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1 A Simple One-Dimensional Model

1.1 Agents and Configurations

Definition 1 [Agent Configurations] The directed line of length n, denoted Ln, is the graph

Ln = (Vn, En)

where Vn = {1, . . . , n} are the n nodes and En = {(1, 2), (2, 3), . . . , (n − 1, n)} are the edges. Let S be a finite set. An
S-configuration of size n is a graph

X = (V,En)

in which the edges are the same as in Ln, but the nodes are now pairs (i, si), with si ∈ S, i.e. each node i ∈ {1, . . . , n} has
been assigned a label si ∈ S. Let Cn,S be the set of all S-configurations of size n, and let CS =

⋃
n∈N Cn,S – these are all

configurations of all (finite) sizes. We will drop the S from the notation whenever it is obvious from context.

Informally, the directed line graph of size n represents the underlying geometry of our system, and looks like this:
n = 5 n = 10

Figure 1: Two examples of finite directed lines, L5 and L10.

Nodes of the graph correspond to agents. The nodes are arranged geometrically into a 1-D lattice, with the spatial
relations expressed by the directed edges between the nodes.

By definition, a configuration is a version of the directed line graph in which the nodels have been labelled by elements
of the set S. A typical configuration looks like this:

1 2 0 00 2 0 1 03

Figure 2: A ten-agent configuration with four internal states: purple (0), orange (1), pink (2), and green (3).

These labels (represented as colors in the picture) correspond intuitively to the agents’ internal states. Two different
nodes (i, si) and (j, sj) can have the same label, meaning that agent i and agent j have the same internal state.

We can also think of configurations as finite m-ary sequences by assigning to each of the m states a unique integer in
{0, . . . ,m − 1} and reading the states off from left to right. For any m-ary sequence x let x(i : j) denote the restriction of
the sequence between its i-th and j-th places (inclusive) and let x1 ◦ x2 denote the concatenation of the two sequences x1

and x2.

Definition 2 [Local Balls] The ball in X of radius r at agent i, denoted Br(i,X), is the subgraph of X whose nodes are

{bj ∈ V (X)||i− j| ≤ r} ∪ {(i, star)}

and whose edges are induced from X. Let Br,S denote the set of all r-balls with states in S.

We have added a special symbol ? to the label of the agent i around which the ball is taken (formally, was done by adding
the pair (i, ?) to the set of nodes). The point of adding the special ? symbol is to be able to distinguish the “center” of the
ball from the other elements in the cases when the configuration X itself is of on the order of r, the radius of the ball.

For example, in the configuration in figure 2, the local ball of radius 2 around agent 5 looks like:
2 1 1 23

* . Given
any local ball B let ?(B) denote the position of the starred agent. Define local coordinates B(i) = B(?(B) + i), so that
B(0) = B(?(B)), B(1) is the agent adjacent to the right, B(−1) to the left etc... If ?(B) = |B|, then B is the right-end ball
and the agent the right-most agent. If ?(B) = 1 then the agent is the left-most agent. If B is a ball of radius r + k, let
Bi = B(i− r : i+ r), in local coordinates.

1.2 Local Rule Dynamics

Definition 3 [Local Rules] A local rule of information radius r is any function from local balls of radius r to the set of
states S:

f : Br,S → S.

We denote the information radius of f by r(f). Let Dr denote the set of all local rules of radius r, and let D =
⋃

r∈N Dr.
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Intuitively, dynamics are generated by agent-based state-change programs running identically on each of the agents in
the 1-D multi-agent system, and drawing information only from other nearby agents. The mapping f represents a look-up
table by which an agent a takes local information (given by the radius-r ball Br(a,X)) and chooses a new state to adopt as
a function of what it sees. By definition, whenever local balls B1 and B2 have the same graph structure (even if they arise at
different positions), then f(B1) = f(B2). This encodes mathematically the idea that all central agents enact the same local
rule, regardless of absolute position. Because of the ?, the graph structure of the end-agents is distinct from center agents,
and end-agents therefore can use that information to act differently.

Given an agent a in configuration X, the action of f on X at a, denoted f(a,X), is the new configuration obtained from
X by changing the label of a from whatever it is to f(Br(f)(a,X)). For example, suppose we chose a rule defined by

f((pink, purple, purple?, green, pink)) = green

on agent 5 of the configuration depicted in figure 2. The action of f on that configuration by agent 5 would look like:

s4 s2 s1 s1s1 s2 s1 s4 s1s3

s4 s2 s1 s3s1 s2 s1 s4 s1s3

action of local rule, on radius-2 ball, changing s1 --> s3

By virtue of the definitions above, this model of dynamics does not allow for cell birth and death, or mobile agents.
We can allow f to act on more than one agent simultaneously: in analogy to the above, let c be a subset of agents in X, and
define f(c,X) to be the configuration obtained by replacing the labels of each a ∈ c with f(Br(f)(a,X)).

Definition 4 [Trajectories] A size-n call sequence is a sequence of sets of agents, i.e. c = (c1, c2, c3, . . .) where each
ci ⊂ {1, . . . , n}. Given a configuration X and a size-|X| call sequence c, the trajectory of X generated by (f, c) is the set

{fn
c (X)|n ∈ N},

where
fn

c (X) = f(cn, fn−1
c (X))

and f0
c (X) = X. The omega-limit of a trajectory is the set of all configurations that appear infinitely many times; it is

denoted Ω(f, c,X).

Intuitively, a trajectory is the result of each agent iteratively applying the local rule f , in the order given by the call
sequence c, starting at initial condition X. The omega-limit is the state (or states) to which the system eventually converges.
Note that since Cn,S is a finite set of size |S|n, and since f(a,X) ∈ Cn,S if X ∈ Cn,S , that the omega-limit of all trajectories
is non-empty. If Ω(f, s,X) contains a single configuration, then we say that the trajectory has a well-defined limit denoted
lim(f, c,X).

1.3 Timing Models

Definition 5 [Timing Models] A timing model is a set

S =
⋃
n∈N

Sn,

where Sn is a non-empty set of size-n call sequences. A timing model S is asynchronous if all call sequences c ∈ S, are
sequences of individual agent names. A timing model S is live if for all c ∈ Sn, each agent i ∈ [n] appears in c infinitely
many times. A timing model is uniform if the probability pt(i) that agent i appears in ct is identical for all i and t.

Three archetypal timing models include: A) The synchronous timing model, denoted Ss, the set of call sequences

{cn = ([n], [n], [n], . . .)|},

where [n] = {1, . . . , n}. In words, all agents are called simultaneously at all timesteps. B) The k-bounded asynchronous
model, denoted S(k), the timing model in which Sn(k) consists of all sequences

{c = (i1, i2, . . . , )}

3



SASO Tutorial Notes Dan Yamins

of inidividual agents cj ∈ [n], such that if a given agent i appears k+1 times in c between timesteps t1 and t2 then all j ∈ [n]
appear in c between t1 and t2. In words, all agents are called one at a time, and no agent can appear more than k times
in any period of time unless all agents have been called at least once during that same period. C) The totally asynchronous
timing model, denoted Sa, the set of all call sequences in which each node is called one at a time, but in which each agent
is always eventually called infinitely many times. All three of these timing models are live (Sa is by definition the largest
asynchronous live model), and all three are uniform.

A natural quantity associated with any live timing model is the average length of a “round”, i.e. a minimal period in
which all agents are called once. Formally, for each s ∈ Sn and t ∈ N, let

r(s, t) = min{t′ > t | s(t : t′) contains a call to every agent in [n]}.

If S is uniform, then the average round time
RS(n) = 〈r(s, t)〉s∈Sn

is independent of t. For the synchronous timing model, evidently RSs(n) = 1. For the k-bounded asynchronous model, it is
easy to see that there is a constant C < k such that RS(k)(n) ∼ Cn. For the totally asynchronous model it can be shown
that RSa(n) ∼ C ′nlog(n) for a constant C ′.

1.4 Patterns

Intuitively, a pattern is an arrangement of states that is ordered in some fashion. This order can be described in a number
of ways, the simplest being to define patterns as sets T of configurations:

Definition 6 [Patterns] A pattern is any subset T of configurations, i.e. T ⊂ CS. Let T = 2CS denote the set of patterns.

In this case, the elements X ∈ T are instances of the pattern, and the pattern itself is the totality of its instances. More
abstracted notions of pattern will be later on.

Example 1 For example, a pattern might have one agent in state 0, followed by three agents in state 1, like this: s2 s2 s2s1 .
By repeatedly concatening this segment with itself we obtain a version of the 0111 pattern at every size that is a multiple of
4:

1 1 1 00 1 111 1 10

size 4 version of (s1,s2,s2,s2) pattern size 8 version
This pattern is an example of a more general class of repeat patterns, characterized by repeating a single finite pattern

generator an integral number of times. In terms of the m-ary sequence description, if q is a fixed m-ary sequence, then the
q-generated pattern Tq is the set of configurations {qm|m ∈ N}. For example, if q = 1 then Tq = {1, 11, 111, 1111, . . .}. If
q = 12 then Tq = {12, 1212, 121212, . . .}. Evidently Tq ∩ Cn 6= ∅ only when n = m|q| for some m, i.e. the pattern Tq only has
versions at sizes that are multiples of the size of the generating unit. Hence the number of instances of Tq up to size n grows
linearly with n.

In constrast, now define the pattern T1/2 of odd-size configurations, in which all states are 1, except for the center agent:

0 0 0 0 0 0 0 011 00

size 3 version size 9 version

T1/2 is an example of the general class of proportionate patterns, characterized by having a subpattern (or a change in
background pattern) appear at a specific fractional value along an otherwise (piecewise) uniform structure.

1.5 Solutions

The central goal of this discussion is to study how multi-agent systems can use local rules to create order from disorder.
The concept of “disorder” is defined for the present purposes by taking the whole configuration space C as a large set of
completely unconstrained initial conditions, while “order” is defined by a relatively smaller set of final states constrained to
some pattern T . A local rule that creates T will guide the system from arbitrary initial states along trajectories to limits
that lie in the prescribed set of final states defined by T . This is only possible on initial conditions X0 for which T contains
a configuration of size |X0|, since the local rules do not create or remove agents. Moreover, it will be depend on a choice of
timing model since call sequences are a necessary input to make a trajectory.

We capture the above intuition by defining:

4
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Configuration Space

T

Figure 3: A local rule f solving T drives arbitrary configurations in C to T .

Definition 7 [Solutions] A local rule f is a solution to pattern T in timing model S if for all sizes n, and all configurations
X of size n, and for all call sequences s ∈ Sn, the limit of the trajectory generated by f starting at X under s is a well-defined
element and an element of T whenever T contains at least one configuration of size n. Symbolically,

lim
n→∞

fn
s (X) ∈ T whenever T ∩ Cn 6= ∅.

Let FS(T ) denote the set of solutions F to T in timing model S.

We impose the condition that T ∩Cn 6= ∅ because it would be unfair to expect a rule that cannot add or remove agents to
push into T a configuration whose size is wrong. Intuitively, a solution “drives” all initial conditions in C to the prescribed
pattern T (fig. 3).

1.5.1 Run-Time Complexity

Given a local rule f that is a solution to pattern T , it is natural to ask how long it takes to produce its solution. For
initial condition X and call sequence s, define the runtime of f on X, s, denoted T (f,X, s), to be the minimum N such that
fM

s (X) = fN
s (X) for all M ≥ N . This measure depends on initial condition and call sequence, and we want to remove these

dependencies. Also, because T (f,X, s) will typically scale with |X|, what we really want to capture is the scaling dependence.
Different timing models may have different numbers of agents called at each time step, so to account equally for this, we

define the per-agent normalized runtime by

T ′(f,X, s) =
1
n

T (f,X,s)∑
i=1

|si|

where n = |X| is the size of X and |si| is the number of agents called at time i. To remove dependence on call sequence s,
we average:

TS(f,X) = 〈T ′(f,X, s)〉s∈Sn

taking the uniform distribution over call sequences. Because T (f,X) will typically scale with |X|, what we really want to
capture is the scaling dependence. We can either average over all |X| of a given size, producing the average-case runtime
scaling function:

T avg
S (f)(n) =

1
|T ∩ C≤n|

∑
X∈T∩C≤n

TS(f,X)

or for each size find that X which has the longest time, producing the worst-case runtime:

Tworst
S (f)(n) = max

X∈T∩C≤n

TS(f,X).

1.6 A Very Simple Example

To make this concept concrete, let’s look at a simple example. Consider the repeat pattern T10, whose typical element looks

like:
0 1 0 11 0 . . . . 1 0

. We seek a solution to T10, assuming that each agent has two possible internal
states (0 and 1). To do this, first fix the radius r = 1. Recalling the definition from before, a local rule with radius 1 is a
function

f : B1 −→ {0, 1}

5



SASO Tutorial Notes Dan Yamins

in which the domain B1 is the set of radius-1 local configurations an agent could see, and the target {0, 1} is the set of states
that the agent could change to as a function of what it sees.

With radius 1 there are just three kinds of local balls: the one around the left-end agent, the one around the right-end
agent, and balls around all other “central” agents:

** *
Left-end balls Right-end BallsCenter Balls

b b bac ac0 0

A central ball with two states, therefore, is a 3-tuple (a, b?, c), where a, b, c ∈ {0, 1}. Given such a ball B, define B(−1) = a
(“the state of the agent to my left”), B(0) = b, (“my state”) and B(1) = c (“the state of the agent to my right”). A right-end
ball is a pair (a, b?), while a left-end ball is (b?, c). Define B(1) and B(−1) respectively as defaulting to 0 in these cases.

Now, define the local rule F10 according to the formula:

F10(B) = 1−B(−1).

In words, what F10 does is to set a given agent’s state to the opposite of the state of the agent to the left, except if the agent
is the left-end, in which case it always sets to 1 (recall that B(−1) = 0 by default for the left-end agent).

Proposition 1 F10 is a solution to T10 in all live timing models.

Proof: Suppose X0 is any initial configuration that already satisfies the T10 pattern up to agent j,

0 1 01 . . . . 1 0 0 1 0 . . . . 1 0

j

correct 

1

that is,
X0(1 : j) = (10)◦bj/2c ◦ 1odd(j),

where odd(j) is 1 if j is odd and 0 otherwise. Now, notice first that F10 fixes the state of all the agents in X0(1 : j). Hence
for any call sequence s, and all m > 0,

Fm
s (X0)(1 : j) = (10)◦bj/2c ◦ 1odd(j).

