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You get told:
x2 R";
FiXx Xo and a dynamical equation

dx
e f (x):

Then you quote an Existence and Unigueness theorem.

Lo and behold, a trajectory!

x(t) = g(t;Xo)
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The Basic Object: Poisson Counter

We will approach the de nition of noisy differential equati ons

through two limiting procedures, one in space and one in time.

N :N! N given by

( - aps
Ny(m)= Ny(m 1)+ — Withprobability
O with probability 1

with N (0) = 0.
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N :N! N given by
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1 with probability
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1(m) = Nalm D+ 5 ith probability 1
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1-1

~Y

- p. 5/50




Poisson Processes

| The Tao of ODEs
| The Tao of Stochastic
Processes

| The Basic Object: Poisson
Counter

| The Poisson Counter
| The Poisson Counter
| Statistics of the Poisson

Counter
| Statistics of the Poisson

Counter
| Statistics of the Poisson

Counter
| Another representation

| Poisson Processes
| Calculus for Poisson

Processes
| Calculus for Poisson

Processes
| Calculus for Poisson

Processes
| Using Ito Calculus

| FSCTJPs
| Poisson Counters and

FSCTJPs
| A PDE for the Distribution

| A PDE for the Distribution
| A PDE for the Distribution
| Where to go from here?

Wiener Processes and
Brownian Motions

The Basic Object: Poisson Counter

We will approach the de nition of noisy differential equati ons

through two limiting procedures, one in space and one in time.

N :N! N given by
( - aps
Ny(m)= Ny(m 1)+ — Withprobability
O with probability 1

with N (0) = 0.

It's a “Pascal process" (I think) because:

(mmy= " @ )
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We can derive the statistics of this process. Let
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Another representation

Another way to think about N is as that process which

satis es:

I

That Is, the transition matrix is:
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P(t) = P(t)

o
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© O o

0

where P (t) = ( P1(t); Po(t);::2)7.

This transition-matrix representation points to how poisson
counters like N can be really useful in representing
probabilistic processes.

- p. 11/50




Poisson Processes

Poisson Processes Let us erte the equatlon

| The Tao of ODEs
| The Tao of Stochastic
| '?LZCEZSS?SObject: Poisson dX — f (X; t)dt + g(X, t)dN (3)

Counter
| The Poisson Counter

| The Poisson Counter
| Statistics of the Poisson

Counter
| Statistics of the Poisson

Counter
| Statistics of the Poisson

Counter
| Another representation

| Poisson Processes
| Calculus for Poisson

Processes
| Calculus for Poisson

Processes
| Calculus for Poisson

Processes
| Using Ito Calculus

| FSCTJPs
| Poisson Counters and

FSCTJPs
A PDE for the Distribution

A PDE for the Distribution
A PDE for the Distribution
Where to go from here?

Wiener Processes and
Brownian Motions

- p. 12/50




Poisson Processes

Poisson Processes Let us erte the equatlon

| The Tao of ODEs
| The Tao of Stochastic
| '?L(;ngss?csomect: Poisson dX — f (X; t)dt + g(X, t)dN (3)

Counter
| The Poisson Counter

| The Poisson Counter This Is a noisy (stochastic) analog of regular differential

| Statistics of the Poisson

Cotrter equations. But what does it mean?

| Statistics of the Poisson

Counter
| Statistics of the Poisson

Counter
| Another representation

| Poisson Processes
| Calculus for Poisson

Processes
| Calculus for Poisson

Processes
| Calculus for Poisson

Processes
| Using Ito Calculus

| FSCTJPs
| Poisson Counters and

FSCTJPs
A PDE for the Distribution

|
| A PDE for the Distribution
| A PDE for the Distribution
| Where to go from here?
Wiener Processes and
Brownian Motions

- p. 12/50




Poisson Processes

| The Tao of ODEs

| The Tao of Stochastic
Processes

| The Basic Object: Poisson
Counter

| The Poisson Counter

| The Poisson Counter
| Statistics of the Poisson

Counter
| Statistics of the Poisson

Counter
| Statistics of the Poisson

Counter
| Another representation

| Poisson Processes
| Calculus for Poisson

Processes
| Calculus for Poisson

Processes
| Calculus for Poisson

Processes
| Using Ito Calculus

| FSCTJPs
| Poisson Counters and

FSCTJPs
| A PDE for the Distribution

| A PDE for the Distribution
| A PDE for the Distribution
| Where to go from here?

