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Preface

This book is intended as a text covering the central concepts of practical optimiza-
tion techniques. It is designed for either self-study by professionals or classroom
work at the undergraduate or graduate level for students who have a technical back-
ground in engineering, mathematics, or science. Like the field of optimization itself,
which involves many classical disciplines, the book should be useful to system ana-
lysts, operations researchers, numerical analysts, management scientists, and other
specialists from the host of disciplines from which practical optimization appli-
cations are drawn. The prerequisites for convenient use of the book are relatively
modest; the prime requirement being some familiarity with introductory elements
of linear algebra. Certain sections and developments do assume some knowledge
of more advanced concepts of linear algebra, such as eigenvector analysis, or some
background in sets of real numbers, but the text is structured so that the mainstream
of the development can be faithfully pursued without reliance on this more advanced
background material.

Although the book covers primarily material that is now fairly standard, this edi-
tion emphasizes methods that are both state-of-the-art and popular in emerging fields
such as Data Sciences, Machine Learning and Decision Analytics. One major in-
sight is the connection between the purely analytical character of an optimization
problem, expressed perhaps by properties of the optimality conditions, and the be-
havior of algorithms used to solve a problem. This was a major theme of the first
edition of this book and the fifth edition further expands and illustrates this relation-
ship.

As in the earlier editions, the material in this fifth edition is organized into three
separate parts. Part I is a self-contained introduction to classical and conic linear
programming, a key component of optimization theory. The presentation in this part
is fairly conventional, covering the main elements of the underlying theory of lin-
ear programming, many of the most effective numerical algorithms, and many of its
important special and emerging applications. Part II, which is independent of Part I,
covers the theory of unconstrained optimization, including both derivations of the
appropriate optimality conditions and an introduction to basic algorithms. This part
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viii Preface

of the book explores the general properties of algorithms and defines various no-
tions of convergence. Part III extends the concepts developed in the second part to
constrained optimization problems. Except for a few isolated sections, this part is
also independent of Part I. It is possible to go directly into Parts II and III omit-
ting Part I, and, in fact, the book has been used in this way in many universities.
Each part of the book contains enough material to form the basis of a one-quarter
course. In either classroom use or for self-study, it is important not to overlook the
suggested exercises at the end of each chapter. The selections generally include exer-
cises of a computational variety designed to test one’s understanding of a particular
algorithm, a theoretical variety designed to test one’s understanding of a given theo-
retical development, or of the variety that extends the presentation of the chapter to
new applications or theoretical areas. One should attempt at least four or five exer-
cises from each chapter. In progressing through the book it would be unusual to read
straight through from cover to cover. Generally, one will wish to skip around. In or-
der to facilitate this mode, we have indicated sections of a specialized or digressive
nature with an asterisk™.

New to this edition is, in Chap. 2, the introduction of quite a few problems in
Machine Learning and Data Science that are closely related to linear programming.
We added a section in Chap. 2 devoted to Farkas’ Lemma and the Alternative-
System theory. Consequently, we moved the Duality and Complementarity Chap-
ter (Chap. 4) before the Simplex Method Chapter (Chap. 3). We restructured topics
in Chap. 3 substantially, since linear programs are nowadays solved by computers
rather than by hand. Therefore, we focus on introducing methods and algorithms
most efficiently implementable by computer codes. Due to a recent breakthrough,
we also add a section in (Chap. 3) on proving the efficiency of the Simplex method,
which remains a dominate solver for linear programming.

As the field of optimization advances, researcher and practitioners face more
challenges: addressing data-driven and dynamic programs, making decisions with
uncertainty, developing online algorithms, and expanding the overall theory. We in-
troduce modern optimization topics, such as Markov Decision Process, Reinforce-
ment Learning, Distributionally Robust Stochastic Optimization and Online Opti-
mization. In particular, we have added a section in Chap. 3 to illustrate online lin-
ear programming algorithms where the decisions need to be made “on the fly” in
problem settings. One of the algorithms is related to the online Stochastic Gradient
Decent method that is added in Chap. 8.

Another new topic is multiplicative descent-direction methods that exhibit good
convergence properties in Chap. 8. We have included the affine-scaling and mirror-
descent methods that are especially effective for optimization where decision vari-
ables are subject to nonnegativity constraints. We have also added a couple of glob-
ally convergent Newton’s methods there.

We have added a section on Lagrangian duality for constrained nonlinear opti-
mization in Chap. 11. The Lagrangian duality plays a fundamental role, as the dual-
ity does for linear optimization, in both theory and algorithm design. We introduce
detailed rules on how to construct the dual explicitly for certain type of problems,
such as the support vector machine problem.
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Then we have added two sections into Chap. 12. The first is a “descent-first and
feasible-second” steepest descent projection method for linear and nonlinear con-
strained optimization, which is simple and effective in practice. The second is an
interior trust-region sequential quadratic optimization method which is suitable for
computing a solution that meets the second-order optimality condition. The conver-
gence analyses of the two methods are presented.

We have added a new section in Chap. 14 to introduce the randomized multi-
block alternative direction method with multipliers, which are effective for opti-
mization problems arising of both private and distributed data.

Finally, we have added two sections in Chap. 15 introducing the nonlinear mono-
tone complementarity problem that includes the optimality condition problem as a
special case. We also present the homogeneous model/algorithm that is a one-phase
algorithm with capability to detect possible primal or dual infeasibility, which be-
comes an important task in nonlinear optimization.

In this revision, we have also removed a few sections where the methods and/or
materials are not suitable for large-scale optimization and computer-coding in our
modern computation age.

We wish to thank the many students and researchers who over the years have
given us comments concerning the book and those who encouraged us to carry out
this revision. We are especially thankful to Xiaocheng Li and Robert Luenberger for
their careful readings and comments for this new revision.

Stanford, CA, USA D.G. Luenberger
Stanford, CA, USA Y. Ye
August 2021
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