Next, suppose that the call sequence s calls agent j + 1 at least once, say at timestep k. The action of F10 on agent j + 1
will be to set it to the opposite of the state of the jth agent. Hence F k+1

s (X0) now satisfies the pattern from agent 1 to
j + 1. Thus we can apply the same argument just made, but now starting from j + 1. Repeating this inductively, F must
eventually drive the all agents X to the correct state, as along as each agent is eventually called repeatedly. �

Notice that the way that F10 works relies heavily on distinguishing left from right. Our 1-D model carries a global
orientation, since the underlying spatial graph Ln is directed. The algorithm would break down if this were not present. In
regard to run-time complexity, it is not hard to see that in the above example

Proposition 2 In all live uniform timing models, F10 has an average and worst-case runtime that scales linearly with the
number of agents.

Proposition 1 demonstrates that T10 is solvable with a rule of radius 1. However, this is not true of all patterns. For
example:

Proposition 3 The repeat pattern T1000 is not solvable with any rule f having r(f) = 1.

Proof: Suppose f were putation solution to T1000 with radius 1. The size-8 version of T1000 is 10001000. For this to be a fixed
point of f , all of the radius 1 balls in it must be fixed points of f . In particular, this means that f((1?, 0) = f((1, 0?, 0) =
f((0, 0?, 0) = f((0, 0?) = 1. But then 10000000 must also be a fixed point of f ; since this is not in T1000, f cannot be a
solution. �

This is in sharp constrast to:

Proposition 4 The 1/2-proportion pattern T1/2 described in the previous chapter is not solvable with local rules.

6
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These results for two specific patterns can be generalized. In section 2, I describe an effective simple necessary criteria,
called “local checkability”, for discriminating patterns that have local solutions from those that don’t. I then show that local
checkability is also sufficient by constructing a simple and generic (but potentially slow) solution for each locally checkable
pattern. In section 3 I describe a graph-theoretic characterization of locally checkable patterns, and use the technique to
compute a detailed runtime performance analysis of the solutions construction in the previous section. In section 4, I then
use the graph characterization to construct significantly faster (and in fact, optimal) local solutions for each locally checkable
patern. In section 5, I explore a resource tradeoff between radius and state in local rules. In section 6, I integrate the results of
the previous sections to construct a “global-to-local” compiler, a procedure whose input is a finite global pattern description
and whose output is an optimally fast local rule solving that pattern.

2 Local Checkability

2.1 A Necessary Condition for Solvability: Local Checkability

Let T be a pattern. Assuming that T contains at least one configuration X at size n, the definition of a local rule f being a
solution to pattern T requires that

lim
n→∞

fn
s (X) = Y

for some fixed configuration Y ∈ T . What do we know about this limiting configuration Y ? If Y is to be a stable limiting
point, then for all agents i ∈ Y , the action of f must be to not change anything. When f is applied to all the local ball
Br(i, Y ), the result must be to keep whatever state i already has:

f(Br(i, Y )) = Br(i, Y )(0).

The local balls around the agents in Y are therefore all fixed points of the local rule f . Moreoever, the agents’ local balls
overlap, forming a mutually interlocking configuration-wide stop state.

For example, if a local rule f with radius 2 is a solution to the T1000 pattern (introduced in the previous chapter), then
in the figure below:

0 0 0 11 0 00

all of the bracketed things are radius-2 balls that must be fixed states of f . That is,

f((1, 0, 0?, 0, 1) = f((0, 0, 0?, 0, 1) = f((0, 1, 0?, 0, 0) = 0; and f((0, 0, 1?, 0, 0) = 1.

In general, there are two conditions that f has to satisfy for this to work. First, for each n for which T ∩ Cn 6= ∅, the local
fixed states of f must be able to assemble into a stop state of size n – otherwise, the local rule would never come to a fixed
limit. Second, the fixed states cannot assemble into any configuration that is not in T – otherwise the system would end up
in a bad deadlock away from T , when started from such a configuration.

But now think of the above not as conditions for when some given f can solve T but rather as conditions on when T is
solvable in the first place. What these considerations suggest is that the for T to admit any solution f , it must be possible
to find a coherent set locally-specifiable stop states as a subset of T – and this may not be possible for all patterns T . To see
this formally, we define the notion of local checkability.

Recall the definition of Br,S , the set of balls of radius r with states in the set S (normally we’ll drop the subscript S).
Consider a binary-valued function Θ on Br, i.e.

Θ : Br → {0, 1}.

Θ should be thought of as a “recognition function” – Θ(z) = 1 means that the local ball z is “recognized” by the central
agent to be a correct local stop state, and Θ(z) = 0 otherwise. For any such function define

Θ(X) ,
∏

a∈V (X)

Θ(Br(a,X)).

This definition means that, when appplied to a whole configuration X, Θ(X) = 1 only when Θ(Br(i,X)) = 1 for all agents
i in X – that is, when all agents recognize a stop state.

7
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Definition 8 [Local Check Schemes] Let T be a pattern. Θ is a local check scheme for T of radius r if

• For all X ∈ CS, Θ(X) = 1 ⇒ X ∈ T.

• For all n such that T ∩ Cn,S 6= ∅, there is X ∈ Cn,S such that Θ(X) = 1.

The smallest r for which there exists a check scheme of radius r for T is the local check radius of T , denoted LCR(T ). If
there is no local cheme for T of any finite radius with m states, then LCR(T ) is defined to be ∞.

Intuitively, the first condition in the above definition is the one that prevents bad deadlocks, while the second condition
requires there to be at least one good fixed point. This is formalized by the following:

Proposition 5 If f is a solution to T (in any valid synchroniticity model), then r(f) ≥ LCR(T ).

Proof: Suppose f is a solution to T . Then if f(c,X) = X for all call sequences c only if X ∈ T . Moreover, for each n, choosing
any X ∈ Cn,S , let Y = lim(f, s,X); then Y ∈ Cn,S and f(c, Y ) = Y for all c, so Y ∈ T . Now define Θ : Br(f) → {0, 1} by
Θ(Br(f)(a,X)) = 1 if and only if f(Br(f)(a,X)) = l(a). Notice that X = f(c,X) for all c if and only if for all a ∈ V (X),
f(Br(f)(a,X)) = l(a), which holds if and only if

∏
a∈V (X) Θ(Br(f)(a,X)) = 1. Hence, Θ(X) = 1 implies X ∈ T , and for each

n there is a Y ∈ Cn,S such that Θ(Y ) = 1. Thus Θ is a local check scheme for T , and LCR(T ) ≤ r(f). �
Proposition 5 implies that for any pattern T that is solvable on all initial conditions, there is a local check scheme Θ

of some finite radius for T . This establishes a necessary condition for the existence of local solutions to a pattern T : that
LCR(T ) <∞. This simply describes the fact that for a problem to be solvable by local rules, the stopping condition of being
inside the pattern must be locally recognizable.

Example 2 The pattern T1000 is 2-locally checkable, with local check Θ(b) given by Θ(b) = 1 if b = 010?00, 001?00, 100?01,
000?10, 1?000, 10?00, 100?0, or 1000?, and Θ(b) = 0 in all other cases.

A slight generalization of the above construction shows that

Proposition 6 The repeat patterns Tq are locally checkable, with r(Tq) ≤ |q|/2. That is, LCR(Tq) ≤ |q|/2.

On the other hand, a radius of 1 with two states is insufficient to provide an LCS for the T1000 pattern. The argument for
this is very similar to the proof of proposition 3 in §1.6. Suppose Θ were a putative radius-1 LCS. The radius-1 neighborhoods
include 10star0, 00?0, 00?1, and 01?0. Any LCS for T1000 would have to accept 000, but then it would also have to accept
0 strings of any length, contradicting the first condition on an LCS. Hence, LCR(T1000) = 2. There are repeat patterns for
which LCR(Tq) is strictly less than |q|/2.

The proof of proposition 4 of §1.6, that proportionate patterns are not locally solvable, is also easily adapted to show
that proportionate patterns are not locally checkable either. That argument shows that

Proposition 7 For any nontrival proportionate pattern TF , LCR(TF ) = ∞.

The local checkability criteria therefore subsumes the results of section 1.6.

2.1.1 Local Check Schemes as Parts List

Since a local check scheme Θ is a function from the set of r-balls Br,S to {0, 1}, the inverse of 1, that is Θ−1(1), is a subset
of Br,S . Θ−1(1) is the set of local r-ball configurations that Θ “accepts.” Let

Θ(C) , {X ∈ C|Θ(X) = 1}

be the set of full configurations accepted by Θ, which we’ll call the Θ-admissible configurations. As a set of configurations,
Θ(C) is by definition a pattern. If T is any pattern and Θ is a local check scheme for it, then by definition Θ(C) ⊂ T and
Br(X) ⊂ Θ−1(1). Hence, Θ−1(1) is like a list of valid local parts, and Θ(C) is the set of one-dimensional structures that can
be built from putting those parts together.

Example 3 For example, suppose Θ is a local check of radius 3 such that Θ−1(1) contains precisely the balls: 1?000,
10?00, 100?0, 1000?, 10?001, 100?010, 1000?100, 0001?000, 0010?001, 0100?010, 1000?100, 0010?00, 0100?0, 1?00, 10?0,
100?, 1001?001, 0010?010, 0100?100, 1001?00, 0010?0, 0100? and 1001?000. One can (laboriously) check that Θ(C) =
{(100)n(1000)m|n,m ∈ N}.

8
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Some parts z ∈ Θ−1(1) may be useable with more than one other part. Define R(b) as the set of parts that are consistent
with have b to their left, i.e. (roughly) the set of states i such that the r-ball b[2 : 2r + 1] ◦ i satisfies Θ. |R(b)| is the right
compatibility index of b. Analagously, define L[b] as the set of parts consistent with having b to their left, i.e. (essentially)
those i such that the r-ball i ◦ b[1 : 2r] satisfies Θ. |L(b)| is the left compatibility index of b.

Example 4 In the Θ from example 3 above: the part b = 1?000 has |L(b)| = 0 and |R(b)| = 1; the part b = 0100? has
|L(b)| = 1 and |R(b)| = 0; the parts b = 1001?001 and b = 0001?000 have |L(b)| = |R(b)| = 1; and b = 0100?100 has |L(b)| = 1
and |R(b)| = 2.

2.2 Local Checkability is Sufficient: A General Construction

Proposition 5 says that local checkability is a necessary condition for robust static solvability, i.e. only for patterns T that
have local check schemes Θ can there be finite-radius rules f that can solve T on all initial conditions. Here, we will prove
the converse to proposition 5.

That is, we will make a generic construction that associates to each local check scheme Θ a local rule FΘ with finite radius
that is a solution to the pattern T = Θ(C), the pattern generated by Θ. As a local rule – an agent-based action lookup table
– FΘ will have to take as input local balls b with some finite radius, and output a state s to which the agent will change its
state when its local view is b. When iterated under any live call sequence (i.e one that always eventually calls every agent
again), the configuration will have to converge in finite time to an element of Θ(C). As long as it is finite, the radius of the
local rule FΘ need not be the same as the radius r(Θ), but by virtue of prop. 5, of course r(FΘ) ≥ r(Θ). In the construction
we make, the local rule FΘ will have radius 2r(Θ) + 1, that is, about twice the radius of the local check scheme Θ.

Intuitively, what our construction does is produce a brute-force “lexicographic” search through the set of possible locally
correct structures until one is found that is correct everywhere. I describe the construction of FΘ in two overall steps, broken
down into 10 constituent rules. In the following construction, we will suppose for the sake of ease that we have several extra
states to work with, states which do not appear in the pattern Θ(C). Later on in section 5.2, we’ll describe how to remove
the extra states. We’ll end up using no more than m+ 2 extra states, where m is the number of original states.

2.2.1 Step 1: Propagating Correct Structure

Step 1 initiates and propagates a “wave of structure creation.” To do this, we will use one additional state, which we’ll denote
B. Wave structure propagation is achieved by four rules.

• Rule 1: Suppose an agent considers the 2r(Θ) + 1 agents to its left and sees that when considered as an r-ball, their
states satisfy Θ – that is, Θ[B(−2r − 1 : −1)] holds true, where B is a local ball around i of radius at least 2r + 1.
Moreover, suppose that when it includes consideration of its own state, the r-ball B(−2r : 0) does NOT satisfy Θ. In
words, the agent is on a “border of correctness.” This situation applies to the agent targeted by the arrow in figure 4A,
step 1.

When this situation holds, the agent sets its state to B.

• Rule 2: Now suppose the agent has state B, and it sees when it looks to its right that so does the agent to its right;
that is, B(0) = B and B(1) = B. Suppose also that B[i− 2r− 1 : −1], considered as an r-ball, satisfies Θ. In this case,
the agent finds the minimum state j ∈ {0, . . . ,m− 1} for which X[i− 2r : i− 1] ◦ j, considered as an r-ball, satisfies Θ,
and sets F (b) = j (see fig. 4A, steps 3 and 5). This assumes there is at least one such j, and we’ll get to what happens
when there isn’t one later on in Rule 5.

• Rule 3: Suppose that an agent looks to 2r + 2 agents to its left, and sees that the agent directly on its left has state
B (i.e. B(−1) = B), while the agents B[−2r− 2 : −2], considered as an r-ball, satisfy Θ (see fig. 4A, steps 2, 4 and 6).
In this case, we set F (B) = B.

• Rule 4: Finally, suppose the agent is at the right end of configuration, i.e. i = |X|. Suppose the agent finds itself it
state B, and, like in Rule 2, sees that B[−2r − 1 : −1] satisfies Θ. In this case, the agent finds the minimum state
j ∈ {0, . . . ,m − 1} such that Θ holds for all B[−2r + j : 0], considered as right-end 2r + 1 balls, where j runs from 0
to r. and sets F (B) = j (fig. 4A step 7).

The effect of these four rules is very simple: to initiate and propagate forward a wave of Θ-correctness, and if possible,
when it gets to the end, complete it. Thought of in traditional computing terms, the B-state is a “self-organized Turing
machine head”; a head appears (as per rule 1) when a state is determined to have a local error; the head moves across the
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Figure 4: The action of the local rule FΘ on two initial conditions. (Agent taking the actions are indicated by arrows.) A) From step 1 to 2, a
right-moving wavefront emerges at a local error. In steps 2-7 it propagtes to the right end of the system, leaving behind a trail of Θ-correctness.
In step 8, the correctness wave disappears off the right end, leaving a complete correct configuration. B) In step 1, the correctness wave cannot
resolve a consistent structure at the right end, it reverses direction. In steps 2-5 it propagates to the first position where a “next choice” can be
made, whereupon in steps 6-8 it updates the choice reverses, and propagates (multiple steps) according to the new choice. Upon reaching the end
(step 9) again without being able to resolve, the process repeats (10 and 11, representing multiple steps) until an acceptable series of choices is
found.

system in a wave (as per rules 2 and 3), leaving a trail of local correctness behind it; and when possible, it halts (as per rule
4), disappearing off the boundary of the system. At any given time, multiple such Turing heads can appear; the left-most
head will eventually overwrite all the others.