Wiener Processes and
Brownian Motions

Poisson Processes

Let us write the equation
dx = f (x;t)dt + g(x;t)dN (3)

This Is a noisy (stochastic) analog of regular differential
equations. But what does it mean?

De nition 2 A trajectory X(t) is an Ito solution to the above equation if:
n When N is constanton [a; ], X satises dx = f (x;t)dt

n When N jumpsatt;, X satis es:
lim x(t) = g lim x(t);t; + lim x(t)
th ot} th oty th ot

in a neighborhood of t4

n X is continuous from the left.
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Poisson Processes

Let us write the equation
dx = f (x;t)dt + g(x;t)dN (3)

This Is a noisy (stochastic) analog of regular differential
equations. But what does it mean?

De nition 2 A trajectory X(t) is an Ito solution to the above equation if:
n When N is constanton [a; ], X satises dx = f (x;t)dt

n When N jumpsatt;, X satis es:

lim x(t) = g lim x(t);t; + lim x(t)
th ot} th oty th ot
in a neighborhood of t4

n X is continuous from the left.

This does not de ne a single trajectory — instead, it de nes a
set, which possess a statistical distribution inherited from the
distribution on the Poisson counters.
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Calculus for Poisson Processes

So, given X

dx = f (x;t)dt + g (X; t)dN;
i

what are the statistical properties of the solutions?
In other words, what are E[x](t), higher moments, &c?

The basic principle: rst use calculus to get

d(x™) = something dt+ something dN
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Calculus for Poisson Processes

So, given X

dx = f (x;t)dt + g (X; t)dN;

what are the statistical properties of the solutions?
In other words, what are E[x](t), higher moments, &c?

The basic principle: rst use calculus to get
d(x™) = something dt+ something dN

Then take expectations:

E[d(x™)] = dE[x"] = E[f1(x;t)]dt + E[g2(x; t)]dE[N].
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Calculus for Poisson Processes

So, given X

dx = f (x;t)dt + g (X; t)dN;
i

what are the statistical properties of the solutions?
In other words, what are E[x](t), higher moments, &c?

The basic principle: rst use calculus to get
d(x™) = something dt+ something dN
Then take expectations:
E[d(x™)] = dE[x"] = E[f1(x;t)]dt + E[g2(x; t)]dE[N].
Using E[N ](t) = t, we get
dE[x™](t) = E[f1(x;t) + g2(x;t)]dt
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Calculus for Poisson Processes

So, given X

dx = f (x;t)dt + g (X; t)dN;
i

what are the statistical properties of the solutions?
In other words, what are E[x](t), higher moments, &c?

The basic principle: rst use calculus to get
d(x™) = something dt+ something dN
Then take expectations:
E[d(x™)] = dE[x"] = E[f1(x;t)]dt + E[g2(x; t)]dE[N].
Using E[N ](t) = t, we get
dE[x™](t) = E[f1(x;t) + g2(x;t)]dt
But this is a regular ODE!!
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Calculus for Poisson Processes

In fact, if :R" ! R s any (nice) function, then (x) isitself a
poisson process; same method gives us satistical info about

(x). Butwhat processis (x), interms of dt and dNs? What
is d(x?)?

Regular calculus would tell us that
d(x?) = 2 xdx:

That is wrong here!! The standard Leibniz rule and Chain rule
an FTC NO LONGER WORK. Newtonian calculus is not
accurate for statistical properties.
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Calculus for Poisson Processes

In fact, if :R" ! R s any (nice) function, then (x) isitself a
poisson process; same method gives us satistical info about

(x). Butwhat processis (x), interms of dt and dNs? What
is d(x?)?

