Approximation in high-dimensional and nonparametric statistics: a unified approach

Yanjun Han

Department of Electrical Engineering, Stanford University

Joint work with:

Jiantao Jiao
Rajarshi Mukherjee
Tsachy Weissman

Stanford EE
Stanford Stats
Stanford EE

July 4, 2016
1. Problem Setup

2. High-dimensional Parametric Setting

3. Infinite Dimensional Nonparametric Setting
 - Upper bound
 - Lower bound
 - General L_r norm
1 Problem Setup

2 High-dimensional Parametric Setting

3 Infinite Dimensional Nonparametric Setting
 - Upper bound
 - Lower bound
 - General L_r norm
Problem: estimation of functionals

Given i.i.d. samples $X_1, \cdots, X_n \sim P$, we would like to estimate a one-dimensional functional $F(P) \in \mathbb{R}$:

- **Parametric case:** $P = (p_1, \cdots, p_S)$ is discrete, and
 \[
 F(P) = \sum_{i=1}^{S} I(p_i)
 \]

 High dimensional: $S \gtrsim n$

- **Nonparametric case:** P is continuous with density f, and
 \[
 F(P) = \int I(f(x))dx
 \]
When $I(\cdot)$ is everywhere differentiable...

Hájek–Le Cam Theory

The plug-in approach $F(P_n)$ is asymptotically efficient, where P_n is the empirical distribution
Nonparametric case: when the functional is smooth...

When \(I(\cdot) \) is four times differentiable with bounded \(I^{(4)} \), Taylor expansion yields

\[
\int I(f(x)) \, dx = \int \left[I(\hat{f}) + I^{(1)}(\hat{f})(f - \hat{f}) + \frac{1}{2} I^{(2)}(\hat{f})(f - \hat{f})^2 \\
+ \frac{1}{6} I^{(3)}(\hat{f})(f - \hat{f})^3 + O((f - \hat{f})^4) \right] \, dx
\]

where \(\hat{f} \) is a “good” estimator of \(f \) (e.g., a kernel estimate)

- Key observation: suffice to deal with linear (see, e.g., Nemirovski’00), quadratic (Bickel and Ritov’88, Birge and Massart’95) and cubic terms (Kerkyacharian and Picard’96) separately.

- Require bias reduction
What if $I(\cdot)$ is non-smooth?

Bias dominates when $I(\cdot)$ is non-smooth:

Theorem (ℓ_1 norm of Gaussian mean, Cai–Low’11)

For $y_i \sim \mathcal{N}(\theta_i, \sigma^2)$, $i = 1, \cdots, n$ and $F(\theta) = n^{-1} \sum_{i=1}^{n} |\theta_i|$, the plug-in estimator satisfies

$$
\sup_{\theta \in \mathbb{R}^n} \mathbb{E}_{\theta} (F(y) - F(\theta))^2 \asymp \sigma^2 + \frac{\sigma^2}{n}
$$

Theorem (Discrete entropy, Jiao–Venkat–H.–Weissman’15)

For $X_1, \cdots, X_n \sim P = (p_1, \cdots, p_S)$ and $F(P) = \sum_{i=1}^{S} -p_i \ln p_i$, the plug-in estimator satisfies

$$
\sup_{P \in \mathcal{M}_S} \mathbb{E}_P (F(P_n) - F(P))^2 \asymp \frac{S^2}{n^2} + \frac{(\ln S)^2}{n}
$$
The optimal estimator

Theorem (ℓ₁ norm of Gaussian mean, Cai–Low’11)

For \(y_i \sim N(\theta_i, \sigma^2) \), \(i = 1, \ldots, n \) and \(F(\theta) = n^{-1} \sum_{i=1}^{n} |\theta_i| \),

\[
\inf_{\hat{F}} \sup_{\theta \in \mathbb{R}^n} \mathbb{E}_\theta \left(\hat{F} - F(\theta) \right)^2 \asymp \frac{\sigma^2}{\ln n} \quad \text{squared bias}
\]

Theorem (Discrete entropy, Jiao–Venkat–H.–Weissman’15)

For \(X_1, \ldots, X_n \sim P = (p_1, \ldots, p_S) \) and \(F(P) = \sum_{i=1}^{S} -p_i \ln p_i \),

\[
\inf_{\hat{F}} \sup_{P \in \mathcal{M}_S} \mathbb{E}_P(\hat{F} - F(P))^2 \asymp \frac{S^2}{(n \ln n)^2} + \frac{(\ln S)^2}{n} \quad \text{squared bias + variance}
\]

Effective sample size enlargement: \(n \) samples \(\rightarrow \) \(n \ln n \) samples
Optimal estimator for ℓ_1 norm

unbiased estimate of best polynomial approximation of order $c_2 \ln n$

plug-in

“nonsmooth”

“smooth”

$-c_1 \sqrt{\ln n}$

0

$c_1 \sqrt{\ln n}$

x

$|x|$
Optimal estimator for entropy

$$f(p_i)$$

unbiased estimate of best polynomial approximation of order $$c_2 \ln n$$

$$f(\hat{p}_i) - \frac{f''(\hat{p}_i)\hat{p}_i(1-\hat{p}_i)}{2n}$$

“nonsmooth” “smooth”

0 \[\frac{c_1 \ln n}{n} \] 1
For a statistical model \((P_\theta : \theta \in \Theta)\), consider estimating the functional \(F(\theta)\) which is non-analytic at \(\Theta_0 \subset \Theta\), and \(\hat{\theta}_n\) is a natural estimator for \(\theta\).