2.2.2 Step 2: Recovering from Error

There are two ways in which the wave above can fail to solve the the problem: the turing head B gets to the end without
finding a state i satisfying the requirements in rule 4 above; or it fails to find a state i from which it can continue somewhere
in the middle of the space, as in rule 2. The basic way that the system recovers from such a situation is to turn around the
way, backtrack in the opposite direction until it is possible to make different choice other that the simple first choice made
in rule 3 above, implement the new choice, reverse direction, and then try again.

We’ll show how to implement this idea in six rules. Again, in each step let B represent the 2r + 2-radius ball around an
agent. It turns that we’ll need m+ 1 additional extra states, which we’ll call C and 41,42, . . . ,4m.

• Rule 5: Suppose agent i is in the situation of Rule 2, that is, i < |X| and Θ[B[−2r−1 : −1]]. But suppose there is no
j for which Θ[B[−2r : −1] ◦ j]. Similarly, the agent is in the situation of Rule 4, i.e. i = |X| and Θ[B[−2r − 1 : −1]];
but there is no j such that B[−2r+ l : −1] ◦ j for all 0 ≤ l ≤ r (fig. 4B steps 1 and 9). In this case, we introduce a new
additional state, call it C, and let F (B) = C.

• Rule 6: Suppose that the agent to the right of agent i is in state C, i.e. B(1) = C; that the r-ball to the left of agent
i satisfies Θ, i.e. Θ[B[−2r − 1 : −1]]; and the r-ball left of, but including i, also satisfies Θ, i.e. Θ[B[−2r : 0]]. Now,
suppose further the state of the agent i is the largest j ∈ {0, . . . ,m − 1} such that Θ[B[−2r : 0]] will hold. Such a
situation holds in figure 4B, steps 2,3, and 4. Whenever this situation arises holds, again let F (B) = C.

• Rule 7: Suppose that the agent i is in state C, i.e. B(0) = C, and that Θ[B[−2r − 1 : −1]] and Θ[B[−2r − 2 : −2]],
i.e. when the agent looks to its left 2r − 2 agents down, it sees that Θ is satisfied. Now suppose further that the state
of the agent to the left of i, i.e. B(−1), is NOT the maximum state for which this holds i.e. there is a state j > B(−1)
such that B[−2r − 1 : −2] ◦ j satisfies Θ (see figure 4B, step 5). Whenever this situation holds, we resort to one of the
m extra states 41,42, . . . ,4m, defining F (B) = 4B(−1).

10
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• Rule 8: Suppose that the agent i sees that Θ is satisfies to its left, so that Θ[B[−2r : 0]], and suppose that B(1) = 4B(0).
Furthermore, suppose that B(0) is NOT the maximum for which this is the case, i.e. there is j > B(0) such that
Θ[B[−2r : −1] ◦ j]. Then we define F (B) = j(B), the smallest such j (see fig. 4B, steps 6 and 10).

• Rule 9: Suppose that the agent i is in state 4j for some j, and either j 6= B(−1) or j is the maximum state such that
Θ[B[−2r − 1 : −2] ◦ j] holds (fig. 4B, step 7). In this case, F (B) = B.

• Rule 10: Suppose the agent i is the left-most agent, i.e. i = 1, and B(0) = C. Then F (B) = B.

The effect of these rules is very simple: when a mistaken choice has been made, leading to the inability to complete the
configuration, the structure propagation wave created in the first step is reversed, and propagates until a point where the first
chance to try a can be made; it then makes the change, reverses direction again, and propagates to the end; upon reaching
the end, either a completion is possible in which case the completion is made, or no completion is made, in which case the
wave reverses again and repeats the next-option, &c.

In terms of the Turing-head analogy, the C state represents the turing head moving in the opposite direction, and the
4i states some internal memory of the head that allow it to correctly re-write and know when to reverse direction to the
right-moving B-state.

2.2.3 Putting It Together

Define the algorithm FΘ by:

Algorithm 1: The Naive Generic One-Dimensional Local Rule
if Rule 1 or Rule 3 or Rule 9 or Rule 10 applies then

F (B) = B
else if Rule 5 or Rule 6 applies then

F (B) = C
else if Rule 2 applies then

F (B) = min{j ∈ [0,m− 1] | Θ[B[−2r : −1] ◦ j]}
else if Rule 4 applies then

F (B) = min{j ∈ [0,m− 1] | bj [B]}
else if Rule 8 applies then

F (B) = min{j > B(0) | Θ[B[−2r : −1] ◦ j]}
else if Rule 7 applies then

F (B) = 4B(−1)

else
F (B) = B(0).

end

A formal description of this algorithm is given in appendix A. We will describe in section 5.2 how to remove the requirement
for extra states, at the cost of adding another 4r(Θ) + 2 to the radius of information. The result is that:

Theorem 1 A pattern T is locally solvable if and only if the local check radius LCR(T ) is finite, i.e. local checkability is
a necessary and sufficient condition for solvability. Moreover, every solvable pattern T has a solution F whose radius of
information is at most 6 · LCR(T ) + 3.

The lexicographic search self-organized by FΘ tries out each new option by picking states in the order of their numerical
value. The order in which new states are picked can be chosen arbitrarily, not simply by numerical order of the states.

Definition 9 [Choice Ordering Function] A choice ordering function for Θ is a mapping

O : B2r+1 × [m] → [m]

such that O(b, ·) is a bijection from {0, . . . , |R(b)| − 1} to R(b).

In words, O specifies, for each valid local ball b, the ordering in by which differerent options for completing a structure from
b will be taken: O(b, 1) is the first choice, O(b, 2) the second choice, etc... and O(b, |R(b)|), the last choice. For each choice
function O, we can define a corresponding FO

Θ by replacing all references to the numerical order with appropriate references
to O (a formal specification is given in appendix 1). The rule FO

Θ is a solution to Θ for any ordering function O.

11
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3 Graph-Based Analysis

By closer inspection of the concept of local check schemes, we can produce deeper analysis of solvable patterns and compute
run-time performance of the naive algorithm. We can also produce more sophisticated faster algorithms.

3.1 Local Check Schemes as Graphs

Let Br,S be, as defined in §1.1, the set of local balls of radius r with states in the set S. Now, define D(r,m) as the directed
graph

D(r,m) = (V,E)

where V = Br,S , and where there is an edge (b1, b2) ∈ E if and only if there is a configuration X ∈ CS containing b1 directly
adjacent to the left of b2.

Two balls can only be adjacent in a configuration if they differ by at most one in size and have coincident states at all
common positions, i.e. if b1 is adjacent to the left of b2, then then |b2| ≥ |b1| − 1, and the states at the right-most |b1| − 1
positions of the ball to the left must equal the left-most |b1| − 1 states of the ball on the right. Hence,

D(r,m) =
(
Br, {(b1, b2) ∈ B2

r | b1(1 +max(0, ?(b)− r) : |b1|) = b2(1 : |b2| −max(0, ?(b2)− r))}
)
.

A local check scheme Θ of radius r (and m states) defines two classes of balls: Θ−1(1), the accepted parts, and Θ−1(0),
the invalid parts. Of course, Θ−1(0) = Br \Θ−1(1), since any local ball in Br is either valid or not. Hence, Θ−1(1) determines
Θ. On the other hand, Θ−1(1) ⊂ Br, so now simply assign to Θ the induced subgraph of D(r,m) whose nodes are Θ−1(1).
We thus have:

Proposition 8 Local check schemes of radius r are in 1-1 correspondence with subgraphs of D(r,m), via the assignment

Θ 7−→ G(Θ) =
(
Θ−1(1), induced edges from D(r,m)

)
.

Example 5 Take the repeat pattern T1000 and the local check for it described in example 2. The associated graph G(Θ) is:

100

*
1000 10001 00010 00100 01000 1000 000

* * * * * * *1 2 3 4 5 6 7 8

This graph has eight nodes and one cycle, of length 4. The paths in this graph can take either two routes: one is to bypass the
4-cycle, along the path (1, 2, 7, 8). This path corresponds to the configuration 1000, the size-4 instance of the pattern. The
other route is to go through the 4-cycle, repeating it some integral number of times n, along the path (1, 2, (3, 4, 5, 6)n, 7, 8).
This path corresponds to the configuration 10(0010)n00, the size 4(n+ 1) instance of the pattern.

3.2 Detailed Analysis

The graph representation allows us to classify the various kinds of locally checkable patterns, as well as perform a detailed
analysis the run-time performance of the naive glocal compiler. We will describe a few illustrative examples of increasing
complexity, and the general case.

3.2.1 Line Graph

The simplest case is when G(Θ) is a line graph:

Ni Nt

All nodes in G(Θ) have indegree and outdegree 1, except the unique initial node Ni (with indegree 0) and the unique
terminal node Nt (with outdegree 0). The pattern generated by C(Θ) consists of a single configuration X, corresponding to
the unique maximum-length path through G(Θ). Of course, the size of X is |X| = |G(Θ)|, the number of nodes in G(Θ).
Each agent has one and only one possible correct local view; G(Θ) being a line-graph corresponds to the situation of a
“self-organized coordinate gradient.” (More on this in section 5.1.)

Since there is only one solving configuration X, only initial configurations of size |X| can be solved at all. Whenever
|X0| = |X|, the rule FΘ will on average produce the solution on X0 in about 2 · |X0| timsteps. To see why this is, suppose

12
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that a configuration of the correct size has its left-most error at position i. Shortly therefore, a local turing head B-state will
appear at the position i as per rule 1 in Step 1; It will travel to the right at the constant rate of one agent per two timesteps
as per rules 2 and 3; when B reaches the right end, given that X0 has the right size, the B will disappear, leaving a correct
finishing state, as per rule 4. The solution has appeared in about 2(|X0| − i) steps, and averaged over all configuration, i will
be distributed uniformly. If |X0| 6= |X|, the trajectory of X0 under FΘ will be quasi-periodic (depending on the aperiodicity
of the call sequence s), with period at least 4|X0|.

3.2.2 Single Cycle Graph

The next simplest case is that when G(Θ) contains one cycle and maximal acyclic path:

C

P

Every repeat pattern corresponds to a graph of this kind. Denote the cycle C, and the maximal acyclic path P . In addition
to the unique initial and terminal nodes, there is a unique node α with InDeg(α,G(Θ)) = 1 and OutDeg(α,G(Θ)) = 2; and
unique β with the reverse. Otherwise, all nodes have indegree and outdegree 1. The pattern generated by such a Θ, C(Θ),
consists of infinitely many configurations Xn, where |Xn| = |P | + n|C|. There is only one configuration Xn at each size of
this form, corresponding to the path which repeats the cycle C n times. Only configurations larger than |P | and of length
n|C|+mod(|P |, |C|) can be solved.

Whenever |X0| satisfies this condition, the rule FΘ will typically produce the solution on X0 in about 2(|X0| − i+ C(r))
timesteps (on expectation), where C(r) is a constant independent of |X0|, no larger than m2r(m2r + 1). To see why this is,
suppose wlog that the state that in R(β), the state that continues the cycle is less than the state that moves on the rest of
P . If a configuration of the correct size has its left-most error at position i, a local turing head B-state will appear at the
position i as per rule 1 in Step 1; it will travel to the right at the constant rate of one agent per two timesteps as per rules 2
and 3, leaving behind copies of C until it reaches the end after 2|X0| timesteps. At this point, the head will reverse and back
up to the last instance of β, reverse again, and choose to write P instead. The same will repeat until the proper number of
copies of C have been overwritten to the right by the remainder of P ; this portion of P can be at most m2r in length, and
the amount of time it takes is therefore on expectation

∑m2r

i=0 2i = m2r(m2r + 1). Moreover, the average case time will scale
with |X0|, since |X0| − i will be roughly uniformly distributed between 1 and |X0|.

3.2.3 Multi-Cycle Linear Graph

Now suppose G(Θ) has several simple cycles in a row:

. . . . .C1
C2

Ck

δ1 δ2
δkγ1 γ2

γk

P

Let P denote the unique maximal acyclic path in this graph. Let Ci denote the cycles as shown in the figure. All nodes
in G(Θ) have indegree 1 except for the k nodes γi, where the indegree is 2, one incident edge coming from the cycle Ci and
one from P . Likewise, all nodes have outdegree 1 except for the k nodes δi, where the outdegree is 2, once edge going to P
and one edge remaining in Ci.

The pattern generated by such a Θ, Θ(C), consists of the configurations

{Xn1,...,nk
|ni ∈ N}

in which Xn1,...,nk
corresponds to the path through G(Θ) containing ni repeats of the unit Ci for each i. It has size

|Xn1,...,nk
| = |P |+

k∑
i=1

ni|Ci|. (1)

The k cycles in G(Θ) correspond to k “irreducible modules” that can be combined in varying multiplicities to produce
structures of many sizes. The fact that the cycle Ci is connected to Cj for j > i, but not vice-versa, means however that the
modules may only be combined in a specific ordering.
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Applying the Chinese Remainder Theorem, the set of sizes of the form in expression 1 consists a finite set of integers less
than |P |+lcm(|C1|, . . . , |Ck|), together with all integers larger than |P |+lcm(|C1|, . . . , |Ck|) of the form n·gcd(|C1|, . . . , |Ck|)+
mod(|P |, |C1|, . . . , |Ck|). At each such size n for which there are configurations in Θ(C) of size n, the number of possible
configurations scales as nk−1; that is, there are polynomially many possible correct configurations, where the polynomial
exponent is the number of cycles in G(Θ), less 1.

Example 6 Suppose that k = 3, |P | = 37, |C1| = 6, |C2| = 10, and |C3| = 15. Then lcm(|C1|, |C2|, |C3|) = 30 and
gcd(|C1|, |C2|, |C3|) = 1, so FΘ must be able to contruct configurations of all sizes greater than 37 + 30 = 67 (as well as
some smaller ones). For each n > 67, there are asyptotically ∼ n3−1 = n2 solving configurations. To construct even-sized
configurations it may be possible only to use instances of C1 and C2; to construct odd-sized configurations, at least one
instance of C3 must be used.

A solution F to G(Θ) must ensure that for configurations of every admissible size (such sizes are integers of the form
in expression 1), F drives such configuration to a solved state. Unlike in the case of the previous section, however, there
are many different possible solved states at each admissible size, and a variety of different unit combinations (taken with
various multiplicity) will have to be used to achieve all the solved states. Hence, the problem of solving Θ when G(Θ) is a
multiple-cycle graph is “resource-limited pattern choice,” which involves not just forming the pattern, but also the problem
of “distributedly” figuring out which pattern to form as a function of size constraints.

