growth

We:

- Analyzed and classified behavior of static linear systems,
- and saw a canonical form that made them transparent.
- Used that form to classify the dynamical behavior of linear ODEs.
- and drew a picture of all 2-d systems.
- Saw phenomena not captured by linear systems,
- developed a method for (partially) analyzing them,
- and probed the limits of the method.

Philosophy: eigenvalues/vectors are (almost) everything.

[^0]: - Overview
 - Modeling Population Growth
 - Stability Analysis
 -2D Stability Analysis
 -2D Stability Analysis
 -2D Stability Analysis
 -2D Stability Analysis
 - 2D Stability Analysis
 - Population Growth Revisited
 - Population Growth Revisited

[^1]: ## - Overview

 - Modeling Population Growth - Modeling Population Growth
 - Stability Analysis
 -2D Stability Analysis
 - Population Growth Revisited - Population Growth Revisited

[^2]: - Overview
 - Modeling Population Growth
 - Stability Analysis
 -2D Stability Analysis
 - Population Growth Revisited
 - Population Growth Revisited - Population Growth Revisited - Population Growth Revisited - Population Growth Revisited - Population Growth Revisited