1. **Classify the Regime**: Compute \(\hat{\theta}_n\), and declare that we are in the “non-smooth” regime if \(\hat{\theta}_n\) is “close” enough to \(\Theta_0\). Otherwise declare we are in the “smooth” regime;

2. **Estimate**:
 - If \(\hat{\theta}_n\) falls in the “smooth” regime, use an estimator “similar” to \(F(\hat{\theta}_n)\) to estimate \(F(\theta)\);
 - If \(\hat{\theta}_n\) falls in the “non-smooth” regime, replace the functional \(F(\theta)\) in the “non-smooth” regime by an approximation \(F_{\text{appr}}(\theta)\) (another functional) which can be estimated without bias, then apply an unbiased estimator for the functional \(F_{\text{appr}}(\theta)\).
Questions

- How to determine the “non-smooth” regime?
- In the “smooth” regime, what does “‘similar’ to $F(\hat{\theta}_n)$” mean precisely?
- In the “non-smooth” regime, what approximation (including which kind, which degree, and on which region) should be employed?
- What if the domain of $\hat{\theta}_n$ is different from (usually larger than) that of θ?
Problem Setup

High-dimensional Parametric Setting

Infinite Dimensional Nonparametric Setting
- Upper bound
- Lower bound
- General L_r norm
Given joint independent samples $X_1, \ldots, X_m \sim P = (p_1, \ldots, p_S)$ and $Y_1, \ldots, Y_n \sim Q = (q_1, \ldots, q_S)$, we would like to estimate the L_1 distance and the Kullback–Leibler (KL) divergence:

$$\|P - Q\|_1 = \sum_{i=1}^{S} |p_i - q_i|$$

$$D(P\|Q) = \begin{cases} \sum_{i=1}^{S} p_i \ln \frac{p_i}{q_i} & \text{if } P \ll Q, \\ +\infty & \text{otherwise.} \end{cases}$$

In the latter case, we assume a bounded likelihood ratio: $p_i / q_i \leq u(S)$ for any i.
Localization

Definition (Localization)

Consider a statistical model \((P_\theta)_{\theta \in \Theta}\) and an estimator \(\hat{\theta} \in \hat{\Theta}\) of \(\theta\), where \(\Theta \subset \hat{\Theta}\). A localization of level \(r \in [0, 1]\), or an \(r\)-localization, is a collection of sets \(\{U(x)\}_{x \in \hat{\Theta}}\), where \(U(x) \subset \Theta\) for any \(x \in \hat{\Theta}\), and

\[
\sup_{\theta \in \Theta} \mathbb{P}_\theta(\theta \notin U(\hat{\theta})) \leq r.
\]

- Naturally induce a reverse localization \(V(\theta) = \{\hat{\theta} : U(\hat{\theta}) \ni \theta\}\)
- Localization always exists, but we seek for a small one
- Different from confidence set: usually \(r \propto n^{-A}\)
Localization in Gaussian model: \(r \asymp n^{-A} \)

\[
\hat{\Theta} = \Theta = \mathbb{R} \\
\hat{\theta} \sim \mathcal{N}(\theta, \sigma^2)
\]
Localization in Gaussian model: $r \asymp n^{-A}$

$\hat{\theta} \sim \mathcal{N}(\theta, \sigma^2)$
Localization in Gaussian model: \(r \asymp n^{-A} \)

\[\hat{\theta} \sim \mathcal{N}(\theta, \sigma^2) \]

\[\Theta = \Theta = \mathbb{R} \]

\[\hat{\theta} \sim \mathcal{N}(\theta, \sigma^2) \]
Localization in Gaussian model: \(r \asymp n^{-A} \)

\[\Theta = \Theta = \mathbb{R} \]

\[\hat{\theta} \sim \mathcal{N}(\theta, \sigma^2) \]
Localization in Gaussian model: \(r \asymp n^{-A} \)

\[
\hat{\Theta} = \Theta = \mathbb{R} \\
\hat{\theta} \sim \mathcal{N}(\theta, \sigma^2)
\]
Localization in Gaussian model: \(r \asymp n^{-A} \)

\[
\hat{\Theta} = \Theta = \mathbb{R}^2 \\
\hat{\theta} \sim \mathcal{N}(\theta, \sigma^2 I_2)
\]
Localization in Gaussian model: $r \asymp n^{-A}$

\[\hat{\Theta} = \Theta = \mathbb{R} \]
\[\hat{\theta} \sim \mathcal{N}(\theta, \sigma^2) \]

\[\hat{\Theta} = \Theta = \mathbb{R}^2 \]
\[\hat{\theta} \sim \mathcal{N}(\theta, \sigma^2 I_2) \]

$U(\hat{\theta})$
Localization in Gaussian model: \(r \approx n^{-A} \)

\[
\hat{\Theta} = \Theta = \mathbb{R} \\
\hat{\theta} \sim \mathcal{N}(\theta, \sigma^2)
\]

\[
\hat{\Theta} = \Theta = \mathbb{R}^2 \\
\hat{\theta} \sim \mathcal{N}(\theta, \sigma^2 I_2)
\]

\[
r_1 \sim \sigma \sqrt{\ln n}
\]
Localization in Gaussian model: \(r \propto n^{-A} \)

\[\hat{\Theta} = \Theta = \mathbb{R} \]
\[\hat{\theta} \sim \mathcal{N}(\theta, \sigma^2) \]

\[\hat{\Theta} = \Theta = \mathbb{R}^2 \]
\[\hat{\theta} \sim \mathcal{N}(\theta, \sigma^2 I_2) \]

\[r_1 \sim \sigma \sqrt{\ln n} \]
\[r_2 \sim \sigma \sqrt{\ln n} \]
Localization in Binomial model: $r \asymp \min\{m, n\}^{-A}$

