Let L_i be the i-th component of L.

$k_i = L_i | S^1 \times S^3$ is the core of L_i.

$k_i' = L_i | S^1 \times S^1$ is the parallel copy of k_i.

Each L_i has a framing n_i ("number of twists").
Q: What is a 0-forming?

Def: A Seifert surface of a (unframed) link $L \subset S^3$ is a connected, oriented, compact surface $S \subset S^3$ w/ $\partial S = L$.

Eg: $S \sim S$

HW: $S \cong \Sigma_{1,1}$.

Thm (Seifert). Every L has a Seifert surface.

Seifert's algorithm:

- Orient L, or pre-resolution.
- Assign $+/-1$ disks according to orientation.
- Glue back together different components by tubes, if any, to get a connected surface.
- L_i is of 0-framing if it is a collar nbhd of k_i in a Seifert surface S_i of k_i.

- L_i is of n-framing if the algebraic intersection number

$$i(k_i', S_i) = n.$$

- It is independent of choice of S_i, since all Seifert surfaces are homologous.

$$H_2(S^3 \setminus N(k_i), \partial N(k_i)) \cong \mathbb{Z}$$ and

$$[S_i] = 1 \in \mathbb{Z}.$$
Alternative description of 0-framing:

Consider inclusion $i : \partial N(K_i) \to S^3 \setminus N(K_i)$ and the induced map $i_* : H_i(\partial N(K_i)) \to H_i(S^3 \setminus N(K_i))$.

\[
\begin{array}{c|c|c}
H_i & H_i(S^3 \setminus N(K_i)) \\
\mathbb{Z}^2 & \mathbb{Z}^2 \\
\mathbb{Z} & \mathbb{Z} \\
\end{array}
\]

The kernel $\ker i_* \cong \mathbb{Z}$ and is generated by the longitude $L \subset N(K_i)$. L bounds a surface $S' \subset S^3 \setminus N(K_i)$ (since $[L] \in \ker i_*$). The framed link L_i determined by K_i and L has framing 0, and

the Seifert surface $S_i = L \cup L'$.

Eg:

- 0-framing

(-3)-framing

blackboard framing
A framed link can also be represented by a link diagram with an integer \(n_i \) on each component \(K_i \) (Kirby diagram).

- The **linking number** \(l \) of \(K_i \) and \(K_j \) is
 \[
 l_{K_{ij}} = l(K_i, S_j) = l(K_j, S_i).
 \]

- The **linking matrix** \(L \) of \(L \) is the matrix
 \[
 LK(L) = (l_{K_{ij}}),
 \text{ where } LK_{ii} = n_i \text{ and } LK_{ij} = lk_{ij} \text{ if } i \neq j.
 \]

A framed link \(L \) (or a Kirby diagram \(D \)) determines
1) a 4-manifold \(X_L \) by attaching 2-handles \(B^2 \) along \(L \) and in turn
2) a 3-manifold \(M_L = \partial X_L \).
Notation: \(B^n = D^n \), \(n \in \mathbb{N} \).

4-dimensional 2-handle = \(D^2 \times D^2 \)

\[\partial (D^2 \times D^2) = S^1 \times D^2 \cup_{s \times s'} D^2 \times S^1 \]

\(\partial B^4 = S^3 \), attaching 2-handle

attaching map \(f: S^1 \times D^2 \to S^3 = \partial B^4 \)

The resulting 4-mfld is \(B^4 \cup_f (D^2 \times D^2) \)

\(f \) is determined by \(f|_{S^1 \times \{0,1\}} \) up to isotopy,

\[S^1 \times D^2 \]

and \(f(S^1 \times \Gamma_{0,1}) \subset S^3 \) is a framed link.
M: $M_L = \partial X_L$ is the 3-manifold obtained from S^3 by doing n_i-Dehn surgery along K_i.

Recall: $\frac{p}{q}$ - Dehn surgery along K.

Let $H = D^2 \times S^1$, meridian $m = \partial D^2 \times \{1\} \subset \partial H$.

In $T = \partial N(K)$, there are curves m, l, where m bounds a disk in $N(K)$ and l bounds a surface in $S^3 \setminus N(K)$.

Any $p, q \in \mathbb{Z}$ with $(p, q) = 1$ determines $C_{pq} \subset T$, s.t.

$C_{pq} = p[m] + q[l] \in H_1(T^2)$.

Let $f: T^2 = \partial H \rightarrow \tilde{T} = \partial N(K)$ determined by

$m \mapsto C_{pq}$

Then $M_{K, \frac{p}{q}} \cong HU_f(S^3 \setminus N(K))$.
Back to 2-hand $B^2 \times B^2$.

$$S^3 = \partial (B^2 \times B^2) = (S^1 \times B^2) \cup_{S^1 \times S^1} (B^2 \times S^1)$$

$B^2 \times S^1$

\[\neq \]

$\partial (B^4 \cup_f (D^2 \times B^2)) = (\partial B^4 \setminus N(f)) \cup_f (D^2 \times S^1)$

$f : m \mapsto C_{n+1}$.