Now, let j be the minimal l for which gcd(|Cl|, . . . , |Ck|) > gcd(|C1|, . . . , |Ck|). (For instance, in example 6, j = 2.) Let
i be any node in Cj or the portion of P between Cj−1 and Cj . Let Y be any configuration such that |Y | + i + 1 is of the
form |P |+ gcd(|C1|, . . . , |Ck|) ·n for some n, but NOT of the form |P |+ gcd(|Cj |, . . . , |Ck|) ·m for any m. There is an infinite
arithmetic progression of such Y ’s. Now, consider the initial condition X0:

X0 = P [1 : i] ◦B ◦ Y.

In any live uniform timing model, the algorithm FΘ will require on the order of nmax(1,k−j+1) timesteps to solve X0.
The reason this is so is that FΘ will have to “try out” all possible configurations that can complete P [1 : i] before moving

on to using at least one copy of the cycle Cj−1. No number that is not 0 modulo gcd(|Cj |, . . . , |Ck|) can be written as sum
of multiples of |Cj |, . . . , |Ck|, so none of the configurations not containing an instance of Cj−1 can work. Yet they all are
explored. This is because the “self-organized turing head” represented by the coherent moving B◦B and C◦C states, makes
many reversals. Rules 7 and 8 are applied, forcing a head reversal, every time the C ◦ C head encounters a new possible
decision point. All these head reversals are futile. Now, there are k−j+1 cycles from Cj to Ck, so the number of completions
of X0[1 : i] configurations scales with |X0| as (|X0| − i)k−j+1. Thus, there is a constant C(r) such that the run-time of F
on X0 will be at least C(r) · (|X0| − i) + 2(|X0| − i)k−j+1; it can also be shown that the run-time is bounded in all cases
by D(r) · (|X0| − i) + 2(|X0| − i)k−j+1 for another constant. The average and worst-case run-time (in live, uniform timing
models) of FΘ is therefore asymptotically O(nL) for some integer L such that 1 ≤ L ≤ k − 1

3.2.4 One Non-Trivial SCC

Given a directed graph G and two nodes x, y ∈ G, x ∈ G is connected to y ∈ G if there is a path P = (P1, . . . , Pk) in G such
that P1 = x and Pk = y. A strongly connected component (SCC) of G is a maximal subgraph S ⊂ G such that for all x, y ∈ S,
x is connected to y, AND vice versa. An SCC is trivial if it contains a single node. The strongly connected components of
a graph form a partition of G, and non-trivial SCCs consist of unions of connected cycles. The adjacency matrix A(G) is
associated to G by letting Aij equal 1 if node i is connected to node j, and 0 zero otherwise. A(G) is called the adjacency
matrix of G. Like any other matrix, A(G) has eigenvalues, that are a priori complex numbers. When G consists of a single
strongly connected component, the largest-norm eigenvalue of A(G), denoted λmax(G), is a real number no less than 1, with
equality iff G contains a single cycle.

Suppose G(Θ) has a single nontrivial strongly connected component consisting of several cycles:

Denote the strongly connected component C. This graph may contain multiple maximal acyclic paths. The indegrees and
out-degrees of the nods can range between 1 and m, where m = |S|. Let A(Θ) be the set of all maximal acyclic paths in
G(Θ) and let C1, . . . , Ck enumerate the induced cycles in C. Each of these induced cycles is like an “irreducible module” of
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the pattern, and the overall pattern generated by such a G(Θ) consists combining these modules freely in arbitrary orders
and multiplicities.

The sizes of configurations that can thereby be obtained includes a finite set smaller than lcm(|C1|, . . . , |Ck|), together
with the union over P ∈ A(Θ) of all integers of the form gcd(|C1|, . . . , |Ck|) · n +mod(|P |, |C1|, . . . , |Ck|) larger than |P | +
lcm(|C1|, . . . , |Ck|). Using standard techniques, it can be shown that at each such size n for which there are configurations
in Θ(C) of size n, the number of possible configurations scales as (λmax(C)n; that is, there are exponentially many possible
correct configurations, where the exponential growth rate is the top eigenvalue of the adjacency matrix of the connected
component C.

The problem of solving this type of Θ is, like the previous case, a “resource-limited pattern choice,” problem. However,
if X0 is of the proper size, for reasons similar to the arguments in the first two cases, the average and worst-case runtime
scales like C(r) · |X0| for some constant C(r).

3.2.5 Multi-SCC Linear Graphs

Now suppose G(Θ) has several nontrivial strongly connected components in a linear arragement, combining and generalizing
the structure of the past several sections:

. . . 

C1 C2
Ck

If each of the SCCs contains a single cycle, we’re in the case of §3.2.3. Let Ci denote the i-th nontrivial strongly
connected component. Let λΘ = maxi{λmax(Ci)}. Let gi = g(Ci), the greatest common divisor of the lengths of the induced
cycles in Ci, and li their least common multiple. As in the previous example with a single component, the admissible
sizes include a finite set smaller than lcm(l1, . . . , lk), together with the union over P ∈ A(Θ) of all integers of the form
n · gcd(g1, . . . , gk) +mod(|P |, g1, . . . , gk) larger than |P |+ lcm(l1, . . . , lk).

The run-time analysis of the algorithm FΘ on such a pattern is slightly subtle. Let j be the minimal l ≤ k for which⋃
P∈A(G(Θ))

{gcd(gl, . . . , gk)n+mod(|P |, gcd(gl, . . . , gk)|n ∈ N}

is a proper subset of ⋃
P∈A(G(Θ))

{gcd(g1, . . . , gk)n+mod(|P |, gcd(g1, . . . , gk)|n ∈ N}.

Let P be a maximcal acyclic path and X0 an initial condition such that |X0| − |P | is of size divisible by gcd(|C1|, . . . , |Ck|)
but not gcd(|Cj |, . . . , |Ck|); suppose moreover that the left-most error in X0 is at position i, and that X0[1 : i] = P [1 : i].
Then the head that appears near i will have to cycle through all possible completions of X0[1 : i] before being able to come
to a correct solution. There are now two cases. The number of such configurations can scale: (A) polynomially, if none of
the Cl for l ≥ j contain multi-cycle SCCs; or (B), exponentially, if at least one SCC Cl for l ≥ j contains two cycles. Hence,
the average and worst-case runtime of FΘ will scale either as O(nL) for integer L such that 1 ≤ L ≤ j; or as O(λn) where λ
is a real number such that 1 ≤ L ≤ λΘ.

3.3 The General Case

Let G = {Si} be the set of strongly connected components of G. Define a binary relation <G on G in which Si <G Sj iff
Si 6= Sj and there is a path from Si to Sj in G. Because of the definition of strongly connected, G , (G, <G) is a partial
ordering. A WCC can be thought of as linear subordering of G. In terms of G(Θ), the general picture is this:

Figure 5: Maximal acyclic paths Pred and Pblue with SCC(Pred) and SCC(Pblue) outlined.
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in which the SCCs correspond to islands of configurations composed of alternatable irreducible repeatable modules bridged
by unrepeatable configurations; and every SCC is in one or more WCC, each of which corresponds to a linear ordering of
non-alternatable blocks.

The general form of G(Θ), therefore corresponds to the union of several (possible non-disjoint) WCCs, each of which is
of the form described in §3.2.5, and the results respect this structure. For any maximal acyclic path P ∈ A(G(Θ)), define
SCC(P ) =

⋃
x∈P SCC(x,G), the set of all strongly connected components that P passes through. Let InCyc(P ) be the set

of induced cycles in all these SCCs. Let E(P ) = {|c|, c ∈ InCyc(SCC(P ))}, the set of sizes of induced cycles of SCC(P ).
For the red path, E(Pred) = {5, 7}, while for the blue path E(Pblue) = {4, 8}. Given a set of integers like E(P ), we can
compute its least common multiple, L(P ) = lcm(E(P )) and its greatest common divisor T (P ) = gcd(E(P )). For example,
L(Pred) = 35 and T (Pred) = 1, while L(Pblue) = 8, and T (Pblue) = 4.

The arithmetic progression A(a0, d) is the set of integers {a0 +md|m ∈ N}. a0 is called the initial value and d the common
difference. For example {3, 8, 13, 18, 23, 28, . . .} is A(3, 5).

Proposition 9 Let K(P ) = maxP∈A(G)L(P ). Then

Sizes(Θ) ∩ {K,K + 1, . . . ,∞} =
⋃

P∈A(G(Θ))

A(|P |, T (P )).

In words, ignoring a finite set of size controlled the least common multiple of the cycle sizes, the set of Θ-admissible
sizes is a union of finitely many arithmetic progressions whose initial values are the lengths unrepeatable patterns in Θ(C)
and whose common differences are the greatest common divisor of the sizes of the repeatable segments connected to those
unrepeatable patterns.

Example 7 In the example in figure 5, the maximal acyclic path highlighted in red is of length 19 and intersects with two
strongly connectected components, each with a single cycle, of size 5 and 7 respectively, and hence contributes the arithmetic
series A(19, 1). The blue maximal acyclic path is of length 11 and intersects with one strongly connected component containing
two cycles of length 4 and 8, so contributes A(11, 4).

Again, given a maximal acyclic path P , denote by N(P ) the number of strongly connected components that p intersects.
Let

N(Θ) = max{N(P ) | P ∈M(G(Θ))}.

Intuitively N(Θ) measures the largest number of non-interchangeable modules that can be connected in Θ. For the pattern
in figure 5, N(Pblue) = 1, N(Pred) = 2, and thus N(Θ) = 2. Let

λΘ = max{λmax(c)|c is a SCC of G(Θ)}

so that for the example in figure 5, λΘ = 1.1148.
With these definitions at hand, we can state:

Proposition 10 There is a constant C(r) such that for all n of admissible size, if Θ contains no alternatable segments,

|Θ(C) ∩ Cn| ∼ C(r)nN(Θ)−1,

while if Θ contains two or more alternatable segments, then

|Θ(C) ∩ Cn| ∼ C(r)λn
Θ.

In words, a lack of alternability leads to polynomial growth, while alternatable of modules generates exponential growth.
The growth rates are dependent on the number and relationships between the modules. For the example in figure 5,
|Θ(C) ∩ Cn| ∼ C · 1.1148n.

In the polynomial (non-alternatable) case, the interpretation is easy: the polynomial growth order is 1 more than the
maximum number of modules that can be connected. In the exponential case, the internal structure of the module interela-
tionships becomes more important than the number of indepdent modules. If the component is regular with degree d, then
λmax = d− 1. On the other hand, if it is a union of C cycles of length L joined at one point, then λmax = C1/L.

The same analysis of run-time from the above cases generalizes to:
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Proposition 11 For any live uniform synchrony model, there are positive constants K1(Θ),K2(Θ) such that either

K1(Θ)nC(Θ) ≤ TTSavg
S (FΘ)(n) ≤ TTSworst

S (FΘ)(n) ≤ K2(Θ)nC(Θ)

or
K1(Θ)λ′(Θ)n ≤ TTSavg

S (FΘ)(n) ≤ TTSworst
S (FΘ)(n) ≤ K2(Θ)λ′(Θ)n

where in the former case C(Θ) is a positive integer satisfying 1 ≤ C(Θ) ≤ max1, N(Θ), and in the latter λ(Θ) is a real
number greater than 1, satisfying 1 ≤ λ′(Θ) ≤ λΘ.

In words, the average and worst-case run-time of FΘ are the same, are either polynomial or exponential, and whose
asyptotic rates are completely determined by the graph structure of G(Θ).

4 Faster Algorithms

We can use the graph interpretation of local check schemes introduced in the previous section to construct local rules with
much shorter run-times.

4.1 A Linear-Time Algorithm

As we have just seen, the initial configurations that cause the slowest running time of the algorithm FΘ are those which start
the system “past” a necessary choice point, and condemn it to make many futile backtrackings before accessing a module of
the right size. It turns out that there is a simple modification of FΘ that will enable an agent at a decision point to decide,
with a purely local computation, when a given reversal would be necessarily be futile, and therefore to choose not to reverse.
The ability to avoid futile backtrackings reduces the runtime dramatically.

Suppose Θ is a local check scheme of radius r such that G(Θ) is a multi-cycle linear graph as in §3.2.3, with cycles Ci and
maximal acyclic path P . We will make two modifications to the rules of FΘ, turning it from a polynomial time algorithm
into a new algorithm F ′Θ whose worst-case time is always linear in system size, independent of the number of cycles in G(Θ).

For the first modification: recall that as per Rule 6 in FΘ, given an initial condition X0 of the form

X0 = Y ◦C,

where Y is Θ-consistent, the left-moving turing head C will move across the configuration, leaving a string of C states behind
it, until it arrives at a new decision point:

. . . . . . . . . . . .

Modify Rule 6 to a new Rule 6’, so that when the head C ◦C progresses to the left, instead of leaving behind a string
of C’s, it writes a string of states consistent with the local check scheme Θ from the right-end:

. . . . . . . . . . . .

. . . . .C1
C2

Ck

As the C-head moves, it leaves behind copies of Ck flanked on the right by a Θ-consistent right end, i.e. subconfigurations
of the form Cm

k ◦ P≥k where P≥j referes to the portion of the maximal path after δj .
We now make a second modification to the rules of FΘ. Suppose that an agent sees in its local radius 2r + 1 ball, the

situation in which: i) its own state is that of the left moving turing head, i.e. B(0) = C; ii) to the left of the C-head, that
the ball B(−2r− 1 : −1) is Θ-consistent, and at the decision point δi in some cycle Ci; while iii) to the right of C, the agent
sees a ball B(1 : 2r + 1) that is Θ-consistent, in the cycle Cj with j ≥ i, and is at some position l within that cycle:

. . .

Ci Cj
δi

. . . . . . . . .

position l 

. . .
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In this case, by definition of Rule 7 and Rule 8 in FΘ, the system would reverse direction of the head to B, if a “next
state” is available at B(−1). This reversal might be futile. In fact, let’s assume that all the states of the agents down to the
right end have been constructed by the left-moving head according to the modified rule 6. In this case, the agent knows that
the size of the remainder of the configuration to its right is of the form

gcd(|Cj |, . . . , |Ck|) · n+ l + |P≥j |

for some n. If the head reverses, it can only form a completion if there is some m for which

m · gcd(|Ci+1|, . . . , |Ck|) + |P≥i| = gcd(|Cj |, . . . , |Ck|) · n+ l + |P≥j |+ r + 2.

By the chinese remainder theorem this is in turn only possible if

A = l + |P≥j |+ r + 2− |P≥i+1|

is divisible by
B = gcd(|Ci+1|, . . . , |Ck|).

