They are due Thursday April 27th in class. You do not have to do the problem with extra credit (Problem 5 part 2 and Problem 6).

Problem 1: MLE and confidence interval.
Suppose that X_1, \ldots, X_n are i.i.d. uniformly distributed in the interval $[0, \theta]$. Here θ is the unknown parameter to be estimated from the samples.

1. Find the MLE of θ, denoted by $\hat{\theta}_n$.
2. Prove that $\hat{\theta}_n$ converges to θ in probability, i.e., for any $\varepsilon > 0$,
 $$\mathbb{P}[|\hat{\theta}_n - \theta| \leq \varepsilon] \to 1$$
as $n \to \infty$.
3. For the error in the MLE, $\theta - \hat{\theta}_n$, compute the probability $\mathbb{P}[n(\theta - \hat{\theta}_n) \geq x]$ for any $n \geq 1$ and $x \geq 0$, and find the limiting distribution of $n(\theta - \hat{\theta}_n)$ as $n \to \infty$.
4. Using the result you obtained above to construct 95% confidence interval in your estimation of θ.

Problem 2: Laplace distribution.
Suppose X_1, \ldots, X_n is sampled independently from a double exponential distribution with the density given by
$$f(x|\mu, \sigma) = \frac{1}{2\sigma} \exp\left(-\frac{|x - \mu|}{\sigma}\right), \ -\infty < x < \infty$$

1. Assuming all $X_i \neq X_j$ for all $i \neq j$, can you find the MLE of μ? What if n is odd? What if n is even? Is the MLE unique?
2. Suppose you have determined $\hat{\mu}_n$, find the MLE of σ.

Problem 3: Small noise approximation.
We have a simple dynamical system given by
$$\frac{dx(t)}{dt} = c \ast x(t), \ x(0) = x_0$$
where c is some growth rate and x_0 is the initial data. They may have been measured with uncertainties.

1. If the only random source is x_0 and it has a distribution $N(\mu, \sigma^2)$, find the distribution of $x(t)$.
2. If the only random source is c and it has a distribution $N(\mu, \sigma^2)$, what is the distribution of $x(t)$? If $\sigma \ll 1$, find the Gaussian approximation to this distribution.
3. We assume that x_0, c are both random and (x_0, c) has joint Gaussian distribution with mean $\mu = (a, b)$ and covariance matrix $\Sigma = (\Sigma_{ij})_{i,j=1,2}$. Can you find the distribution of $x(t)$? If the uncertainties are small, e.g., max$_{i,j=1,2} |\Sigma_{ij}| \ll 1$, find the approximate distribution of $x(t)$.

Problem 4: MLE of AR(1) process.
A Gaussian AR(1) process has the form
$$Y_{n+1} = c + \rho Y_n + X_n, \ n = 1, 2, \ldots$$
with X_n i.i.d. $N(0, \sigma^2)$. Here c, ρ are constants and $|\rho| < 1$.

1. Assuming \(Y_1 \sim N(\mu, \lambda^2) \) and that it is independent of \(\{X_n, n = 1, 2, \ldots\} \), find \(\mu, \lambda^2 \) so that \(Y_n \) has the same distribution for all \(n \in \mathbb{Z}_+ \).

2. Assuming \(Y_1 \) is sampled from the distribution obtained in step 1. Denote by \(\theta = (c, \rho, \sigma^2) \) the parameters to be estimated, find the log-likelihood function of AR(1) model for the sample \(Y_1, \ldots, Y_n \).

3. Assuming now the first observation \(Y_1 = y_1 \) is given (deterministic), find the log-likelihood function of the AR(1) model for the sample \(Y_1, \ldots, Y_n \). Find the MLE of \(\theta \) explicitly.

Problem 5: MLE in Poisson regression

Given a set of basis functions \(\{f_k(t)\}_{k=1,\ldots,d-1} \), define

\[
F(t) = \sum_{k=1}^{d-1} \theta_k f_k(t),
\]

and for each \(t \in [0, 1] \), \(Y(t) \) is a Poisson random variable with parameter \(e^{F(t)} \). Given independent samples \((t_i, Y(t_i))_{i=1,\ldots,N} \), the goal is to use MLE to estimate \(\theta = (\theta_1, \ldots, \theta_{d-1}) \).

1. Formulate your MLE problem by writing down the log-likelihood function.

2. (extra credit: programing exercise) For any \(d \), the basis function is given by

\[
f_k(x) = f \left(\frac{d\pi}{2} (x - \frac{k - 1}{d}) \right), \quad k = 1, \ldots, d - 1,
\]

where

\[
f(x) = \begin{cases}
\sin(x), & \text{if } x \in [0, \pi], \\
0, & \text{otherwise}.
\end{cases}
\]

Let \(\theta_k = 1 \) for all \(k = 1, \ldots, d - 1 \) be the parameter we want to estimate. Let \(t_i = \frac{i}{N}, i = 1, \ldots, N \).

For \(N = 100, 500, 1000, d = 4, 10, 30, 60 \), do the following:

- generate the data \((t_i, Y(t_i))_{i=1,\ldots,N} \).
- find \(\hat{\theta} \) by maximizing the log-likelihood function. You may want to use the multidimensional Newton-Raphson method.
- discuss how your results depend on \(N \) and \(d \).

Problem 6: Linear Discriminant Analysis (extra credit)

Linear discriminant analysis, also called Gaussian discriminant analysis, is a classic generative learning algorithm in machine learning. In this model, suppose \(X \in \mathbb{R}^d \) is the feature vector, \(Y \in \{0, 1\} \) is the label. Conditioning on \(Y \), \(X \) has Gaussian distribution depending on \(Y = 0 \) or \(1 \). More precisely, the joint distribution of \((X, Y) \) follows:

\[
Y \sim \text{Bernoulli}(p) \quad X \mid Y = 0 \sim N(\mu_0, \Sigma) \quad X \mid Y = 1 \sim N(\mu_1, \Sigma)
\]

Here \(p \in (0, 1), \mu_0, \mu_1 \in \mathbb{R}^d, \Sigma \in \mathbb{R}^{d \times d} \) are the parameters of the model. Suppose now we have a dataset of independent samples \((X^{(i)}, Y^{(i)}), i = 1, \ldots, n \) (note that each \(X^{(i)} \) is a \(d \)-dimensional vector and each \(Y^{(i)} \) is a scalar).

1. Find the log-likelihood function in the model, and compute the MLE of \(\hat{\theta}, \hat{\mu}_0, \hat{\mu}_1, \hat{\Sigma} \).
2. Suppose we have already found the estimation of \(p, \mu_0, \mu_1, \Sigma \). Then we can use our model to make a prediction given some query point \(X \). Show by Bayes formula that the posterior distribution of the label \(Y \) at \(X \) takes the form of a logistic function, i.e.,

\[
P(Y = 1 | X; p, \mu_0, \mu_1, \Sigma) = \frac{1}{1 + \exp(-\theta^T \tilde{X})}
\]

where \(\theta \) is some appropriate function of \(p, \mu_0, \mu_1, \Sigma \) and \(\tilde{X} = [1; X] \in \mathbb{R}^{d+1} \).