Regular calculus would tell us that
d(x?) = 2 xdx:

That is wrong here!! The standard Leibniz rule and Chain rule
an FTC NO LONGER WORK. Newtonian calculus is not
accurate for statistical properties. Similarly, one CANNOT
rearrange:

dx = xdt + xdN to get o)l(_x = dt + dN:
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Calculus for Poisson Processes

In fact, if :R" ! R s any (nice) function, then (x) isitself a
poisson process; same method gives us satistical info about

(x). Butwhat processis (x), interms of dt and dNs? What
is d(x?)?

Regular calculus would tell us that
d(x?) = 2 xdx:

That is wrong here!! The standard Leibniz rule and Chain rule
an FTC NO LONGER WORK. Newtonian calculus is not
accurate for statistical properties. Similarly, one CANNOT
rearrange:

dx = xdt + xdN to get o)l(_x = dt + dN:

DO NOT FAIL TO UNDERSTAND THESE POINTSH
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Calculus for Poisson Processes

However, it's (almost) trivial to see what the answer is.

Recall, a trajectory x(t) is a solution if:
n When N is constanton [a; ], X satises dx = f (x;t)dt

n When N jumps at t;, x satis es:

im x(t)= g lim x(t);t; + lim x(t)
thot] thot, thot,

In a neighborhood of t;
n X IS continuous from the left.
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Calculus for Poisson Processes

However, it's (almost) trivial to see what the answer is.

On an interval where N; doesn't change, standard calculus
tells us:

d
d = —if(x) dt

If N; does change at t, then we have to add the discrete quantity:

X+ g(x)  (x):
Hence, just from the de nition of “solution":

X

d (c= 00 dt+ [ (x+a(0) (N
=1
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Calculus for Poisson Processes

However, it's (almost) trivial to see what the answer is.

On an interval where N; doesn't change, standard calculus
tells us:

d
d = —if(x) dt

If N; does change at t, then we have to add the discrete quantity:

X+ g(x)  (x):
Hence, just from the de nition of “solution":

X

d (c= 00 dt+ [ (x+a(0) (N
=1

This is the “Ito Rule": it is a combination of modi ed Leibniz
and Chain-rule for stochastic calculus.
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Using Ito Calculus

Example 1 Suppose

Then

dx(t) =

dE[x](t) =

kx(t)dt + dN4(t)

KE [x](t)dt +

dN2(t)

1dt

o dt
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Using Ito Calculus

Example 1 Suppose
dx(t) = kx(t)dt+ dNq(t) dNy(t)

Then
dE[x](t) = KkE[x](t)dt+ .dt  ,dt
So using variation of constants:
E [x](0)
K
Furthermore, as for x°:

dx? = 2kx2(0)dt+[( x(1)+1) 2 x2(D)]dN+[(x(t) 1)2 x2(t)]dN,
(4)

E[x](t) = (k 1+ 2"+ 1 )
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Example 1 Suppose
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Using Ito Calculus

Example 1 Suppose

dx(t) = kx(t)dt+ dNq(t) dNy(t)

Then
dE[x](t) = KE[x](t)dt+ ,dt >dt

So using variation of constants:

E[x](0)
K

Furthermore, as for x2:

dx? = 2kx2(t)dt +[1 + 2 x(t)]dN; +[1
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So

E = KE[x2]+2( 4

dt )EXJ(1)+ 1+

Again, recursive calculuation of moments.

2X(1)]dN>:

(4)
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Example 1 Suppose

dx(t) = kx(t)dt+ dNq(t) dNy(t)

Then
dE[x](t) = KE[x](t)dt+ ,dt >dt

So using variation of constants:

E[x](0)
K

Furthermore, as for x2:

dx? = 2kx2(t)dt +[1 + 2 x(t)]dN; +[1

E[x](t) = (k 1+ 2"+ 1 )

2X(D]dN2:  (4)

So

E = KE[x2]+2( 4

dt )EXJ(1)+ 1+

Again, recursive calculuation of moments. (You stick in from
above and use Variation of Constants formula.)
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FSCTJPs

Suppose you're given a nite-state transition scheme:

0.1 0.3 0.7
0.5
~N_ ¥ A 4
0.9 0.6
De nition 3 A state-transition equation

P(t) = AP(t)

is called a nite-state continuous time jump process (FSCTJP), when A is a
stochastic matrix, i.e. columns sum to O and (off-diagonal) entries are
non-negative.