$\hat{\Theta} = \Theta = [0, 1]$
$n\hat{p} \sim B(n, p)$
Localization in Binomial model: $r \asymp \min\{m, n\}^{-A}$

\[\hat{\Theta} = \Theta = [0, 1] \]

\[n\hat{p} \sim B(n, p)\]
Localization in Binomial model: \(r \approx \min\{m, n\}^{-A} \)

\[
\hat{p} < \frac{\ln n}{n} \\
\hat{\Theta} = \Theta = [0, 1] \\
n\hat{p} \sim \text{B}(n, p)
\]
Localization in Binomial model: \(r \asymp \min\{m, n\}^{-A} \)

\[
\hat{\Theta} = \Theta = [0, 1] \\
n\hat{p} \sim \text{B}(n, p)
\]
Localization in Binomial model: \(r \asymp \min\{m, n\}^{-A} \)

\[
\hat{p} < \frac{\ln n}{n}
\]

\[
p > \frac{\ln n}{n}
\]

\[
\hat{\Theta} = \Theta = [0, 1]
\]

\[
n\hat{p} \sim B(n, p)
\]
Localization in Binomial model: \(r \approx \min\{m, n\}^{-A} \)

\[
\hat{\Theta} = \Theta = [0, 1]
\]

\[
n\hat{p} \sim B(n, p)
\]
Localization in Binomial model: \(r \approx \min\{m, n\}^{-A} \)

\[
\hat{\Theta} = \Theta = [0, 1]
\]

\[n\hat{p} \sim B(n, p) \]

\[
\hat{\Theta} = [0, 1]^2 : (m\hat{p}_1, n\hat{p}_2) \sim B(m, p_1) \times B(n, p_2)
\]
Localization in Binomial model: $r \asymp \min\{m, n\}^{-A}$

\[\hat{\Theta} = \Theta = [0, 1] \]
\[n\hat{p} \sim B(n, p) \]

\[\hat{\Theta} = [0, 1]^2 : (m\hat{p}_1, n\hat{p}_2) \sim B(m, p_1) \times B(n, p_2) \]
Localization in Binomial model: \(r \asymp \min \{ m, n \}^{-A} \)

\[
\hat{\Theta} = [0, 1] \quad n\hat{p} \sim B(n, p)
\]

\[
\Theta = [0, 1]^2 : (m\hat{p}_1, n\hat{p}_2) \sim B(m, p_1) \times B(n, p_2)
\]
Localization in Binomial model: \(r \approx \min\{m, n\}^{-A} \)

\[
\hat{\Theta} = \Theta = [0, 1] \\
n\hat{p} \sim B(n, p)
\]

\[\hat{\Theta} = [0, 1]^2 : (m\hat{p}_1, n\hat{p}_2) \sim B(m, p_1) \times B(n, p_2)\]
Localization in Binomial model: $r \sim \min \{m, n\}^{-A}$

$\hat{\Theta} = \Theta = [0, 1]$ \hspace{1cm} $n\hat{p} \sim B(n, p)$

$\hat{\Theta} = [0, 1]^2$ \hspace{1cm} $(m\hat{p}_1, n\hat{p}_2) \sim B(m, p_1) \times B(n, p_2)$
The role of localization: ℓ_1 norm estimation

Unbiased estimate of best polynomial approximation of order $c_2 \ln n$

Plug-in

"nonsmooth" $-c_1 \sqrt{\ln n}$

"smooth" $c_1 \sqrt{\ln n}$

x

$|x|$
The role of localization: ℓ_1 norm estimation

- Unbiased estimate of best polynomial approximation of order $c_2 \ln n$
- Plug-in

- "nonsmooth"
- "smooth"

- $-c_1 \sqrt{\ln n}$
- 0
- $c_1 \sqrt{\ln n}$
The role of localization: ℓ_1 norm estimation

- Unbiased estimate of best polynomial approximation of order $c_2 \ln n$
- Plug-in

- "Nonsmooth" interval: $-c_1 \sqrt{\ln n}$ to 0
- "Smooth" interval: 0 to $c_1 \sqrt{\ln n}$
The role of localization: entropy estimation

Unbiased estimate of best polynomial approximation of order $c_2 \ln n$

- "nonsmooth"
- "smooth"

$$f(\hat{p}_i) = \frac{f''(\hat{p}_i)\hat{p}_i(1-\hat{p}_i)}{2n}$$
The role of localization: entropy estimation

$$f(p_i)$$

unbiased estimate of best polynomial approximation of order $c_2 \ln n$

$$f(\hat{p}_i) - \frac{f''(\hat{p}_i)\hat{p}_i(1-\hat{p}_i)}{2n}$$

“nonsmooth”

“smooth”

0 $c_1 \ln n$ n 1 p_i
The role of localization: entropy estimation

The graph illustrates the behavior of the function $f(p_i)$, which is an unbiased estimate of the best polynomial approximation of order $c_2 \ln n$.

For "nonsmooth" cases, the function is defined by the equation:

$$f(\hat{p}_i) - \frac{f''(\hat{p}_i)\hat{p}_i(1-\hat{p}_i)}{2n}$$

where f'' denotes the second derivative of f.