$\Rightarrow \mathcal{M}_L$ is obtained from S^3 by η_1 - Dehn surgery.
components $k_i \quad 2$-handles basis $\{[H_i]\}$
of $L \quad H_i \quad \otimes H_2(X_L; \mathbb{Z})$

linking matrix $Lk(L)$

intersection forms on $H_2(X_L; \mathbb{Z})$

Thm (Lichorish, Wallace).
Any $M^3 \cong M_L$ for some $L \subset S^3$

(Original statement: any M^3 can be obtained from S^3 by doing surgery along some L with integer coefficients).

Thm (Kirby, 1978 Invent, "A calculus for framed links in $S^3$$\)
$M_{L_1} \cong M_{L_2}$ if L_1 can be obtained from L_2
by a sequence of the following Kirby Moves KM I and KM II.
KMI (Blow up/down): Add or subtract an isolated copy of an unknot at framing \(\pm 1 \).

Notation: \(U_\pm = U \pm 1 \).

KMI (Handle Slid): Replace \(K_i \) by a band sum \(\tilde{K}_i = K_i \# b K_j \) of \(K_i \) and a parallel copy \(K_j \) of \(K_j \), with \(\tilde{n}_i = n_i + n_j \pm 2\ell_k \) (\(\ell \) depends on \(b \)).

Band Sum \(K_0 \#_b K_j \) of \(K_0 \) and \(K_j \).

\(b: K_0 \times I \times I \to S^3 \) embedding s.t. \(b(I \times I \times I) \cap K_i = b(I \times I \times I) \).

Then \(K_0 \#_b K_j = (K_0 \cup K_i - b(I \times I \times I)) \cup b(I \times I \times I) \).
Idea of proof: "\[\text{Km1: } M_{u_\pm} \cong S^3 \Rightarrow M_{L_{0 \cdot u_\pm}} \cong M_L \# S^3 \cong M_L\]

\[f: \quad \begin{array}{c}
\bigcirc \\
\end{array} \quad \quad \xrightarrow{\phi \circ \phi'} \quad \begin{array}{c}
\bigcirc \\
\end{array} \]

\[\exists \phi : T^2 \to T^2 \text{ homotopy } \quad C_{ii} \to \lambda \]

that extends to \[\phi' : H \to H\]

\[\Rightarrow M_{u_\pm} = H_0 U H \cong H_0 \phi \circ \phi' H = S^3\]

\[\text{id} \circ \phi'\]

Km: Consider 4-mfld \(X_{u_\pm}\)

Since \(\partial X_{u_\pm} \cong S^3\), can attach a 4-handle \(B^4\).

Easy to see

0-handle \(U_{u_\pm}\) 2-handle \(U\) 4-handle \(\cong \pm \mathbb{C}P^2\)

\[X_L \cup u_\pm \cong X_L \# (\pm \mathbb{C}P^2) , \text{ Blow up/down.}\]
Similarly, one can see

\[\bigcirc \quad \leftrightarrow \quad S^2 \times S^2 \quad \leftrightarrow \quad \bigcirc \]

KM II.

To see \(\tilde{\nu}_j \), keep track of where \(k'_i \) goes. This can also be seen as follows.

Recall \(\{ k_i \} \leftrightarrow \) basis \(\{ [H_i] \} \) of \(H_2(X, \mathbb{Z}) \)

\[k_i \leftrightarrow k_i \#_b k'_j \leftrightarrow \ [H_i] \leftrightarrow [H_i] \pm [H_j] \]

Then the intersection form, hence the linking matrix, changes as

\[
\begin{pmatrix}
 \nu_i \\
 \ell_{ij} \\
 \ell_{ij} + n_i \\
\end{pmatrix} \mapsto
\begin{pmatrix}
 \nu_i + \nu_j + 2\ell_{ij} \\
 \ell_{ij} + \nu_i \\
 \ell_{ij} + n_j \\
\end{pmatrix}
\]
Suppose $M_{L_1} \cong M_{L_2} \cong M$.

Step 0: By possible $w_1 \neq cP^2$, $S^2 \times S^2$, $S^2 \times S^2$, we can assume $X_{L_1} \cong X_{L_2} \cong X$.

"Morse theory."

1. $\partial \mathbb{R}$, \mathbb{S}, \mathbb{C} can be obtained from \varnothing by KMI and KMI

2. Consider Morse functions $f_i : X_{L_i} \to [0, 1]$ with $f_i(0) = \varnothing$, $f_i(\frac{1}{2}) = S^3$, no critical pts

 $\text{Int} f_i^{-1}(0, \frac{1}{2}) \supset f_i^{-1}(1) = M_{L_i}$

"Cerf theory" \Rightarrow A homotopy $f : X \times [0, 1] \to [0, 1]$ from f_1 to f_2, sit each f_t is Morse.

For generic t, descending disks intersect S^3, gives isotopy between L_1 and L_2; for non-generic t, descending disk intersects critical pt of smaller value, that's where handle slide happens.
Critical pts.

Descending disks.

$S^3 \xrightarrow{L^c} B^4$

generic t.

M

$S^3 \xrightarrow{} B^4$

non-generic.

P_1, P_2