Such systems have obvious potential for being useful
representations of scienti c phenonmena.

- p. 17/50




Poisson Processes

| The Tao of ODEs
| The Tao of Stochastic
Processes

| The Basic Object: Poisson

Counter
| The Poisson Counter

| The Poisson Counter
| Statistics of the Poisson

Counter
| Statistics of the Poisson

Counter
| Statistics of the Poisson

Counter
| Another representation

| Poisson Processes
| Calculus for Poisson

Processes
| Calculus for Poisson

Processes
| Calculus for Poisson

Processes
| Using Ito Calculus

| FSCTJPs
| Poisson Counters and

FSCTJPs
| A PDE for the Distribution

| A PDE for the Distribution
| A PDE for the Distribution
| Where to go from here?

Wiener Processes and
Brownian Motions

Poisson Counters and FSCTJPs

Theorem 2 [Basis Theorem] Any FSCTJP is equivalent, in distribution, to

XN
dx = fi(X)dNi

=1

for some (nice) functions f and poisson counters N with rates j > O.
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Theorem 2 [Basis Theorem] Any FSCTJP is equivalent, in distribution, to

XN
dx = fi(X)dNi

=1

for some (nice) functions f and poisson counters N with rates j > O.

Example 2 2 3 92 3 2 3
P1 (1) 0 P (t)

Q.05 = 3 3 > o%ﬁpz(t)%
Ps(t) 0 2 8 ps(t)
with X(0) 2 f 3; 7; 9g.
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Theorem 2 [Basis Theorem] Any FSCTJP is equivalent, in distribution, to

XN
dx = fi(X)dNi

=1

for some (nice) functions f and poisson counters N with rates j > O.

Example 2 2 3 92 3 2 3
P1 (1) 0 P (t)

Q.05 = 3 3 > o%ﬁpz(t)%
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Theorem 2 [Basis Theorem] Any FSCTJP is equivalent, in distribution, to

XN
dx = fi(X)dNi

=1

for some (nice) functions f and poisson counters N with rates j > O.

Example 2 2 3 92 3 2 3
P1 (1) 0 P (t)

Q.05 = 3 3 > o%ﬁpz(t)%
Ps(t) 0 2 8 ps(t)
with X(0) 2 f 3; 7; 9g.

Then

dx:(x 9)(Xx 7)dN3+(X 3)(X 9)dN2+(3 X)(X 7)

6 4 2 dNs
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Let be any smooth function with
course

= 0 for large jxj. Then of

d X
Sof00 dt+ [ (x+ g(0)

=1

d = (X)]dN;:

If (X;t) exists and is smooth then:
Z 0 Z

d . |
&,f(x) (x,t)dx+i:l |

SEL (01D = (((x+g() ()

Now, differentiating w.r.t t and comparing gives:
z d (x;t) z d X "
(X)—— = i (x+a((x) (X

T+

at ax (x; )dx
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Let hj(x) = x + gi(x). Assume that h; is nite-to-one. Change
variables x ! z so that dz = jdet(l + dg)jdx:

Then by the chain rule:

Z Z

(x+g(x)) (x;t)dx =

dx
| (5)
(z) (h; '(2);t)jdet(l + dg)j ‘dz:

+ i

(z) (h; *(2);t)jdet(l + dg)j *dz:
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Let hj(x) = x + gi(x). Assume that h; is nite-to-one. Change
variables x ! z so that dz = jdet(l + dg)jdx:

Then by the chain rule:

Z Z

(x+g(x)) (x;t)dx =

dx
x Z i (5)
+ i (2) (h, *(2);t)jdet(l + dg)j *dz:

This can be collected as (Xx)[stuff] = 0.