For "smooth" cases, the graph shows a smooth transition as p_i varies from 0 to 1.
Determine the “non-smooth” regime

Analysis of the plug-in approach:

\[I(\hat{\theta}_n) = I(\theta) + I'(\theta)(\hat{\theta}_n - \theta) + \frac{1}{2} I''(\xi)(\hat{\theta}_n - \theta)^2 \]

Plug-in works well when \(\hat{\theta}_n \notin \hat{\Theta}_0 \) (recall that \(I(\cdot) \) is non-analytic in \(\hat{\Theta}_0 \subset \hat{\Theta} \))
Determine the “non-smooth” regime

Analysis of the plug-in approach:

\[I(\hat{\theta}_n) = I(\theta) + I'(\theta)(\hat{\theta}_n - \theta) + \frac{1}{2} I''(\xi)(\hat{\theta}_n - \theta)^2 \]

- Plug-in works well when \(\hat{\theta}_n \notin \hat{\Theta}_0 \) (recall that \(I(\cdot) \) is non-analytic in \(\hat{\Theta}_0 \subset \hat{\Theta} \))

The criteria

Given a suitable \(r \)-localization \(U(\cdot) \), we declare that \(\theta \) falls into the “non-smooth” regime \(\Theta_{ns} \) if

\[\theta \in \bigcup_{\hat{\theta} \in \hat{\Theta}_0} U(\hat{\theta}) \]

and in the “smooth” regime \(\Theta_s \) otherwise.

Idea: \(\sup_{\theta \in \Theta_s} \mathbb{P}_\theta(\hat{\theta}_n \in \hat{\Theta}_0) \leq \sup_{\theta \in \Theta_s} \mathbb{P}_\theta(\theta \notin U(\hat{\theta}_n)) \leq r \)
However, we cannot make decisions based on unknown θ!

\[
\hat{\theta} = \Theta
\]
There is something more...

However, we cannot make decisions based on unknown θ!

$$\hat{\Theta} = \Theta$$
There is something more...

However, we cannot make decisions based on unknown θ!

\[
\hat{\Theta} = \Theta
\]

\[
\Theta - \Theta_s^{(1)}
\]

\[
\Theta - \Theta_{ns}^{(2)}
\]

\[
\hat{\Theta}_0
\]
There is something more...

However, we cannot make decisions based on unknown θ!

\[\hat{\Theta} = \Theta \]

$\Theta - \Theta_{ns}$

$\Theta - \Theta^{(2)}$

$\Theta - \Theta^{(1)}$

$\hat{\Theta}_0$

$\mathcal{U}_1(\hat{\theta}_1)$
There is something more…

However, we cannot make decisions based on unknown θ!

\[\hat{\Theta} = \Theta \]

\[U_2(\hat{\theta}_2) \]

\[\hat{\theta}_2 \]

\[\Theta - \Theta_{ns}^{(2)} \]

\[U_1(\hat{\theta}_1) \]

\[\Theta - \Theta_{s}^{(1)} \]

\[\hat{\theta}_1 \]

\[\Theta_{0} \]
There is something more...

However, we cannot make decisions based on unknown θ!

$$\hat{\Theta} = \Theta$$

$U_2(\hat{\Theta}_2)$

$\Theta - \Theta_{ns}$

$U_1(\hat{\Theta}_1)$

$\Theta - \Theta_{(2)}$
“Non-smooth” regime: approximation

Find an approximate functional $I_{\text{appr}}(\theta) \approx I(\theta)$, and use an unbiased estimate $T(\hat{\theta}_n)$, i.e., $\mathbb{E} T(\hat{\theta}_n) = I_{\text{appr}}(\theta)$.

- **Type:** polynomial in Multinomial, Poisson and Gaussian models (only polynomials have unbiased estimate!)
- **Region:** suffice to use $U(\hat{\theta}_n)$ ($\theta \in U(\hat{\theta}_n)$ w.h.p.)
- **Degree:** choose a suitable one to balance bias and variance
“Smooth” regime: bias corrected “plug-in”

Bias correction based on Taylor expansion:

\[
\mathbb{E} I(\theta) \approx \mathbb{E} \sum_{k=0}^{r} \frac{I^{(k)}(\hat{\theta}_n)}{k!} (\theta - \hat{\theta}_n)^k
\]

Can we find an unbiased estimator for the RHS?

- **Solution:** **sample splitting** to obtain independent samples \(\hat{\theta}_n^{(1)}, \hat{\theta}_n^{(2)} \)
- **Use the following estimator:**

\[
T(\hat{\theta}_n) = \sum_{k=0}^{r} \frac{I^{(k)}(\hat{\theta}_n^{(1)})}{k!} \sum_{j=0}^{k} \binom{k}{j} S_j(\hat{\theta}_n^{(2)})(-\hat{\theta}_n^{(1)})^{k-j}
\]

where \(S_j(\cdot) \) is an unbiased estimator of \(\theta^j \), i.e., \(\mathbb{E} S_j(\hat{\theta}_n^{(2)}) = \theta^j \).
Estimator of ℓ_1 distance

$I(x, y) = |x - y|$, non-analytic regime $\hat{\Theta}_0 = \{(x, y) : x = y \in [0, 1]\}$
Estimator of ℓ_1 distance

$I(x, y) = |x - y|$, non-analytic regime $\hat{\Theta}_0 = \{(x, y) : x = y \in [0, 1]\}$
Estimator of ℓ_1 distance

$I(x, y) = |x - y|$, non-analytic regime $\hat{\Theta}_0 = \{(x, y) : x = y \in [0, 1]\}$
Estimator of ℓ_1 distance

$I(x, y) = |x - y|$, non-analytic regime $\hat{\Theta}_0 = \{(x, y) : x = y \in [0, 1]\}$

1D polynomial approximation of $|t|$ ($t = p - q$)