Moreover, if A is divisible by B and the size J is larger than L = lcm(|Ci+1|, . . . , |Ck|), a completion will necessarily exist.
Computing A and B is a purely local computation, since the value of l, i, and j, can locally be determined by the agent from
the 2r + 1 ball as illustrated in the last figure. Hence, let’s replace Rule 7 and Rule 8 with Rule 7’ and Rule 8’ so that the
head reverses only if A is divisible by B.

Denote the resulting local rule with these modifications to rules 6,7,8 by F ′Θ. Because it bypasses futile reverses whenever
|X| > L (and L is a constant depending only radius r), the worst-case run-time of F ′Θ, (on expectations over call sequences)
is linear in |X0|, regardless of the number of cycles in G(Θ).

To see how this works in practice, let’s work through an example. Suppose Θ is the radius-8 local check scheme on 2
states generated by accepting all the 8-balls in the configurations

{(100000)n(1000000000)m(100000000000000)o|m,n, o ≥ 2}.

The graph structure of G(Θ) is:

C1 C2 C3

The graph has a single maximal acyclic path P (highlighted in red) of length 37 and three cycles, of length 6, 10, and
15 respectively. (This G(Θ) has the structure of the check scheme mentioned in example 6.) The cycles C1, C2, and C3

correspond to repeatable sequences 100000, 1000000000, and 100000000000000, respectively. For the sake of convenience,
let’s represent them by color sequences , , and , respectively.

Suppose we start from the initial condition X = (100000)2(1000000000)n100 ◦ B for n > 6. X contains no instances of
the C1 loop. It has size 10n+ 16, and since |X| − |P | = 10n− 21 is congruent to 4 modulo gcd(|C2|, |C3|) = 5, it cannot be
solved unless an instance of C1 is used.

repeated 7 times

. . . Because X is not locally completable to be consistent with Θ at the right end, under Rule 5 in FΘ, a left-moving turing
head will form. Under the new Rule 6’, when it reaches the first decision point δ2 at position 10n+12, the left-moving head
will see a local situation like this:

δ2
C1 C2 C3

. . .

In the notation from above, i = 2, j = 3, left ball B(−2r−1 : −1) is at the decision point δ2 in cycle C2 and the right ball
B(1 : 2r+1) is at position l = −6 (in the right-terminal segment). In this case, A = −6+8+8+2−8 = 4 and B = |C3| = 15;
A is not divisible by B so the head does not reverse. At the next decision point, the agent carrying the C head sees:
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δ2
C1 C2 C3

. . .

In this case, again i = 2 and j = 3. Now l = 4, so A = 4 + 8 + 8 + 2 − 8 = 14 and B = |C3| = 15; again, no reversal.
At the next decision point, again i = 2, j = 3, and now l = 14, so again no reversal. At the i-th decision point, l is such
that 10i + 12 = 15m + 8 + l, so that either l ≡ 4(15) or l ≡ 14(15). Thus, no reversal takes place before the C reaches
the left end of the configuration. The configuration is now X ′ = C ◦ Y , so under Rule 10, this first becomes B ◦ Y . Then
under Rule 2 and Rule 3, the head reverses and travels all the way to the right, eventually generating the configuration
Cm1

1 ◦ C1(1 : r) ◦ B, where C1 = 100000, m1 = b(10n + 16)/6c and r = mod(10n + 16, 6) − 1. Now, there is a solving
configuration X ′ = (10000)m′

1 ◦ (1000000000)m2 ◦ (100000000000000)m3 where m′
1 ≥ lcm(|C1|, |C2|, |C3|)/|C1| = 5. This

solved configuration is achieved from X ′ by F ′Θ within 2lcm(|C1|, |C2|, |C3) timesteps (on expectation over call sequences).
Putting it all together, it took about 2|X| = 2(10n+ 16) timesteps for the head to travel once from the right end to the

left end; and another 2(10n + 16) for it to travel back to the right; and 2lcm(|C1|, |C2|, |C3) to finish from there. Hence,
TTS(F ′Θ, X) is linear in n; whereas under the original rule FΘ, TTS(FΘ, X) would have been quadratic in n.

This construction can be extended to work for all local check schemes. Given a generic G(Θ), suppose we’ve chosen a
maximal initial path Pi and a maximal terminal path Pf in G(Θ):

Pi Pf

In the above figure, the red path is a maximial initial path, and the blue a maximal terminal path. The set of nodes
on paths P such that P [1 : |Pi|] = Pi and P [|P | − |Pf | + 1 : |P |] (i.e. the colored nodes in the figure above) comprises a
subgraph GPi,Pf

on which the construction of F ′Θ already works. We now order the (Pi, Pf ) lexicographically, and construct
an algorithm that takes each pair (Pi, Pf ) one at a time. First, it constructs Pi on the first |Pi| agents, and Pf on the last
|Pf | agents, and then applies the construction F ′GPi,Pf

relative to that choice; if no solution is found for a given choice of
(Pi, Pf ), the algorithm moves on the next pair in the lexicographic ordering and tries again. Once the last pair is exhausted,
the algorithm returns to the first and begins the process again.

A complete precise description of this algorithm is found in appendix 2. A number of extra states – no more than |G(Θ)|/2
– are used to implement this algorithm, and we will see in section 5.2 how to remove these states, and the cost of an addition
of 4r to the radius of the rule. This results in:

Proposition 12 All locally solvable patterns T are solvable in linear time, by a local rule whose radius of information is at
most 10 · LCR(T ) + 3.

4.2 Patterns that Admit Local Patching

Passing from FΘ to F ′Θ reduces the asyptotic runtime from exponential or polynomial to linear. For certain patterns –
patterns that admit “local patching” – an even faster solution is possible.

Suppose we are given the radius 3 local check scheme Θ on 3 states {0, 1, 2} consisting of the 3-balls arising in the
configurations generated by freely alternating combinations of the sequences 1000 and 100112001. The graph G(Θ) associated
with Θ has the structure:
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G(Θ) has 17 nodes, one maximal acyclic path of length 8, and one strongly connected component with two cycles C1 and C2

of lengths 4 and 9 respectively.
Now, consider the subconfiguration Z2 = . . . (1001)410(1001)2 . . .; Z2 looks like:

. . . . . . 

in which blue reprepresents state 1 and red represents 0. This subconfiguration is a repetition of the 4-cycle C1 everywhere
– except for one “bad spot” at the location indicated by the dotted oval, where Θ is not satisfied.

It turns out that there is a “local patch” to “correct” the bad spot, achieved by replacing the states of the 18 agents to
the left of the bad spot with 100112001100112001, that is, two copies of the cycle C2. Pictorially:

. . . . . . 

. . . . . . 

in which green color represents state 2. Such a local patch exists for all subconfigurations of the form Zi = . . . (1001)n ◦
10i ◦ (1001)m . . . for i = 0, 1, 2, as long as n is larger than 4. This can be verified case by case, but the generic reason is that
the greatest common divisor of the lengths of the two cycles C1 and C2 is 1, so by the Chinese Remainder theorem, every
integer larger than lcm(|C1|, |C2|) = 36 can be formed by some non-negative combination of |C1| and |C2|. Also as a result
of the Chinese remainder theorem, the size of local patch can always be chosen to be no larger than lcm(|C1|, |C2|).

Consider all the configurations that are concatenations of such Zi’s, and denote this set Z. It is simple to define a local
rule F1 that drives every X ∈ Z into a solved state. Details of this construction are given in appendix 3, but intuitively what
F1 does is to “apply the local patch” at every bad spot, effecting the replacement shown in the above figure one step at a
time:

. . . . . . 

. . . . . . 

. . . . . . 

. . . . . . 

. . . . . . 

. . . . . . 

. . . . . . 

Because each of the bad spots and local patches are independent, these replacements happen independently for each bad
spot in the concatenation.

. . . . . . 

. . . . . . 

. . . . . . 

. . . 

separate ``bad spots''

separate ``local patchings''

Now, let’s see how long it takes for F1 to finish, for an initial condition X ∈ Z. In any timing model, during every
round (i.e. period in which each agent is called at least once), at least one step of each independent patching is made;
and each patching is at most of size lcm(|C1|, |C2|). Hence, TTSS(F,X) ≤ RS(|X|) · lcm(|C1|, |C2|), where RS(n) is (as
defined in 1.3), the average length of a round on a configuration of size n in the timing model S. In the synchronous timing
model, the length of any round is 1 so TTSSs(F1, X) ≤ lcm(|C1|, |C2|) for all X ∈ Z. In the k-bounded asynchronous model,
RS(k)(n) ≤ knm so TTSS(k)(F1, X) ≤ k ·lcm(|C1|, |C2|), while in the totally asynchronous timing model RSa(n) ≤ Knlog(n),
for some constant K, so TTSSa(F1, X) ≤ lcm(|C1|, |C2|) ·K · log(|X|).
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It is important to note that rule F1 is defined only on local balls that arise in the trajectories connecting the configurations
in Z with their corresponding solved states. Denote this set of local balls B1. We have to extend the definition of F1 to the
remaining local balls, so that arbitrary initial conditions are driven to Z. The key point now is that we can do this with an
algorithm F2 that has runtime comparable to that of F1. The basic principle behind this very simple algorithm is to have
any agent that isn’t already part of a subconfiguration that repeats C1 = 1000 start producing C1, and to have those agents
that are part of such a subconfiguration extend such configurations:

. . . . . . 

. . . . . . 

. . . . . . 

. . . . . . 

. . . 

localized bad spot

The algorithm F2 eventually drives any initial configuration to one which is consistent with C1 at every point except at
localized “bad parts”, i.e. a configuration in Z. To ensure that regions of correctness always grow, the rule allows a region
of k to overwrite (from the left) a region of size l only when k ≤ l:

. . . 

3 repeats doesn't overwrite 45 repeats overwrites 3

. . . 

. . . . . . 

Once any such region is larger than lcm(|C1|, |C2|)/|C1|, it needn’t grow any longer. Details of this construction are also
given in appendix 3.

Let’s compute, heuristically, how long it takes for F2 to drive an arbitrary configuration to Z. For the synchronous model,
it’s not hard to see that the configurations which are worst for F2 are those which have many small, equally-sized repeats of
C1-incorrect subconfigurations concatenated together (so-called “tandem repeats”):

. . . 
tandem repeats

. . . 

. . . 

. . . 

Because of the synchronous update, each small unit will attempt to overwrite the one to its right simultaneously; assuming
that |C1| > 1, no progress is made, except on the boundaries of the tandem repeat region. In the worst case, such tandem
repeats cover nearly the entire initial configuration X; for these X, TTSSs(F2, X) scales with |X|. On average, however, the
length of the largest tandem repeat in a configuration can be shown to scale with log(|X|). Hence, when |C1| > 1,

TTSworst
Ss (F2)(n) ∼ A · n and TTSavg

Ss (F2)(n) ∼ B · log(n)

for some constants A and B.
In any asynchronous timing model, or when |C1| = 1 in the synchronous model, the problem posed by tandem repeats is

irrelevant since in the former case all local symmetries are broken by the asynchronous update and in the latter, there are
no symmetries to be broken. Hence, the runtime of F2 is simply bounded by the average round time of the timing model.
Thus, in the k-bounded asynchronous model

TTSworst
SS(k)(F2)(n) ∼ TTSavg

S(k)(F2)(n) ∼ O(1),

while in the totally asynchronous timing model

TTSworst
Sa (F2)(n) ∼ TTSavg

Sa (F2)(n) ∼ O(log(n)).
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Having defined F1 and F2 separately, we combine them

F̃ (B) =

{
F1(B), if B ∈ B1

F2(B), otherwise

where B1 is, as defined above, the set of local balls on the trajectories between configurations with isolated bad spots and
solved states. In words, F1 acts whenever a local configuration is already a locally isolated bad spot; and F2 acts otherwise.

This whole set of constructions can be repeated whenever G(Θ) contains a strongly connected component C such that
the greatest common divisor of the lengths of the induced cycles in C is 1 – that is, when Θ “admits local patching.” (See
appendix 3 for details.) As a result,

Proposition 13 Suppose Θ is a local check scheme such that

g(Θ) , min{g(C)|C ∈ SCC(G(Θ))} = 1.

Then there is a solution F̃Θ to Θ whose run-time scales:

• as O(1), in the worst-case, for the k-bounded asynchronous timing model or the synchronous timing model if |C| = 1
for some cycle C ∈ G(Θ).

• as O(log(n)) in the worst and average-case, for the totally asynchronous timing model

• as O(log(n)) in the average and O(n) in the worst case for the synchronous timing model if |Ci| > 1 for all cycles Ci

in G(Θ).

4.2.1 The Trivial Case

There is one corner case in which an even faster algorithm is possible. Define a pattern T to be trivial if there is an N such
that T contains all configurations of size N or larger, i.e. ∪i≥NCi ⊂ T . T is locally checkable: choose r = dN/2e and let
Θ be the check of radius r that accepts all radius r-balls b of size 2r + 1, and accepts balls of size less than 2r + 1 iff they
correct to configurations in T of size N or less. For each size n ≤ 2r for which T contains a solution, choose a unique Xn of
size n such that X ∈ T .

Now, define a local rule F ∗ of radius R = 2r + 1 by”

F ∗(B) =

{
B(0), |B| ≥ R

X|B|(?(B)), otherwise
.

For all n ≥ N , F ∗ “solves” any configuration of size n in zero timesteps, since any such configuration is already solved and
on these configurations F ∗ simply is the identity. Hence TTS(F ∗)(n) approaches 0 as n→∞.

4.3 Optimality

Having been able to reduce the run-time from polynomial or exponential to linear, and in some specific cases, to constant or
logarithmic, we naturally want to know if we’ve done the best we can. In other words, are the fast algorithms we described
in the previous two sections optimal? Indeed they are.

Let’s first define what we mean by optimality.

Definition 10 [Optimality] Suppose f is a solution to a pattern T in timing model S. Then f is worst-case (resp. average
case) optimal if for all solutions g to T in timing model S, there is a constant K(g) such that for all n, TTSworst

S (f)(n) ≤
K(g)TTSworst

S (g)(n) (resp. TTSavg
S (f)(n) ≤ K(g)TTSavg

S (g)(n)).

Proposition 14 • For any locally checkable pattern T such that all local check schemes Θ for T , g(Θ) > 1, the local rule
F ′Θ defined in §4.1 is worst- and average-case optimal in all live uniform timing models.