(z) (h; *(2);t)jdet(l + dg)j *dz:
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Let hj(x) = x + gi(x). Assume that h; is nite-to-one. Change
variables x ! z so that dz = jdet(l + dg)jdx:

Then by the chain rule:

Z Z

(x+g(x) (xt)dx= (2) (h *(2);t)jdet(l + dg)j *dz:

dx
x Z i (5)
+ i (2) (h, *(2);t)jdet(l + dg)j *dz:

This can be collected as (X)[stuff] = 0. But (x) was
chosen arbitrarily!
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Some properties of Brownian motion are:

n w(0)=0.

n The statistics of r(t; )= w(t) w( ) depend only on |t
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Some properties of Brownian motion are:
w(0) =0.
The statistics of r(t; )= w(t) w( ) depend only on |t
In fact, E[r?](t) = jt | (it's again a Gaussian).
Two-dimensional thermodynamic motion is modeled by
"# ) it
dx dwy

=k
dy dw,

=)

=)

>

>

where wq; w, are independent brownian motions.
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Some properties of Brownian motion are:
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w(0) =0.
The statistics of r(t; )= w(t) w( ) depend only on |t
In fact, E[r?](t) = jt | (it's again a Gaussian).

Two-dimensional thermodynamic motion is modeled by
" # ¥ #
dx " dw;
dy dw,

where wq; w, are independent brownian motions.
Einstein, Smoluchowski, etc, gured this out (three

dimensions), and also how to nd k as a phyical constant.
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dy dw,
where wq; w, are independent brownian motions.

Einstein, Smoluchowski, etc, gured this out (three
dimensions), and also how to nd k as a phyical constant.
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Stochastic Differential Equations

De nition 5 Let X
dx = f (x)dt + g (X)dw

i
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dx =f(x)dt+  BX(@ANL, dN_)

Such an equation is a Stochastic Differential Equation (SDE).

Solutions are Wiener Processes.
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dx =f(x)dt+  BX(@ANL, dN_)
Such an equation is a Stochastic Differential Equation (SDE).
Solutions are Wiener Processes.

Example 3 [Ornstein-Uhlenbeck Process]
dx = vdt; dv= ( v)dt + dw

It has a zillion applications. Finance:

- p. 29/50




Poisson Processes

Wiener Processes and
Brownian Motions

| Spatial Continuization
| Spatial Continuization
| Spatial Continuization
| Brownian Motion

| Properties Of Brownian

Motion
| Stochastic Differential

Equations
| Ito Calculus for Wiener

Processes
| lto Calculus for Wiener

Processes
| lto Calculus for Wiener

Processes
| Ito Calculus for Wiener

Processes
| Calculating Moments

| The Langevin Equation

| The Langevin Equation

| Nyquist-Johnson Circuits
| Nyquist-Johnson Circuits
| Equipartition of Energy

| Equipartition of Energy

| Equipartition of Energy

| Equipartition of Energy

| Equipartition of Energy

| A Distributional PDE

| A Distributional PDE

| A Distributional PDE

Stochastic Differential Equations

De nition 5 Let X
dx = f (x)dt + g (X)dw
i
be interpreted using the limit procedure from above; that is, its solutions are
limits of Ito solutions to
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dx =f(x)dt+  BX(@ANL, dN_)
Such an equation is a Stochastic Differential Equation (SDE).
Solutions are Wiener Processes.

Example 3 [Ornstein-Uhlenbeck Process]

dx = vdt; dv= ( v)dt + dw

It has a zillion applications. Finance:
n Vv IS the spot interest rate.
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Solutions are Wiener Processes.
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It has a zillion applications. Finance:
n Vv IS the spot interest rate.

n IS the long-term mean interest rate.
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Such an equation is a Stochastic Differential Equation (SDE).
Solutions are Wiener Processes.

Example 3 [Ornstein-Uhlenbeck Process]

dx = vdt; dv= ( v)dt + dw

It has a zillion applications. Finance:
n Vv IS the spot interest rate.

n IS the long-term mean interest rate.
n Is the “pressure to revert to the mean"
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Such an equation is a Stochastic Differential Equation (SDE).
Solutions are Wiener Processes.