$U(\hat{p}_1, \hat{q}_1)$

$\cdot (\hat{p}_1, \hat{q}_1)\hat{\Theta}_{ns}$

$\hat{\Theta}_s$

$\frac{\ln n}{n}$

$p - q = \sqrt{\frac{\ln n}{n}} (\sqrt{p} + \sqrt{q})$
Estimator of ℓ_1 distance

$l(x, y) = |x - y|$, non-analytic regime $\hat{\Theta}_0 = \{(x, y) : x = y \in [0, 1]\}$
Estimator of ℓ_1 distance

$I(x, y) = |x - y|$, non-analytic regime $\hat{\Theta}_0 = \{(x, y) : x = y \in [0, 1]\}$

1D polynomial approximation of $|t|$ ($t = p - q$)

2D polynomial approximation of $|p - q|$
Estimator of ℓ_1 distance

$I(x, y) = |x - y|$, non-analytic regime $\hat{\Theta}_0 = \{(x, y) : x = y \in [0, 1]\}$

1D polynomial approximation of $|t|$ ($t = p - q$)

$U(\hat{p}_1, \hat{q}_1)$

$\hat{\Theta}_{ns}$

2D polynomial approximation of $|p - q|$

$U(\hat{p}_2, \hat{q}_2)$

$\hat{\Theta}_s$

$p - q = \sqrt{\frac{\ln n}{n}} (\sqrt{p} + \sqrt{q})$
Estimator of ℓ_1 distance

$I(x, y) = |x - y|$, non-analytic regime $\hat{\Theta}_0 = \{(x, y) : x = y \in [0, 1]\}$
Performance analysis

Let the approximation degree be K, our estimator \hat{T} satisfies

$$\mathbb{E}_{(P,Q)}(\hat{T} - \|P - Q\|_1)^2 \lesssim \frac{S \ln n}{nK^2} + e^{cK} \cdot \frac{SK^2(\ln n)^2}{n^2}$$

Choosing $K \asymp \ln n$, we obtain

Theorem (Optimal estimator for ℓ_1 distance)

The minimax risk in estimating ℓ_1 distance is given by

$$\inf_{\hat{T}} \sup_{P,Q \in \mathcal{M}_S} \mathbb{E}_{(P,Q)}(\hat{T} - \|P - Q\|_1)^2 \asymp \frac{S}{n \ln n}$$

Effective sample size enlargement:

Theorem (Empirical estimator for ℓ_1 distance)

The maximum risk of the empirical estimator is given by

$$\sup_{P,Q \in \mathcal{M}_S} \mathbb{E}_{(P,Q)}(\|P_n - Q_n\|_1 - \|P - Q\|_1)^2 \asymp \frac{S}{n}$$
Some remarks

Additional remarks:

- For large (\hat{p}, \hat{q}) in the non-smooth regime, approximating over the whole stripe fails to give the optimal risk.

- For small (\hat{p}, \hat{q}) in the non-smooth regime, best 2D polynomial approximation is **not** unique and not all can work:
 - Any 1D polynomial (i.e., $P(x, y) = p(x - y)$) cannot work!
 - We use the decomposition

\[
|x - y| = (\sqrt{x} + \sqrt{y})|\sqrt{x} - \sqrt{y}|
\]

and approximate two terms separately.

- Still open in general.

- Valiant and Valiant’11 obtains the correct sample complexity $n \gg \frac{S}{\ln S}$, but suboptimal in the convergence rate.
Estimator for KL divergence

\[I(p, q) = p \ln q, \quad \Theta = \{(p, q) \in [0, 1]^2 : p \leq u(S)q\} \subset \hat{\Theta} = [0, 1]^2 \]
Estimator for KL divergence

\[I(p, q) = p \ln q, \quad \Theta = \{(p, q) \in [0, 1]^2 : p \leq u(S)q \} \subset \hat{\Theta} = [0, 1]^2 \]
Estimator for KL divergence

\[I(p, q) = p \ln q, \ \Theta = \{(p, q) \in [0, 1]^2 : p \leq u(S)q\} \subset \hat{\Theta} = [0, 1]^2 \]
Estimator for KL divergence

\[I(p, q) = p \ln q, \ \Theta = \{(p, q) \in [0, 1]^2 : p \leq u(S)q\} \subset \hat{\Theta} = [0, 1]^2 \]
Estimator for KL divergence

\[I(p, q) = p \ln q, \ \Theta = \{(p, q) \in [0, 1]^2 : p \leq u(S)q\} \subset \hat{\Theta} = [0, 1]^2 \]
Estimator for KL divergence

\[I(p, q) = p \ln q, \ \Theta = \{(p, q) \in [0, 1]^2 : p \leq u(S)q\} \subset \hat{\Theta} = [0, 1]^2 \]
Estimator for KL divergence

\[I(p, q) = p \ln q, \quad \Theta = \{(p, q) \in [0, 1]^2 : p \leq u(S)q\} \subset \hat{\Theta} = [0, 1]^2 \]
Estimator for KL divergence

\[I(p, q) = p \ln q, \ \Theta = \{(p, q) \in [0, 1]^2 : p \leq u(S)q\} \subset \hat{\Theta} = [0, 1]^2 \]
Estimator for KL divergence

\[I(p, q) = p \ln q, \quad \Theta = \{(p, q) \in [0, 1]^2 : p \leq u(S)q\} \subset \hat{\Theta} = [0, 1]^2 \]
Additional remarks:

- Best polynomial approximation over general polytopes have not been solved until very recently!
- Room for improvement: use a single polynomial $P(x, y)$ to approximate $x \ln y$ whenever $y \leq \frac{c_1 \ln n}{n}$, where $P(x, y) = xq(y)$, and

$$yq(y) + C = \arg \min_{p \in \text{Poly}_K} \max_{z \in [0, \frac{c_1 \ln n}{n}]} |z \ln z - p(z)|$$
Performance analysis

Theorem (Optimal estimator for KL divergence)

If \(m \gtrsim \frac{S}{\ln S} \), \(n \gtrsim \frac{Su(S)}{\ln S} \) and \(u(S) \gtrsim (\ln S)^2 \), we have

\[
\inf_{\hat{T}} \sup_{P, Q \in \mathcal{M}_S, u(S)} E_{P, Q} \left(\hat{T} - D(P \parallel Q) \right)^2 \lesssim \left(\frac{S}{m \ln m} + \frac{Su(S)}{n \ln n} \right)^2 + \frac{(\ln u(S))^2}{m} + \frac{u(S)}{n}
\]

and our estimator attains the upper bound and does not require the knowledge of \(S \) nor \(u(S) \).

The empirical estimator \(D(P_m \parallel Q'_n) \) with \(Q'_n = \max\{n^{-1}, Q_n\} \):

Theorem (Empirical estimator for KL divergence)

The empirical estimator satisfies

\[
\sup_{P, Q \in \mathcal{M}_S, u(S)} E_{P, Q} \left(D(P_m \parallel Q'_n) - D(P \parallel Q) \right)^2 \lesssim \left(\frac{S}{m} + \frac{Su(S)}{n} \right)^2 + \frac{(\ln u(S))^2}{m} + \frac{u(S)}{n}
\]
Let \(\{ U(x) \}_{x \in \Theta'} \) be a satisfactory localization.

1. **Classify the Regime:**
 - For the true parameter \(\theta \), declare that \(\theta \) is in the “non-smooth” regime if \(\theta \) is “close” enough to \(\Theta'_0 \) in terms of localization. Otherwise declare \(\theta \) is in the “smooth” regime;
 - Compute \(\hat{\theta}_n \), and declare that we are in the “non-smooth” regime if the localization of \(\hat{\theta}_n \) falls into the “non-smooth” regime of \(\theta \). Otherwise declare we are in the “smooth” regime;

2. **Estimate:**
 - If \(\hat{\theta}_n \) falls in the “smooth” regime, use an estimator “similar” to \(F(\hat{\theta}_n) \) to estimate \(F(\theta) \);
 - If \(\hat{\theta}_n \) falls in the “non-smooth” regime, replace the functional \(F(\theta) \) in the “non-smooth” regime by an approximation \(F_{\text{appr}}(\theta) \) (another functional which well approximates \(F(\theta) \) on \(U(\hat{\theta}_n) \)) which can be estimated without bias, then apply an unbiased estimator for the functional \(F_{\text{appr}}(\theta) \).
Problem Setup

High-dimensional Parametric Setting

Infinite Dimensional Nonparametric Setting
- Upper bound
- Lower bound
- General L_r norm
The problem

In the Gaussian white noise model

\[dY_t = f(t)dt + \frac{\sigma}{\sqrt{n}} dB_t, \quad t \in [0, 1] \]

with \(f \in \mathcal{H}^s(L) \), we would like to estimate the following functional in \(L_2 \) risk:

\[\|f\|_r \triangleq \left(\int_0^1 |f(t)|^r dt \right)^{\frac{1}{r}}. \]

Hölder Ball

\(f \in C[0, 1] \) belongs to the Hölder ball \(\mathcal{H}^s(L) \) with \(s = m + r > 0 \), \(m \in \mathbb{N} \), \(r \in (0, 1] \), if and only if

\[\sup_{0 \leq x < y \leq 1} \frac{|f^{(m)}(x) - f^{(m)}(y)|}{|x - y|^r} \leq L \]
Under certain smoothness conditions ($s > 1/2$ for Hölder balls), Brown et al. proved the asymptotic equivalence between the following models:

- **Gaussian white noise model:**
 \[dY_t = f(t)dt + \frac{\sigma}{\sqrt{n}}dB_t, \quad t \in [0, 1] \]

- **Regression model:** for iid $\mathcal{N}(0, 1)$ noise $\{\xi_i\}_{i=1}^n$,
 \[y_i = f\left(\frac{i}{n}\right) + \sigma \xi_i, \quad i = 1, 2, \cdots, n \]

- **Poisson process:** generate $N = \text{Poi}(n)$ iid samples from common density g ($g = f^2, \sigma = 1/2$)

- **Density estimation model:** generate n iid samples from common density g ($g = f^2, \sigma = 1/2$)
Lepski’s result

Theorem (Lepski’s result on L_r norm)

For even r, we have

$$
\left(\inf_{\hat{T}} \sup_{f \in H^s(L)} \mathbb{E}_f \left(\hat{T} - \|f\|_r \right)^2 \right)^{\frac{1}{2}} \asymp n^{-\frac{s}{2s+1-1/r}}
$$

while for non-even r, we have the lower bound

$$
\left(\inf_{\hat{T}} \sup_{f \in H^s(L)} \mathbb{E}_f \left(\hat{T} - \|f\|_r \right)^2 \right)^{\frac{1}{2}} \gtrsim \frac{(n \ln n)^{-\frac{s}{2s+1}}}{(\ln n)^r}
$$

and for $r = 1$, we have the upper bound

$$
\left(\inf_{\hat{T}} \sup_{f \in H^s(L)} \mathbb{E}_f \left(\hat{T} - \|f\|_1 \right)^2 \right)^{\frac{1}{2}} \lesssim (n \ln n)^{-\frac{s}{2s+1}}
$$
The Besov ball setting