• For any nontrivial locally checkable pattern T for which there is a local check scheme Θ such that g(Θ) = 1, the local
rule F̃Θ defined in §4.2 is worst- and average-case optimal in the synchronous, k-bounded asychronous, and totally
asynchronous timing models.
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To see why this holds, let’s first consider the claim that in the k-bounded asychronous timing model, for any nontrivial
local check schemes Θ that admits local patching, F̃Θ is average-case optimal. To establish this we need to show that when T is
nontrivial, for any solution g to any local check scheme Θ for T , there is a constant K(g, k) such that TTSavg

S(k)(g)(n) > K(g, k)
for all n. Now, let B be any ball in Br(Θ), and let XB = {X ∈ C|B ∈ Br(X)}. It is clear that XB in C is a full-measure
subset of C. On the other hand, T being nontrivial means there is B∗ such that Θ(B∗) = 0, and either |B∗| − ?(B∗) > r
or ?(B∗) > r. Suppose X ∈ XB∗ , and that Br(j,X) = B∗. Then any solution g to X must cause some agent i such that
|i − j| ≤ 2r to change state; hence TTS(g,X) ≥ τ(k, |X|, 2r + 1), where τ(k, n,m) is the expected number of timesteps in
the S(k) timing model before at least one agent out of a given group of m agents is called, in a size-n configuration. It is
easy to see that τ(k, n,m) ≥ kn/4m so since XB is full meausure, TTS(g)(n) ≥ k/(8r(g) + 4).

Now, let’s look at the claim that F̃Θ is optimal for the synchronous model, for nontrivial Θ that admit patching. There
are two cases: a) when there is a cycle C ∈ G(Θ) with |C| = 1 and b) when there is not. In the case of a), then as long as T
is nontrivial, let B∗ be as in the previous argument. For any X ∈ XB∗ , X is not already solved; so for any solution g, at least
one time-step is required before g(X) can be solved. Hence by definition of the synchronous model, TTS(g,X) ≥ 1 for all
X ∈ XB∗ . In the case of b), notice that the tandem repeat argument from the previous section works for any algorithm, not
just F̃ . Any algorithm g will have TTS(g,X) ≥ (1/(2r(g) + 1)) · L(X), where L(X) is the length of the maximum tandem
repeat of a sequence shorter than the shortest cycle in G(Θ). In the worst case L(X) ∼ |X| while on average over all X,
L(X) ∼ O(log(|X|)), yielding the result.

Finally, let’s turn to the case of showing that F ′Θ is optimal for Θ that do not admit patching, i.e. for which for every
strongly connected component C in G(Θ), the greatest common divisor of the lengths of the induced cycles is greater than
1. Showing this result in for worst-case optimality is simple (the result for the average-case requires several more advanced
techniques and is outside the scope of these notes). Let f by any solution to Θ, and let C1 be a cycle in G(Θ(fix(f))).
Choose y such that

. . . C
m(r)
1 yC

m(r)
1 . . .

is not Θ-consistent and there is no z and m < m(r) such that |z| = (m(r) − m)|C1| + |y| and . . . C
m′(r)
1 zC

m(r)
1 . . . is Θ-

consistent. Such a y can be choosen because Θ does not admit patching. Now, let Y and Z be such that Y ◦ Cm(r) . . . is Θ
consistent and . . . Cm(r) ◦ Cm(r) is Θ-consistent, and let

Xn = Y ◦ (Cm(r)+n
1 ◦ y ◦ Cm(r)+n

1 )anZ

where m(r) = dr(f)/|C1|e, and an is chosen such that |Xn| = |Y |+ |Z|+ an(2m(r)|C1|+ 2n+ |y|) is a Θ-admissible size. By
the Chinese remainder theorem, an can always be chosen to be less than the least common multiple of the lengths of induced
cycles in the strongly connected component of C1. Now, in all live timing models evidently TTS(f,Xn) > n|C1|/(2r(f)+1).
Hence

TTSworst(f)(n) > ((n− |Y | − |Z|)/an − |y| − 2m(r)|C1|)/2 ≥ k(r)n

for some constant k(r).

5 The Radius-State Tradeoff

5.1 Coordinates and The Static Tradeoff

Two of the most important properties of local check schemes are their ability to model coordinate systems, and their ability
to tradeoff radius for state.

Suppose our task is to self-organize a coordinate system within our one-dimensional model system. Let’s make the
assumption that the number of possible agent internal states, |S| = m, is large compared to the size of a configuration X. A
“coordinatization” of a configuration X with of size 8, with states, would look something like

1 2 3 40 6 75

One simple way to achieve this state is via the radius 1 local rule F defined on the local ball b by

F (b) =

{
0, if b is the left-most agent
1 + min(b), otherwise
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in which min(b) denotes the minimum state value seen in the local ball b. A s long as |X| < m, this rule will generate a state
in which each agent’s position is reflected in its internal state value. The “way that it works” is that – regardless of initial
state – the left-most agent serves as an anchor for the origin position, and the correct coordinate value propagates through
the system:
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Hence the “coordinate pattern” – in which each agent’s state reflects relative position in configuration – is solvable
with a radius 1 algorithm, as long as the amount of amount of state available to each agent can grow with the number of
agents present. This algorithm, with slight modifications, works in much more general contexts, and is known as a discrete
gradient. Because coordinate systems are basic to very many tasks, the gradient is a tool of great importance in local-to-global
programming.

The description above suggests that the gradient algorithm is implementing a local check scheme of radius 1/2: namely,

Θ(b) =

{
1 , if b(−1) = b(0)− 1
0 , otherwise

.

(By a radius of 1/2 I mean that the local check scheme only makes use of information from the agent to the left.) The
problem with this formulation is that the local check scheme requires more and more state as the system size increases. One
way to resolve this apparent problem is to allow infinite state sets, like the whole set N of natural numbers, assuming (as
is increasingly the case for engineering systems) that memory is cheap. Another resolution is to consider for each k the
k-coordinatization problem – that is, the ability to produce a coordinate modulo k. In this case, the local rule:

F (b) = 1 + b(−1) mod k

produces the correct result. For each k, the k-coordinatization problem is locally checkable with k states, again with radius
1/2.

But what if we want to achieve k-coordinatization with fewer than k states? On the one hand, it is impossible to find
a local check scheme for k-coordinatization with radius 1/2 and fewer than k states: to see this, simply note that the local
check scheme Θ for a k-coordinatization corresponds to G(Θ) being an induced cycle of length k in D(2r + 1, k); and the
cycles of D(1/2,m) are those of DB(2,m), whose largest indeced cycle is of size m.

However, if we allow a somewhat larger radius, can we lower the required amount of state? Yes. Recall from the literature
the idea of a DeBruijn sequence: for m states and window-length n, a deBruijn sequence B(n,m) is an m-ary sequence of
length-mn in which each length-n m-ary sequence arises exactly once as a contiguous subsequence in B(n,m), wrapping
around at the end. For example, a DeBruijn sequence with n = 3 and m = 2 is 10111000. It is a classic and simple result
that such sequences exist for all m and n (they correspond to hamiltonian cycles in the strongly connected component of the
graph D((n − 1)/2,m)). The key realization is to think of the view within each length-n window in B(n,m) as encoding a
unique position along a line up to mn positions in length.

Example 8 A coordinate gradient of length 8 can be encoded by a DeBruijn sequence with n = 3 and m = 2 (figure 6). In
particular, we have: 101 → 0, 010 → 1, 100 → 2, 000 → 3, 001 → 4, 011 → 5, 111 → 6, and 110 → 7.

It turns out that there is a radius d(n+ 1)/2e check scheme for the DeBruijn sequence B(n,m), corresponding to an induced
cycle of length mn in D(n+ 1,m). In fact, it can be achieved simply by reading off the length-n+ 1 windows in B(n,m).
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1 2 3 40 6 75

1 0 0 00 1 111 0

Figure 6: DeBruijn sequence (low state, high radius) encoding of gradient (low radius, high state).

Example 9 A local check scheme of radius 3/2 for B(3, 2) is given by:

Θ(b) =

{
1 , for b = 1010, 0100, 1000, 0001, 0011, 0111, 1110, and 1101
0 , otherwise

.

The relationship between discrete gradients (with fixed amounts of state) and deBruijn sequences is an example of a more
general idea: the radius-state tradeoff, in which patterns that are locally checkable with a given amount of state and radius
can be written as encodings of patterns that are checkable with more states and less radius or vice versa.

Formally, we say that a pattern T over m states is the k-encoding of a pattern T ′ over m′ states if there is a function
φ : Bk,m′ → [m] such that T = {φ(X)|X ∈ T ′}. By φ(X), I mean the configuration resulting from applying φ to every k-ball
in X.

Proposition 15 Any pattern T over m states with LCR(T ) ≤ r has a local check Θ such that Θ(C) is the r log2(m)-encoding
of a pattern in 2 states that is locally checkable with radius dr log2(m)e, and the 2-encoding of a pattern in m2r states that is
locally checkable with radius 1.

There are a variety of ways of implementing this tradeoff concretely. One of the most conceptually intuitive arises by
adding a little more structure to the model. Instead of modeling the states of the agents as an unstructured set S, suppose
internal state is now specified as a length-k binary sequence. For instance, if k = 6, then the model will look something like
this:
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in which the large ovals correspond to agents and each of the slots is assigned a unique color. Since each of the k “binary
register” slots can take on two possible states, the k-slot model is effectively like choosing S to have 2k states. Each ball
b ∈ Br in this model is like a k-tuple of balls in a single-slot model, so we write b = (b1, b2, . . . , bk). In the above figure, the
radius 2 ball around the third agent B2(3, X), consists of (b1, b2, b3, b4, b5, b6), in which b1 = (0, 0, 0, 0, 1), b2 = (1, 0, 1, 1, 0),
b3 = (1, 0, 0, 1, 1), b4 = (0, 0, 0, 1, 1), b5 = (0, 0, 0, 1, 0), and b6 = (1, 1, 1, 1, 1).

Imagine we’re given a radius r local check scheme Θ with k = 1, i.e. two states. Suppose our goal is to get a radius l local
check scheme for the pattern Θ(C) generated by Θ, for any l < r. To this end, let Θl be the radius-l local check scheme on

M = d(r − l)/(2l + 1)e

slots defined by setting Θl(b) = 1 iff there is X ∈ Θ(C) and i such that

bj = Bl(i+ j(2l + 1), X)
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for j = −M, . . . ,M . The pattern encoding can then simply be obtained be reading off the states in b0. This construction
can be thought of as a ”cut and shift” construction, in which the original local check scheme is segmented into a number of
separate parts, which are then shifted through the slots.

Example 10 Consider the T100000000 pattern in the 1-slot model.

0 0000 0 001

This pattern has local check radius of 4.
Now suppose we wish to get a radius-1 local check. The “cut and shift” scheme applied to this problem yields a 3-slot

local check that looks like:

0 0000 0 001

0 0000 000

1 0000 0 000

1

5.2 The Dynamic Tradeoff

In the previous section, we discussed a “static” radius/state trade-off, in the sense that the radius/state tradeoff applied to
patterns (and their local check schemes), not to the local rules that created those patterns. However, we wish understand
the latter as well.

Suppose we’re given a state set S1, with size m. Let T ⊂ CS1 be a pattern over those m states. Now suppose we add
states to the state set, so that S = S1 ∪ S2, where |S2| = m′ > 0. Evidently T is a also pattern in CS , because whenever
S ⊂ S′, CS ⊂ CS′ . In words, T is simply a pattern that “doesn’t mention the states in S2.” Now, say we’re given a rule F
that solves T in CS ; that is, for all initial conditions X0 over the m+m′ states in S, and all s in whatever timing model S
has been chosen, limn→∞ Fn

s (X0) exists and is in T whenvever |X| is T -admissible.
The rule F is robust to the presence of the extra m′ states, in that initial conditions that have arbitrary arrangements of

the extra states will eventually be driven to configuration in T that make no mention of such states. On the other hand, F
might make use of those states, so that even on initial conditions that are in T and make no mention of the extra states, F
might temporarily cause one or more such extra states to appear before removing them again in the end. This is precisely
what happens in the constructions of FΘ in §2.2; C and B and 4i are just this sort of extra state that is used by the
algorithm. The formal description of algorithm F ′Θ in appendix 2 uses even more such states. We are thus led to ask if can
we always find a new rule F ′, possibly with a larger radius, that is a solution T over CS1 . I.e. can we make a radius/state
tradeoff to encode the extra states as larger-radius structures using just the original states, so that the resulting rule still is
a solution to T with the same asymptotic run-time scaling?

Take for example of FΘ, in the case where Θ is the radius-2 check scheme for the pattern T = {(1000)n}. In the algorithm
FΘ, B ◦B acts as a “turing head”, a marker for the moving border of Θ-correctness. As the B-head progresses, there is an
alternation of a state with one B and a state with two B’s. We can replace this with an alternation of a state with three 1s,
i.e. 111, and a state with 1’s i.e. 11:

Because neither 111 nor 11 are states that are present in the final correct pattern, they can be chosen to act as “movable
coherent border markers”, just like the B-states originally did. It’s not hard to modify the ten rules defining FΘ so that it
uses these 111 and 11 subconfigurations in place of B and B ◦B.

Now, suppose we take Θ to be the radius-3 check scheme for the pattern {(100)n(1000)m}. In this case to replicate the
states used in FΘ, we have to encode a B/B ◦B head, as well as a C/C ◦C state, as well as a 40 state. Figure 7 shows how
this is to be accomplished. Notice that the size of the encoded structures gets larger the more different states need to be
encoded. This has two consequences: first, the radius of the local rule must increase commensurately. Second, the dynamic
motion of these larger newly encoded movable coherent borders may have to be slower than the dynamics of the original
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A) B)

C)

Figure 7: Encoding rules for removing extra states from FΘ, in case of Θ(C) = {(100)n(1000)m}. A) Rules for B encoding.
B) Rules for C encoding. C) Rules for 40 encoding.

turing head markers, since several states following each other in time in the encoded version may have to correspond to a
single state in the original version.

For a general Θ, the procedure for encoding new states to replicate the action of FΘ is to first identify a configuration ζ
such that no solved state in Θ contains ζ as a subconfiguration. (This is possible when Θ is non-trivial; if Θ is trivial then
the algorithm F ∗ described in §4.2.1 solves Θ already with no need for extra states.) Then, suppose we need to encode m′

states {s1, . . . , sm′}. Let k = dlogm(m′)e, and assign each sj to a unique length-k m−ary sequence σj . Finally, we replace
the state sj with the sequence τj = ζ ◦ σj ◦ σj ◦ ζ. The dynamics on the extra states that FΘ generates can be replicated
by similar rules operating on the τj sequences (the details are tedious but straighforward). Because FΘ requires m′ = m+ 2
extra states, the process of replacing sj with τj requires extending the radius of the rule by |τj | = 2|ζ|+ 2logm(m+ 2). A ζ
of size no larger than 2r can be found, so we need only extend the radius by a quantity that is at most 4r + 2. For F ′Θ, the
requirement is for at most m2r extra states, leading to an extension of the redius by 8r + 2.