Example 3 [Ornstein-Uhlenbeck Process]

dx = vdt; dv= ( v)dt + dw

It has a zillion applications. Finance:
n Vv IS the spot interest rate.

n IS the long-term mean interest rate.
n Is the “pressure to revert to the mean"
n is the nancial volatility. P e
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Ilto Calculus for Wiener Processes

Let be afunction R" ! R, and suppose x is governed by a
Wiener process SDE as above. (x) is itself a Winer process,
but what is its SDE?

Let's start by introducing the process y given by:

dy = E(dN;2+ dN_,):

This is a useful process, like dw de ned above.
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but what is its SDE?
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dy = E(dN;2+ dN_,):

This is a useful process, like dw de ned above.
Using Ito calculus, one nds E[y |(t) = t+ E[y ](0) and
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Wiener process SDE as above. (x) is itself a Winer process,
but what is its SDE?
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dy = E(dNJ; ,+ dN_),):
This is a useful process, like dw de ned above.
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Wiener process SDE as above. (x) is itself a Winer process,
but what is its SDE?

Let's start by introducing the process y given by:

dy = E(dNJ; ,+ dN_),):
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Ilto Calculus for Wiener Processes

Let be afunction R" ! R, and suppose x is governed by a
Wiener process SDE as above. (x) is itself a Winer process,
but what is its SDE?

Let's start by introducing the process y given by:

dy = E(dN;2+ dN_,):

This is a useful process, like dw de ned above.
Using Ito calculus, one nds E[y |(t) = t+ E[y ](0) and
E[y?](t) = t> + t=: Hence

Varly I(t) = E[(y (1) Ely I(t)°]=t=:
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Ilto Calculus for Wiener Processes

Let be afunction R" ! R, and suppose x is governed by a
Wiener process SDE as above. (x) is itself a Winer process,
but what is its SDE?

Let's start by introducing the process y given by:

dy = E(dN;2+ dN_,):

This is a useful process, like dw de ned above.
Using Ito calculus, one nds E[y |(t) = t+ E[y ](0) and
E[y?](t) = t> + t=: Hence

Varly I() = El(y () Ely I(t)?]= t=:
But thus:
y(©) < lim y =t

a simple deterministic process!
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Ilto Calculus for Wiener Processes

Solet be a twice-differential function R" ! R, and suppose x
IS governed by a Wiener process SDE as above.

X .
d = g—x;f(x) dt + (X + %(XT)) (x) dN;

X | (6)
+ (X 9ta(xf)) (x) dN
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Ilto Calculus for Wiener Processes

Solet be a twice-differential function R" ! R, and suppose x
IS governed by a Wiener process SDE as above.

X .
d = g—x;f(x) dt + (X + %(XT)) (x) dN;

X |
+ (X 9ta(xf)) (x) dN

(6)

Now, let's expand in a Taylor series in x, which gives us
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X
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fa 9MieMG, +0( ¥
This is just
d = d—'f(x) dt+X OI—'g-(x) dw
dx’ o dx !
(x) () = 3=2
t 3 g.(X),g.(X)@% dy + O( )

So now let's take the limit  !'1
with dt, and higher terms vanish.

, replacing dw with dw, dy

- p. 32/50




Ilto Calculus for Wiener Processes

Poisson Processes ThlS glves US

Wiener Processes and
Brownian Motions

| Spatial Continuization
| Spatial Continuization
| Spatial Continuization
| Brownian Motion

| Properties Of Brownian

Motion
| Stochastic Differential

Equations
| Ito Calculus for Wiener

Processes
| lto Calculus for Wiener

Processes
| lto Calculus for Wiener

Processes
| Ito Calculus for Wiener

Processes
Calculating Moments

The Langevin Equation
The Langevin Equation

Nyquist-Johnson Circuits
Nyquist-Johnson Circuits
Equipartition of Energy
Equipartition of Energy
Equipartition of Energy
Equipartition of Energy
Equipartition of Energy
A Distributional PDE

A Distributional PDE

A Distributional PDE

- p. 33/50




Ilto Calculus for Wiener Processes

Poisson Processes ThlS glves US

Wiener Processes and

Brownian Motions d X d 1 X

Spatial Continuization @
Spatial Continuization d = &, f (X) dt+ | &, g| (X) dW| + — | g| (X), g| (X) @ dt