Instead of the Hölder ball $\mathcal{H}^s(L)$, we use the following Besov ball (generalized Lipschitz class)

$$B^s_{p,\infty}(L) \triangleq \{ f \in L^p[0,1] : |f|_{B^s_{p,\infty}} \leq L \}$$

with $1 \leq p < \infty$. Properties:

- $B^s_{p,\infty} \supset B^s_{p',\infty}$ for $p < p'$
- $B^s_{\infty,\infty} = \mathcal{H}^s$ for non-integer s

Intuition of Besov ball

$f \in B^s_{p,\infty}$ if and only if $\| f^{(s)} \|_p < \infty$.
Main result for L_1 norm

Theorem (Minimax risk for estimating L_1 norm)

For any $s > 0$ and $1 \leq p < \infty$, we have

$$\left(\inf_{\hat{T}} \sup_{f \in \mathcal{B}_{p,\infty}^s(L)} \mathbb{E}_f \left(\hat{T} - \int_0^1 |f(t)| dt \right)^2 \right)^{1/2} \asymp (n \ln n)^{-\frac{s}{2s+1}}$$
Natural estimator for f: the kernel estimate for $s \leq 1$

If $f \in \mathcal{H}^s(L)$ with $0 < s \leq 1$, consider the simple averaging (rectangle window) with bandwidth $2h$:

$$\tilde{f}_h(x) = \frac{1}{2h} \int_{x-h}^{x+h} dY_t$$

Bias-variance analysis:

- **Bias:** $|\mathbb{E}\tilde{f}_h(x) - f(x)| = |\frac{1}{2h} \int_{x-h}^{x+h} (f(t) - f(x))| dt \leq Lh^s$

- **Variance:** $\text{Var}(\tilde{f}_h(x)) = \frac{1}{4h^2} \int_{x-h}^{x+h} \frac{1}{n} dt = \frac{1}{2nh}$

- **Optimal bandwidth:** $h \asymp n^{-\frac{1}{2s+1}}$

General Besov ball

For general Besov ball $f \in \mathcal{B}^s_{p,\infty}(L)$, the wavelet basis is the optimal basis (attains the Kolmogorov n-width), and the associated kernel K_h with bandwidth h satisfies

$$\|f - K_h f\|_p \lesssim Lh^s$$
Bias-variance tradeoff
First-stage approximation: approximation of function

Consider a kernel estimate of f with bandwidth h:

$$f_h(t) = \int_0^1 \frac{1}{h} K\left(\frac{t-u}{h}\right) \cdot f(u) \, du$$

$$\tilde{f}_h(t) = \int_0^1 \frac{1}{h} K\left(\frac{t-u}{h}\right) \cdot dY_u$$

- For suitable kernel, we have $|f(t) - f_h(t)| \lesssim h^s$.
- The observation model becomes

$$\tilde{f}_h(t) = f_h(t) + \lambda_h \xi_h(t)$$

with $\lambda_h \asymp \frac{1}{\sqrt{nh}}$ and $\xi_h(t) \sim \mathcal{N}(0, 1)$.

- $\xi_h(s)$ and $\xi_h(t)$ are independent whenever $|s - t| > h$.

Idea: estimate $\|f_h\|_1$ instead of $\|f\|_1$, i.e., approximate $\|f\|_1$ by $\|f_h\|_1$
Second-stage approximation: approximation of functional

Second-stage approximation:

- Polynomial approximation of $|x|$ on $[-c_1 \lambda_h \sqrt{\ln n}, c_1 \lambda_h \sqrt{\ln n}]$:

$$
|x| \approx \sum_{k=0}^{K} a_k x^k
$$

- Let $Q(\tilde{f}_h(t))$ be the unbiased estimator of $\sum_{k=0}^{K} a_k f_h(t)^k$
- Split samples, and estimate $|f_h(t)|$ via

$$
T(t) = Q(\tilde{f}_{h,1}) \mathbb{1}(|\tilde{f}_{h,2}| \leq c_1 \lambda_h \sqrt{\ln n}) + |\tilde{f}_{h,1}| \mathbb{1}(|\tilde{f}_{h,2}| > c_1 \lambda_h \sqrt{\ln n})
$$

Estimator construction:

$$
\hat{T} = \int_0^1 T(t) dt
$$
Error analysis

Three types of errors:

- **Approximation error I**: \(\| f \|_1 - \| f_h \|_1 \leq \| f - f_h \|_1 \leq \| f - f_h \|_p \lesssim h^s \)

- **Approximation error II (bias)**: the bias at a point corresponds to the polynomial approximation error, which is of order \(\frac{\lambda h \sqrt{\ln n}}{K} \). Hence, the integrated bias is upper bounded by

\[
|E \hat{T} - \| f_h \|_1| \lesssim \frac{1}{K} \sqrt{\frac{\ln n}{nh}}
\]

- **Variance**: the standard deviation at a point is upper bounded by \(\lambda_h \cdot \exp(cK) \). Since we have \(h^{-1} \) “independent samples”, the total variance is upper bounded by

\[
\sqrt{\text{Var}(\hat{T})} \lesssim \sqrt{h} \cdot \lambda_h \cdot \exp(cK) \lesssim n^{-\frac{1}{2}} e^{cK}
\]

Choice of parameters: \(h \asymp (n \ln n)^{-\frac{1}{2s+1}} \), \(K \asymp \ln n \).
Suppose we want to estimate $T(\theta)$ with $\theta \in \Theta$ based on observation X.