6 “Glocal” Compilation

What we’re really after is a glocal-to-local (or “glocal”) compiler. What I mean by this is as follows. Recall from 1.4 that we
defined T to be the set of all patterns. Recall from 1.2 that we defined D be the set of all local rules. Recall from 1.5 that
we defined F(T ) be the set of local rules that are solutions to T . Let ∅ be a special symbol. Intuitively, a glocal compiler
should be a computable function

GC : T → D ∪ {∅}

such that

GC(T ) =

{
F∈ F(T ), if F(T ) 6= ∅
∅, if F(T ) = ∅

.

In words, GC(·) is an algorithm that on input T returns a solution to T if T is solvable, and indicates an error (represented
by ∅) otherwise. In an eventual application of this theory, we’d think of the user as programming the amorphous computer
(in this case, a linear array of computing agents) by specifying the input T as a global problem description, and then allowing
GC to compile down from the global problem to local agent-based rules F .

Algorithm 2.2 gets us part of the way. The problem, however, is that to make the procedure really automatic and
computable, the input T must be described finitely. Just thinking of T as an unstructured set of final configuration, as we
have been doing so far, is not enough. If we want to work with big or infinite pattern sets (which we surely do), we need a
description language that efficiently captures the inherent structure of those sets.

Of course, a local check scheme is a finite description of a problem, and so we could ask the user to input problems
directly as local check schemes. However, as example 3 shows, making descriptions in the LCS format seems laborious and
unnatural. The challenge then is two-fold: A) finding a description language that is appropriate for actual users, in which
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input corresponds with natural ways of describing problems, and B) figuring out how to translate from that description
language of problems into a local check scheme description.

Here are two simple approaches to meeting this challenge:

6.1 Sampling for Local Features

Let X = {X1, X2, . . . , XK} be a finite set of “sample configurations,” and fix an “feature radius” r. Let

B(X , r) = {Br(i,X)|X ∈ X , i ∈ {1, . . . , |X|}},

that is, the set of all r-balls present in the samples. Define a local checl scheme Θ(X , r) as the indicator function on the set
B(X , r), i.e. Θ(X , r) takes everying in B(X , r) to 1 and everything else to 0. The local rule

F (X , r) = F ′Θ(X ,r)

constructs configurations that look identical, up to the feature radius r like the sample configurations in X .

Example 11 Let
X = {100, 100100, 100100100, 1000, 10001000, 1001000},

and set r = 3. Then F (X , r) is a solution to the pattern {(100)n(1000)m|n,m ∈ N}.

6.2 Logic

Another approach is to use logic. Let S be a finite set, and let L be the set containing the symbols

L = {′=′,′ ¬′,′ ∧′,′ ∀′,′ ∈′,′ (′,′ )′, x1, x2, . . . , xn, . . .}.

Definition 11 A first-order formula with added constants S is any symbol string considered well-formed according to the
rules:

1. φ(x) = [x = s] is well-formed, for each s ∈ S, the set of node labels, and any variable x.

2. φ(x) = [x = y] is well-formed for all variables x and y.

3. φ(x) = [x ∈ y] is well-formed for all variables x and y

4. ϕ(~x1 ◦ ~x2) = [φ(~x1)∧ψ(~y2)] is well-formed for all well-formed formulas φ(~x1) and ψ(~x2), where ~x1 = (xi1 , . . . , xik
) and

~x2 = (xj1 , . . . , xjl
), respectively. We allow im = in or jm = jn only when m = n, and the notation ~x1 ◦ ~x2 denotes the

amalgamated list of the two vectors of variables.

5. ϕ(x) = [¬φ(~x)] is well-formed for all well-formed formulas φ of variable vector ~x = (xi1 , . . . , xik
).

6. ϕ(~x) = [∀xi0φ(xi0 , ~x)] is well-formed for all well-formed formulas φ of variable vector (xi0 , xi1 , . . . , xik
).

The notation ∃x0φ(x0, ~x) is a shorthand for ¬[∀x0[¬φ(x0, ~x)]] and φ(~x1) ∨ ϕ(~x2) is shorthand for ¬[[¬φ(~x1)] ∧ [¬ϕ(~x2)]].
The number of free variables in a formula φ(~x) is the lenght of ~x as a list. A sentence is a formula with zero free variables.
The quantifier rank of a formula, denoted Q(φ(~x)), is defined by: setting it as zero for the formulas of the form 1-3 in the
above list (the “atomic” formulae); Q(φ ∧ ψ) = max(Q(φ), Q(ψ)); Q(¬φ) = Q(φ); and Q(∀x0φ(x0, ~x)) = Q(φ(x0, ~x)) + 1.

Now, we want to apply logic formulae φ to configurations X. To start with, recall that an ordered pair (a, b) can be
represented as a set in a standard way: (a, b) = {a, {b}}. A configuration X is by definition a graph whose nodes are labeled
in the set S, so it too can be described as a set Set(X). In particular, the elements of Set(X) are the representations of the
pairs (i, s), one for each node in X, as well as those of the pairs of pairs ((i, s), (j, s′)), one for each edge. For any first-order
formula φ, the interpretation of φ on X denoted φ[X], is the truth value of φ, in which quantifiers ∀x0 are taken as ranging
over the elements of Set(X). The pattern defined by φ is the set of configurations X ∈ C such that φ[X] = TRUE.

The key fact is that:

Proposition 16 Any pattern defined by a first-order logic formula φ is locally checkable by a local check scheme Θ(φ) with
radius r ≤ 3Q(φ); and conversely, all patterns of the form Θ(C) for some local check scheme Θ are first-order definable.
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The proof of this result (which is beyond the scope of these notes) indicates a simple algorithmic procedure for constructing
Θ(φ) from φ and vice-versa. We therefore have an optimal glocal compiler

GC : First-Order Logic Formulae −→ Local Rules

defined by

GC(φ) =


F ′Θ(φ), if g(G(Θ(φ))) > 1
F̃Θ(φ), if Θ(φ) is nontrivial and g(G(Θ)) = 1
F ∗, If Θ is trivial

,

where g(Θ) is as defined at the end of section 4.2.
This result is conceptually pleasing, but the practical question of whether logical description is ever useful (i.e. more

intuitive then specifying a local check directly) is not clear to me.

7 Appendices

Details of Algorithm 1

Given an r− ball B, define Θ[B] as the boolean that is 1 when Θ(B) = 1. Given an r + k ball B, let for l ≤ k, Θl[B] =
Θ[B[l − r : l + r]], and Θl,j =

∧j
i=l Θk[Bi]. Let

η[B] = (?(B) = |B|) ∧
0∨

l=−r+1

Θ¬[B[l − r : 0]],

where B[l − r : 0] is considered as a right-end ball. Let

L(B) = (B(0) = max{j ∈ {0, . . . ,m− 1}|Θ[B[−2r : −1] ◦ j]}).

Let bj [B] =
∧0

l=−r Θ[B[l − r : −1] ◦ j], which asks if any such j exists at all.
Now, define boolean functions of balls B by:

α1[B] = Θ−r−1[B] ∧ (Θ¬
−r[B]) ∨ η[B]) ∧ (B(0) ∈ S),

α2[B] = (?(B) > 1) ∧ (B(−1) = B) ∧Θ−r−2[B],

α3[B] = (∃j(B(0) = 4j)) ∧ (L[B−1] ∨ (B(0) 6= j)),

α4[B] = (B(0) = C) ∧ (?(B) = 1),

β1[B] = (?(B) < |B|) ∧Θ−r−1[B] ∧ (B(0) = B) ∧ (
∧

Θ¬[B[−2r : −1] ◦ j]),

β2[B] = (?(B) = |B|) ∧ (B(0) = B) ∧Θ−r−1[B] ∧ (
m−1∧
j=0

b¬j [B]),

β3[B] = (?(B) < |B|) ∧ (B(1) = C) ∧Θ−r−1[B] ∧Θ−r[B] ∧ L(B),

γ1[B] = (?(B) < |B|) ∧Θ−r−1[x] ∧ (B(1) = B) ∧ (B(0) = B) ∧ (∃j|Θ[B[−2r : −1] ◦ j]),

γ2[B] = (?(B) = |B|) ∧ (B(0) = B) ∧Θ−r−1[B] ∧ (∃j|bj [B]),

δ[B] = (?(B) < |B|) ∧Θ−r[B] ∧ (B(1) = 4B(0)) ∧ L¬(B),

and
ε[B] = (?(B) > 1) ∧Θ−r−2[B] ∧Θ−r−1[B] ∧ (B(0) = C) ∧ L¬[B−1].
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The formal definition FΘ is:

if α1[B] ∨ α2[B] ∨ α3[B] ∨ α4[B] then
F (B) = B

else if β1[B] ∨ β2[B] ∨ β3[B] then
F (B) = C

else if γ1[B] then
F (B) = min{j ∈ [0,m− 1] | Θ[B[−2r : −1] ◦ j]}

else if γ2[x] then
F (B) = min{j ∈ [0,m− 1] | bj [B]}

else if δ[B] then
F (B) = min{j > B(0) | Θ[B[−2r : −1] ◦ j]}

else if ε[B] then
F (B) = 4B(−1)

else
F (B) = B(0).

end

Let
O : B2r+1 × [m] → [m]

be any function such that O(b, ·) is a bijection from {0, . . . , |R(b)| − 1} to R(b). Let O−1(B) denote the unique j such that
O(B(−2r − 1 : −1), j) = B(0) if such exists. Let FO

Θ be defined by modifying FΘ with the replacements:

• In Rule 5: the boolean (∃j|Θ[B[−2r : −1] ◦ j]) replaced with (|R(B(−2r − 1 : −1))| = 0),

• In Rule 2: the state min{j ∈ [0,m− 1]|Θ−r[B[−2r : −1] ◦ j]} in replaced with O(B[−2r − 1 : −1], 1),

• In Rule 6: the boolean L(B) replaced with the boolean (B(0) = O(B(−2r − 1 : −1), |R(B(−2r − 1 : −1)|), and

• In Rule 8: the state min{j > B(0)|Θ[B[−2r : −1] ◦ j] replaced with O(B(−2r − 1 : −1), O−1(B) + 1).

Appendix 2: Details of Linear-Time Algorithm

Recall definitions of L(b) and R(b). Recall the definition of a choice function O. Analagously, let P : B2r+1 × [m] → [m] be
any function such that restricted to b ∈ Θ−1(1) and j ∈ {0, . . . , |L(b)| − 1}, P (b, j) ∈ L(b) and P (b, j) = P (b, i) only if i = j.
Let P−1(B) denote the unique j such that P (B(1 : 2r + 1), j) = B(0) if such exists. O is a “right choice function” and P is
a “left choice function”.

LetO be a right choice function such that if for b of length 2r+1 then if b′ = b[2 : 2r+1]◦O(b, i), and b′′ = b[2 : 2r+1]◦O(b, j)
then i > j if there is no path in G(Θ) from b to b′ but there is from b to b′′. Let P be a left choice function such that if for b
of length 2r+ 1 then if b′ = P (b, i) ◦ b[1 : 2r], and b′′ = P (b, j) ◦ b[1 : 2r] then i > j if there is no path in G(Θ) from b′ to b in
G(Θ) but there is one from b′′ to b.

Let
λ(B) = (B(0) = O(B(−2r − 1 : −1), |R(B(−2r − 1 : −1)|),

and ΛL(B) is the boolean that is 1 if B(0) = O(B[−2r − 1 : −1], j) where j is the maximal value such that B[−2r :
−1] ◦O(B[−2r − 1 : −1], j) is in Θ and connected by a path in G(Θ) to B[2 : 2r + 1], and ΛR(B) is the boolean that is 1 if
B(0) = P (B[1 : 2r + 1], j) where j is the maximal value such that P (B[1 : 2r + 1], j) ◦ B[2 : 2r] is in Θ and is accessible by
a path in G(Θ) from B[−2r − 2 : −2]. Let Γ(a, b) be the boolean which is 1 when a, b′ ◦ b ∈ G(Θ) for some string b′ with
|b′| = max(0, r+ 1− |b|), and there is a path in G(Θ) connecting a to b′ ◦ b. Let Sol(B) be the boolean that is 1 if there is a
state j such that

∧2r
i=0B[−2r − i : −1] ◦ j ◦B[1 : i]. Let

Solv(B) = min{j|
2r∧

i=0

B[−2r − i : −1] ◦ j ◦B[1 : i]}.

Let TR(b) = 1 if Θ(b) and there is no cycle C in G(Θ) for which there is a path in G(Θ) from b to C. Let TL(b) = 1 if Θ(b)
and there is no cycle C in G(Θ) for which there is a path in G(Θ) from C to b.
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• Rule 1: If
α1[B] = Θ−r−1[B] ∧Θ¬

−r[B] ∧ (B(0) ∈ S)

or
α2[B] = (?(B) > 1) ∧ (B(−1) = B1) ∧Θ−r−2[B]

or
α3[B] = (∃j(B(0) = 4j)) ∧ (λ[B−1] ∨ (B(−1) 6= j))

or
α4[B] = (B(0) = C1,2,3) ∧ (?(B) = 1)

holds then let F̃ (B) = B1.

• Rule 2: Else if

α5[B] = (?(B) < |B|) ∧Θ−r−1[B] ∧ (B(0) = B1,2,3) ∧ (
∧

Θ¬[B[−2r : −1] ◦ j])

or
α6[B] = (?(B) < |B|) ∧ (B(1) = C1) ∧Θ−r−1[B] ∧Θ−r[B] ∧ λ(B) ∧Θr+2(B)

holds then let F̃ (B) = C1.

• Rule 3: Else if

α7[B] = (?(B) = |B|) ∧ (B(0) 6= B3) ∧Θ−r−1[B] ∧ (
m−1∧
j=0

b¬j [B])

holds then let

F̃ (B) =

{
C1, if TR(B[−2r − 1 : −1]) or TL(B[−2r − 1 : −1])
C2, otherwise

.

• Rule 4: Else if

α8[B] = (?(B) > 1) ∧ ((B(0) = B(−1) = C1) ∨ (B(0) = B(−1) = C3)) ∧Θr+1(B)

holds let F̃ (B) = P (B[1 : 2r + 1], 1).

• Rule 5: Else if

α9[B] = (?(B) < |B|) ∧Θ−r−1[B] ∧ ((B(1) = B(0) = B1) ∨ (B(1) = B(0) = B3)) ∧ (∃j|Θ[B[−2r : −1] ◦ j])

holds let F̃ (B) = O(B[−2r − 1 : −1], 1).

• Rule 6: Else if
α10[B] = (?(B) = |B|) ∧Θ−r−1[B] ∧ Sol(B)

or

α11[B] = (B(0) = B2)∧Θ−r−1[B]∧Θr+1[B]∧TR[B[1 : 2r+1]]∧T¬L [B[−2r−1 : −1]]∧Γ(B[−2r−1 : −1], B[1 : 2r+1])∧Sol(B)

holds let F̃ (B) = Solv(B).