I
I
| Spatial Continuization 2
|
|

Brownian Motion

Properties Of Brownian

Motion
| Stochastic Differential

Equations
| Ito Calculus for Wiener

Processes
| lto Calculus for Wiener

Processes
| lto Calculus for Wiener

Processes
| Ito Calculus for Wiener
| Calculating Moments
| The Langevin Equation
| The Langevin Equation
| Nyquist-Johnson Circuits
| Nyquist-Johnson Circuits
| Equipartition of Energy
| Equipartition of Energy
| Equipartition of Energy
| Equipartition of Energy
| Equipartition of Energy
| A Distributional PDE
| A Distributional PDE
| A Distributional PDE

- p. 33/50




Ilto Calculus for Wiener Processes

Poisson Processes ThlS glves US

Wiener Processes and

Brownian Motions d X d 1 X

Spatial Continuization @
Spatial Continuization d = &, f (X) dt+ | &, g| (X) dW| + — | g| (X), g| (X) @ dt

I
I
| Spatial Continuization 2
|
|

Brownian Motion
Properties Of Brownian

| Moton This is the Ito rule for SDEs.

Stochastic Differential
Equations
| Ito Calculus for Wiener

Processes
| lto Calculus for Wiener

Processes
| lto Calculus for Wiener

Processes
| Ito Calculus for Wiener
| Calculating Moments
| The Langevin Equation
| The Langevin Equation
| Nyquist-Johnson Circuits
| Nyquist-Johnson Circuits
| Equipartition of Energy
| Equipartition of Energy
| Equipartition of Energy
| Equipartition of Energy
| Equipartition of Energy
| A Distributional PDE
| A Distributional PDE
| A Distributional PDE

- p. 33/50




Ilto Calculus for Wiener Processes

Poisson Processes Th |S g |VeS u S -
Wiener Processes and

Brownian Motions d X d 1 X @

G d = &;f(x) dt+ | &;gi(x) dw; + = | gi(X);gi(X)@

I
I
| Spatial Continuization 2
|
|

dt

Brownian Motion
Properties Of Brownian

Motion This is the Ito rule for SDEs.

| Stochastic Differential
Equations
| Ito Calculus for Wiener

| o Galouus for Wiener It is the centerpiece of what's usually known as Ito calculus.

Processes
| lto Calculus for Wiener

Processes
| Ito Calculus for Wiener
| Calculating Moments
| The Langevin Equation
| The Langevin Equation
| Nyquist-Johnson Circuits
| Nyquist-Johnson Circuits
| Equipartition of Energy
| Equipartition of Energy
| Equipartition of Energy
| Equipartition of Energy
| Equipartition of Energy
| A Distributional PDE
| A Distributional PDE
| A Distributional PDE

- p. 33/50




Ilto Calculus for Wiener Processes

Poisson Processes Th |S g |VeS u S -
Wiener Processes and

Brownian Motions d X d 1 X @

ey d = &;f (x) dt+ 9 (X) dwj+ = g (X): g (X)@

| Spatial Continuization . 2 .
| Brownian Motion I I

dt

| Properties Of Brownian

Motion This is the Ito rule for SDEs.

| Stochastic Differential

Equations
| Ito Calculus for Wiener

| o Galouus for Wiener It is the centerpiece of what's usually known as Ito calculus.

Processes
| lto Calculus for Wiener

! o Calculus for Wiener It can used to do all sorts of things, even just changing

Processes

| Calculating Moments Varlables.

| The Langevin Equation
| The Langevin Equation

| Nyquist-Johnson Circuits
| Nyquist-Johnson Circuits
| Equipartition of Energy

| Equipartition of Energy

| Equipartition of Energy

| Equipartition of Energy

| Equipartition of Energy

| A Distributional PDE

| A Distributional PDE

| A Distributional PDE

- p. 33/50




Poisson Processes

Wiener Processes and
Brownian Motions

| Spatial Continuization
| Spatial Continuization
| Spatial Continuization
| Brownian Motion

| Properties Of Brownian

Motion
| Stochastic Differential

Equations
| Ito Calculus for Wiener

Processes
| lto Calculus for Wiener

Processes
| lto Calculus for Wiener

Processes

| Ito Calculus for Wiener
Processes

| Calculating Moments

| The Langevin Equation

| The Langevin Equation

| Nyquist-Johnson Circuits
| Nyquist-Johnson Circuits
| Equipartition of Energy

| Equipartition of Energy

| Equipartition of Energy

| Equipartition of Energy

| Equipartition of Energy

| A Distributional PDE

| A Distributional PDE

| A Distributional PDE

Ilto Calculus for Wiener Processes

This gives us:

X X
600 awrl g00i002

This is the Ito rule for SDESs.

d = S—X;f(x) dt+

It is the centerpiece of what's usually known as Ito calculus.

It can used to do all sorts of things, even just changing
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Now, we have to look into taking expectations.
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@
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R
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where Is viscosity, a is particle radius, and m mass.
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But stat. mech. tells us that in equilibrium

3KT

E[v?] = =
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The Langevin Equation

Hence C = 6kT =m.

Now, we can also use Ito rule to nd V ar[r](t) — the “mean

sguare displacement”:

E [v*](0)

3kT
t)2

E[(r(t) E[)(t)°]= (1

At equilibrium this becomes

Var[r](t) = ?E—Tt

But this is Einstein's result;
kT kT

D= —
m 6 a

=2t

3+4e

t

e 2t)
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What is the expected energy at steady state?
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Consider the resistor-inductor:
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NG

What is the expected energy at steady state?

. . . . 1 . 2
Well, energy in a circuit is 5Ll
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Nyquist-Johnson Circuits

Consider the resistor-inductor:

(V)
NG

What is the expected energy at steady state?
Well, energy in a circuit is 3Li?

The Nyquist-Johnson model of current ow is

Ldi = Ridt + P 2KRT dw
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Consider the system:

dx = (S GG')xdt + P Gdw
where S= ST and

rank (GjSGj:::jS" G) = n:

This is a model for a statistical system with n modes, with
thermal noise coupling into each mode.

The condition on rank means that each mode is correctly
couple; S being antisymmetric means the system isn't losing
energy; and dw is standard n-dim brownian motion. is the
strength of the coupling.
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The system again:

where S =

dx = (S GG ")xdt + P Gdw
ST and
rank (GjSGj:::jS" G) = n:
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Equipartition of Energy

The system again:
dx = (S GG ")xdt + P Gdw
where S= ST and

rank (GjSGj:::jS" G) = n:

Theorem 3 [Equipartition Thm.] At thermal equilibrium, every mode
possesses the same amount of energy.
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Equipartition of Energy

The system again:
dx = (S GG ")xdt + P Gdw
where S= ST and
rank (GjSGj:::jS" G) = n:
Theorem 3 [Equipartition Thm.] At thermal equilibrium, every mode

possesses the same amount of energy.

This is a simple result of stochastic calculus.
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Equipartition of Energy

The system again:
dx = (S GG ")xdt + P Gdw
where S= ST and
rank (GjSGj:::jS" G) = n:
Theorem 3 [Equipartition Thm.] At thermal equilibrium, every mode

possesses the same amount of energy.

This is a simple result of stochastic calculus.

Let's write the Ito equation for E[xx T ].
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For the system
dx = Axdt + Bdw

the Ito equation for (x) = xx' is
dixx ") =[Axx T + xxT AT]dt + stuffdw + BB " dt:
On taking expectations,

dE[xx"]= AE[xx"]dt + E[xx"]AT dt + BB " dt:

P _

WithA=S GG andB =" G:

dE[]
dt

At equilibrium, using S= ST,

(S GGNE[ 1] E[ 1S+ GG')= GG’

=(S GGNE[]+ E[(S GG+ GG':
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Recall the GRAND PRINCIPLE: non-deterministic trajectories
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P
dx = f (x)dt+ ; gi(x)dw,
Now, let's let (x;t) be the PDF of x at time t.

ASSUME: twice differentiable. ERGODICITY UNDERLIES
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JX].
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This Is the diffusion equation!
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SO expectations are more complicated. gw and dw are the
same.
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