Lemma (Tsybakov’08)

Suppose there exist $\zeta \in \mathbb{R}, s > 0, 0 \leq \beta_0, \beta_1 < 1$ and two priors σ_0, σ_1 on Θ such that

$$
\sigma_0(\theta : T(\theta) \leq \zeta - s) \geq 1 - \beta_0 \tag{1}
$$

$$
\sigma_1(\theta : T(\theta) \geq \zeta + s) \geq 1 - \beta_1. \tag{2}
$$

If $TV(F_1, F_0) \leq \eta < 1$, then

$$
\inf \sup_{\hat{T}} \mathbb{P}_\theta \left(|\hat{T} - T(\theta)| \geq s \right) \geq \frac{1 - \eta - \beta_0 - \beta_1}{2}, \tag{3}
$$

where $F_i, i = 0, 1$ are the marginal distributions of X when the priors are $\sigma_i, i = 0, 1$, respectively.
Reduction to parametric model

Fix some smooth \(g \) on \([0, 1]\). Consider the parametric submodel with

\[
f_\theta(t) = L' \sum_{i=1}^{N} \theta_i \sqrt{\ln N} \cdot h^s g \left(\frac{t - (i - 1)/N}{h} \right)
\]

where \(h \asymp (n \ln n)^{-\frac{1}{2s+1}} \) is the size of each subinterval, and \(N = h^{-1} \).

- Functional value: \(\|f_\theta\|_1 \asymp h^s \sqrt{\ln N} \cdot \frac{1}{N} \sum_{i=1}^{N} |\theta_i| \)
- Besov ball condition: \(\left(\frac{1}{N} \sum_{i=1}^{N} |\theta_i|^p \right)^{\frac{1}{p}} \lesssim \frac{1}{\sqrt{\ln N}} \)

Claim

It suffices to prove that in the Gaussian sequence model \(y_i = \theta_i + \xi_i, \) \(i = 1, \ldots, N, \xi_i \overset{i.i.d.}{\sim} \mathcal{N}(0, 1) \), we have

\[
\inf_{\hat{T}} \sup_{\theta: \left(\frac{1}{N} \sum_{i=1}^{N} |\theta_i|^p \right)^{\frac{1}{p}} \lesssim \frac{1}{\sqrt{\ln N}}} \mathbb{E}_\theta (\hat{T} - \frac{1}{N} \sum_{i=1}^{N} |\theta_i|)^2 \gtrsim \frac{1}{\ln N}
\]
Construction of two measures

These two measures σ_0, σ_1 should satisfy the following conditions:

- supported on $[-\sqrt{\ln N}, \sqrt{\ln N}]$ (measure concentration)
- large difference in functional value:
 $$\int |t| \sigma_0(dt) - \int |t| \sigma_1(dt) \gtrsim \frac{1}{\sqrt{\ln N}}$$
- matching moments (\Rightarrow small total variation distance):
 $$\int t^l \sigma_0(dt) = \int t^l \sigma_1(dt), \quad l = 0, 1, \cdots, c \ln N$$
- constrained moment:
 $$\left(\int |t|^p \sigma_i(dt) \right)^{\frac{1}{p}} \lesssim \frac{1}{\sqrt{\ln N}}, \quad i = 0, 1.$$
The key duality:

\[
\sup_{\mu : \|\mu\|_{TV} \leq 1} \int f(t)\mu(dt) = \inf_{p \in \text{Poly}_K} \|f - p\|_{\infty}
\]

\[
\int t^{l}\mu(dt) = 0, l = 0, \ldots, K
\]

Claim

To construct such measures, it is sufficient (and also necessary) to prove that, for some integer \(q \geq p/2 \), we have

\[
\inf_{\{a_k\}_{k=-q+1}^{n}} \sup_{x \in [cn^{-2}, 1]} \left| x^{-q+\frac{1}{2}} - \sum_{k=-q+1}^{n} a_k x^k \right| \gtrsim n^{2q-1}
\]

Still a non-trivial question (involving approximation using \(x^k \) with \(k < 0 \)), but can be solved using approximation theory.
Our result on L_r norm estimation

Theorem (Main result on L_r norm estimation)

In Besov balls $\mathcal{B}_p^s(L)$ with $s > 0$ and $r \leq p < \infty$, the minimax risk is given by

$$\left(\inf_{\hat{T}} \sup_{f \in \mathcal{B}_p^s(L)} \mathbb{E}_f \left(\hat{T} - \|f\|_r \right)^2 \right)^{\frac{1}{2}} \asymp \begin{cases} n^{-\frac{s}{2s+1-1/r}} & r \text{ even} \\ (n \ln n)^{-\frac{s}{2s+1}} & r \text{ odd or non-integer} \end{cases}$$

The upper bound is attained by polynomial approximation.

- Note: if r is even, $|x|^r = x^r$ is itself a polynomial!
The general recipe in the nonparametric setting:

- **Stage-one approximation:** approximate \(I(f) \) by \(I(f_h) \), where we essentially have a parametric model.

- **Stage-two approximation:** apply the approximation-based method in the parametric case to reduce bias.

- **Choose the optimal bandwidth** \(h \) and approximation degree \(K \).
What about the Hölder ball case ($p = \infty$)?
Can our estimator be adaptive in smoothness parameter s? (Lepski’s trick)
Adaptive confidence interval in general L_r norm (Risk estimation)
Other non-smooth functionals (e.g., differential entropy $\int -f(t) \ln f(t) dt$)

Thank you!

Email: yjhan@stanford.edu