• Rule 7: Else if
α12[B] = (?(B) < |B|) ∧Θ−r[B] ∧ (B(1) = 41

B(0)) ∧ λ
¬(B)

holds let F̃ (B) = O(B(−2r − 1 : −1), O−1(B(0)) + 1).

• Rule 8: Else if
α13[B] = (?(B) > 1) ∧Θ−r−2[B] ∧Θ−r−1[B] ∧ (B(0) = C1) ∧ λ¬[B−1]

or
α14[B] = (?(B) > 1) ∧ (B(0) = C3) ∧Θr+1[B] ∧Θ−r−1[B] ∧Θ−r−2[B] ∧ TL(B[−2r − 1 : −1]) ∧ λ¬(B−1)

holds let F̃ (B) = 41
B(−1).
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• Rule 9: Else if

α15[B] = (?(B) < |B|)∧(B(1) = C2) ∧Θ−r−1[B] ∧Θ−r[B] ∧Θr+2[B] ∧ (ΛL(B) ∨ TR(B[2 : 2r + 2]))∧
∧ T¬L (B[−2r : 0]) ∧ T¬R (B[−2r : 0]) ∧ Γ(B[−2r : 0], B[2 : 2r + 2])

or

α16[B] = (B(0) = B2)∧Θ−r−1[B]∧Θr+1[B]∧TR[B[1 : 2r+1]]∧T¬L [B[−2r−1 : −1]]∧Γ(B[−2r−1 : −1], B[1 : 2r+1])∧Sol¬(B)

or
α17[B] = (∃j(B(0) = 43

j )) ∧ (ΛR[B+1] ∨ (B(1) 6= j))

holds then let F̃ (B) = C2.

• Rule 10: Else if

α18[B] = (?(B) > 1) ∧ (B(−1) = C2) ∧ (B(0) = C2)) ∧Θ−r−2[B] ∧Θr+1[B] ∧ Γ(B[−2r − 2 : −2], B[1 : 2r + 1])

holds then let F̃ (B) = P (B[1 : 2r + 1], 1).

• Rule 11: Else if α18[B+1] holds let F̃ (B) = B(0).

• Rule 12: Else if

α19[B] = (?(B) > 1) ∧Θ−r−2[B] ∧Θ−r−1[B]∧(B(0) = C2) ∧ Λ¬L[B−1] ∧ T¬R (B[1 : 2r + 1]) ∧ T¬L (B[−2r − 1 : −1])∧
∧ Γ(B[−2r − 1 : −1], B[1 : 2r + 1])

holds then let F̃ (B) = 42
B(−1).

• Rule 13: Else if
α20[B] = (∃j(B(0) = 42

j )) ∧ (ΛL[B−1] ∨ (B(−1) 6= j))

or

α21[B] = (?(B) > 1)∧ (B(−1) = B2)∧Θ−r−2[B]∧Θr[B]∧Θr+1[B]∧T¬R (B[1 : 2r+ 1]))∧Γ(B[−2r− 2 : −2], B[0 : 2r])

holds let F̃ (B) = B2.

• Rule 14: Else if

α22[B] = (?(B) < |B|)∧Θ−r[B]∧Θ−r−1[B]∧Θr+2(B)∧Γ(B[−2r : 0], B[2 : 2r+2])∧(B(1) = 42
B(0))∧Λ¬L(B)∧T¬L (B[−2r : 0])

or

α23[B] = (?(B) < |B|) ∧Θ−r−1[B]∧(B(1) = B2) ∧ (B(0) = B2) ∧Θr+2[B]∧
∧ Γ(B[−2r : 0], B[2 : 2r + 2]) ∧ (∃j|Γ(B[−2r : −1] ◦ j, B[2 : 2r + 2]))

hold let
F̃ (B) = O(B(−2r − 1 : −1), j)

where j is the minimum l > O−1(B(0)) such that Γ(B[−2r : −1] ◦ l, B[2 : 2r + 2]).

• Rule 15: Else if
α24[B] = (B(0) = C2) ∧ (?(B) > 1) ∧Θ−r−1[B] ∧ TL(B[−2r − 1 : −1])

or
α25[B] = (?(B) > 1) ∧ (B(−1) = B3) ∧Θ−r−2[B] ∧Θr[B] ∧Θr+1[B] ∧ (TR(B[0 : 2r]) ⇒ ΛR(B))

hold let F̃ (B) = B3.

• Rule 16: Else if

α26[B] = (?(B) < |B|) ∧ (B(0) = B3)∧Θ−r−1[B] ∧Θr+1[B] ∧Θr+2[B] ∧ TR(B[1 : 2r + 1])∧
∧ Γ(B[−2r − 1 : −1], B[1 : 2r + 1]) ∧ Λ¬R(B+1)

holds let F̃ (B) = 43
B(1).
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• Rule 17: Else if

α27[B] = (?(B) > 1)∧Θ−r−2[B]∧Θr[B]∧Θr+1(B)∧(B(−1) = 43
B(0))∧TR(B[0 : 2r])∧Γ(B[−2r−2 : −2], B[0 : 2r])∧Λ¬R(B)

holds let
F̃ (B) = P (B(1 : 2r + 1), j)

where j is the minimum l > P−1(B(0)) such that Γ(B[−2r − 2 : −2], l ◦B[2 : 2r]).

• Rule 18: Else if
α28[B] = (?(B) = |B|) ∧ (B(0) = B3) ∧Θ−r−1[B] ∧ Sol¬(B)

or
α29[B] = (?(B) < |B|) ∧ (B(1) = C3) ∧Θ−r[B] ∧Θr+2[B] ∧Θ−r−1[B] ∧ (TL(B[−2r : 0]) ⇒ λ(B))

holds let F̃ (B) = C3.

• Rule 19: Else if B(0) ∈ {B2,3,C2,3,42,3
i } let F̃ (B) = B1.

• Rule 20: Else F (B) = B(0).

As define F̃ does a lexicographic search over initial/terminal segment pairs, and a lexicographic search within each one.
Now, we will compose it with the greatest-common-divisor condition that generates the linear time algorithm.

GCD Condition

Suppose b ∈ Θ−1(1) is such that T¬R (b), but for which there is i ∈ R(b) such that TR(b[2 : |b|] ◦ i). Introduce new states C2,b

and 42
B(0),y for each such b, addition to C2 as C2,∅.

Given an acyclic path Q in G(Θ), recall from §3.3 the definition of gcd(Q) denote the greatest common divisor of the
induced lengths of the cycles in the non-trivial strongly connected components in G(Θ) that Q intersects.

Let y ∈ G(Θ) satisfy T¬L (y). Define inductively yn = P (yn−1, 1), where y0 = y. Because y is not left-terminal, this set
of nodes {yn|n ∈ N} in G(Θ) contains a single cycle and a path exiting that cycle. Let C(y) denote the cycle, and D(y) the
path. Given b ∈ C(y), let dist(b, y, C) denote the length of path in C(y) from b to y. Now, let ζ(a, b, y) be the boolean which
is 1 IFF b ∈ C(y) and there is a path P from a to b in G(Θ) such that for some n,M ,

|P |+N · gcd(P ) = |D(y)|+ dist(b, y, C(y)) +M · |C(y)|+ 2r + 2.

This is a simple local computation about relative gcds of cycle lengths along the path P . Define ψ(B) as the boolean which is
1 whenever B(1) = C2,y or 42

B(0),y for some y, and there is j > O−1(B) such that ζ(B[−2r : −1]◦O(B[−2r−1 : −1], j), B[2 :
2r + 2], y).

• Replace α15 with this:

α15[B] = (?(B) < |B|) ∧ (∃x|B(1) = C2,x) ∧Θ−r−1[B] ∧Θ−r[B] ∧Θr+2[B] ∧ (ψ¬(B) ∨ TR(B[2 : 2r + 2]))∧
∧ T¬L (B[−2r : 0]) ∧ Γ(B[−2r : 0], B[2 : 2r + 2])

If α15[B] holds, we define F̃Θ by

F̃Θ(B) =

{
C2,y, if TR(B[2 : 2r + 2]) ∧ T¬R (y)
B(1), otherwise

where y = P (B[2 : 2r + 2], 1) ◦B[2 : 2r + 1].

• Replace α18 with:

α18[B] = (?(B) > 1) ∧ (∃x|B(−1) == B(0) == C2,x) ∧Θ−r−2[B] ∧Θr+1[B] ∧ Γ(B[−2r − 2 : −2], B[1 : 2r + 1])

If α18[B] holds, we set
F (B) = P (B[1 : 2r + 1], 1).
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• Replace α19 with this:

α19[B] = (?(B) > 1) ∧Θ−r−2[B] ∧Θ−r−1[B] ∧ (∃x|B(0) == C2,x) ∧ T¬R (B[1 : 2r + 1]) ∧ T¬L (B[−2r − 1 : −1])∧
∧ Γ(B[−2r − 1 : −1], B[1 : 2r + 1]) ∧ ψ(B−1).

If α19[B] holds, we set
F̃Θ(B) = 42

B(−1),x.

• Replace α22 with

α22[B] = (?(B) < |B|)∧Θ−r[B]∧Θ−r−1[B]∧Θr+2(B)∧(∃B(1) == 42
B(0),x)∧Γ(B[−2r : 0], B[2 : 2r+2])∧T¬L (B[−2r : 0])∧ψ(B)

If α22[B] holds, we set
F (B) = O(B(−2r − 1 : −1), j)

where j is the minimum l > O−1(B(0)) such that ζ(B[−2r : −1] ◦ l, B[2 : 2r + 2]).

Appendix 3: Details of the Local Patching Algorithm

Suppose G(Θ) has at least one strongly connected component C, the greatest common divisor of whose cycle lengths is 1. Pick
any irreducible cycle c1 ∈ C; and let P be a maximal acyclic path through c1. Let α and β, respectively, denote the maximal
initial and terminal paths in P ∪c1. Let C1 denote the m-ary sequence corresponding to c1, starting at first node in the P ∩c1
after the maximal initial path in P . Suppose we’re given a sub-configuration of the form Z = C◦n1

1 ◦ C1[1 : k] ◦ C◦n2
1 where

k < |C1|. If n1 and n2 are sufficiently large – greater than lcm(|C1|, . . . , |Ck|)/|C1|+2r – then because gcd(|C1|, . . . , |Ck|) = 1,
there is a subconfiguration W and n′1 ≤ n1 such that Z ′ = C

◦n′1
1 ◦W ◦ C◦n2

1 is Θ-consistent, |Z ′| = |Z|, and n′1 > 2r/|C1|.
For each k < |C1|, pick one such W , call it Wk. Let wk = |Wk|, and notice that wk ≤ lcm(|C1|, . . . , |Ck|)/|C1|+ 2r.

Define an initial condition X0 to be special if it is a concatenation of subconfigurations of the form Z, together with proper
initial and terminal flanking sequences α and β: X0 = α ◦ Z1 ◦ Z2 ◦ . . . ◦ Zl ◦ β where each Zi = C

◦n1,i

1 ◦ C1[1 : ki] ◦ C
◦n2,i

1

with n1,i, n2,i ≥ lcm(|C1|, . . . , |Ck|)/|C1|+ 2r for all i, and such that α ◦ Z1 and Zl ◦ β are Θ-consistent.

Now, we design a rule F̃ which drives all special initial configurations Z to solved states. Let W 0
k = C

n1−n′1,k

1 C1[1 : k]
and notice that |W 0

k | = |Wk| = wk. Define W i
k = W 0

k [1 : w − i] ◦Wk[w − i + 1 : w]. Obviously Wwk

k = Wk. The sequence
W 0

k ,W
1
k . . . ,W

wk

k = Wk forms a trajectory of subconfigurations connecting the bad parts with the patch-overs. The W i
k may

not be distinct for each i, since there could be overlap between portions of Wk and C1. Nonetheless there is then a unique
agent ji

k in W i
k such that if ji

k changed its state from whatever it is to some (unique) new state si
k, W i

k would correspondingly

change to W (i,k)+

k , where (i, k)+ is the minimal l > i such that W l
k 6= W i

k.
Consider the set of configurations Z generated from each special configuration Z = α ◦ ©Zki

◦ β by replacing Zi with

C
◦n′1,I

1 W ji

ki
C
◦n2,i

1 for each ji ≤ wki
. That is, we replace the “bad portion” of each Zi with some step j along the trajectory

joining that bad portion and the corrected patch Wki . Let R = lcm(|C1|, . . . , |Ck|)/|C1|+ 2r, and define the “special balls”
B as the set of R-balls that arise in configurations in Z.

For each b ∈ B, define a local rule F1 of radius R on b by

F1(b) =

{
si

k, if b = BR(ji
k,W

i
k)

b(0), otherwise
.

Under this rule initial configurations that are special are driven to solved configurations along the trajectories in Z. Of
course, the above definition of F1 is only for a subset of all balls of radius R (those in B), i.e. so far F̃ is only partially
specified.

Now, we have to extend the definition of F1 to BR−B, the set of all R-balls besides those on which F1 is already defined,
so that arbitrary initial conditions are driven to Z. Given ball b in α (the initial path), there is a unique j such that b ◦ j
is consistent with P ∪ c1. Call it b+. Given b ∈ β, there is a unique j such that j ◦ b is consistent with P ∪ c1. Call it b−.
Given an m-ary sequence s, define the boolean C1[s] that holds when s = C◦m

1 ◦C1[1 : j] for some j ∈ {1, . . . , |C1|} and some
m ∈ N. If C1[s] holds, let rem(s) denote the unique j for which it holds. Define

J(B) = max{J | C1[B(?(B)− J : ?(B)− 1)] holds}
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and rem(B) = rem(B(?(B)− J) : ?(B)− 1)). Also define

L(B) = max{L | C1[B(?(B) : ?(B) + L) holds}.

Define the rule F2 as shown in algorithm 2.

Algorithm 2: Part of the Local Patching Algorithm, F2.
if B(−2r − 1 : −1) ∈ α then

F2(B) = B(−2r1 : −1)+

else if B(1 : 2r + 1) ∈ β then
F2(B) = (B(1 : 2r + 1))−

else if ¬C1[B(?(B)− J(B) : ?(B))] then
if J(B) > 0 then

if ((J(B) ≤ L(B)) ∧ (L(B) < R)) then
F2(B) = C1(1 +mod(rem(B)), |C1|))

else
F2(B) = B(0)

end
else

F2(B) = C1(1)
end

else
F2(B) = B(0)

end

Finally, define F̃ by

F̃ (B) =

{
F1(B), if B ∈ B
F2(B), otherwise

.
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