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ABSTRACT
In this paper we study the problem of centrally organizing
a market where the participants submit bids for contingent
claims over the outcome of a future event and the market
organizer must determine which bids to accept. The bidder
will select a set of future states and a price at which he is
willing to buy the contingent claims. By accepting a bid, the
market organizer agrees to pay the bidder a fixed amount
if one of the bidder’s selected states is realized. We will
specifically study markets which are run as call auctions
where the organizer holds the auction open until a certain
time and then determines the bids to accept and reject. This
type of market has broad usage in financial markets, betting
markets and general prediction markets.

Lange and Economides [8] have developed a parimutuel
mechanism for solving such a market with many positive
characteristics. However, one drawback of their formulation
is that their mathematical model is not convex and no ef-
ficient algorithm is known to solve it. In this paper, we
introduce a new mathematical formulation called the Con-
vex Parimutuel Call Auction Mechanism (CPCAM). This
formulation produces many of the same advantageous prop-
erties of the Lange and Economides model but can more
easily be solved due to its convexity. In particular, our
model yields the first fully polynomial–time approximation
scheme (FPTAS) for the problem. Moreover, we show that
our model actually produces identical state prices as the
Lange and Economides model. As a corollary, we show that
by first obtaining the state prices from our model, the Lange
and Economides model becomes a linear program and hence
can be solved in polynomial time.
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1. INTRODUCTION

1.1 Background
Contingent claim markets enjoy tremendously widespread

usage in the financial and betting worlds. In these markets,
traders exchange claims to future payouts which are event–
based. Some simple examples of contingent claim securities
include a call option on a share of Google’s stock, a deriva-
tive based on United Airlines’ potential to default on its
outstanding debt, or a bet on which team will win the 2006
Superbowl.

Due to the high degree of flexibility that traders have in
their ability to specify event–based payouts, liquidity can
become an issue in some markets. If the market is orga-
nized so that the types of payouts are restricted (such as
requiring that all claims must be call options on stock x
with a strike price of $y) and there is a sufficient number
of traders, then the market can achieve reasonable liquidity.
In these types of markets, it is more effective for traders to
interact directly. The transaction costs should be relatively
low since all traders are trading the same type of claim.

However, in instances where the number of traders inter-
ested in trading claims over some event is smaller and there
is not a small set of claim formats that everyone is interested
in trading, it may make sense to centrally organize this mar-
ket. By central organization, we mean that all traders will
interact with one market organizer who will conduct trades.
The market organizer will issue and guarantee all claims for
the market. Without central organization, reasonable liq-
uidity may be difficult to achieve since the cost of making
transactions may be high as individual traders may need to



conduct several trades to create the specific claim payouts
that they desire.

In a centrally organized market, we can think of the traders
as making orders to the market organizer. To actually run
this type of market, we need to design a mechanism which
would inform the market organizer of which orders to ac-
cept and which orders to reject. When considering poten-
tial mechanisms, there are several features that we would
like to capture. First, it would be valuable to allow market
traders to place limit orders. Most actual financial trading
includes limit orders where traders express a limit on the
price they are willing to pay or a limit on the number of
shares that they desire. This makes trading more efficient
by reducing the number of interactions that the market or-
ganizer has with the traders. Secondly, we would want to
make sure that the market organizer has a “balanced book”
in the sense that she is never exposed to a financial loss for
any particular outcome. Furthermore, we need to design an
objective for the market organizer that she is trying to opti-
mize. A reasonable objective of the market organizer might
be to accept the largest number of orders or to accept the
greatest dollar value of orders.

From the individual trader or market participant’s point
of view, she would like to know that her order is being duly
considered by the market organizer. One way to ensure that
is for the market organizer to announce state prices at the
time of accepting and rejecting orders. An order’s calculated
state price is simply the sum of the prices of the individual
states that are specified in the order. Then, the market
organizer agrees to fully accept any order with a limit price
greater than the calculated state price of the order while
rejecting any order with a lower limit price. We will refer to
this requirement as the price consistency requirement.

There are many available approaches to solve this prob-
lem. We will focus our attention on parimutuel mechanisms
due to the fact that these mechanisms possess the key char-
acteristic that they are self-funding. The market organizer
will never have to pay out more for realized claims than the
amount that he has collected. A parimutuel mechanism is
defined as a mechanism where all the promised payouts to
traders are funded exclusively by the accepted orders. The
most prevalent use of parimutuel mechanisms is in horse rac-
ing betting (see, e.g., [3]). In a parimutuel mechanism, the
market organizer has no risk of suffering a loss regardless
of the outcome of the event in question. We will make a
distinction between traditional parimutuel and limit order
parimutuel mechanisms.

In a traditional parimutuel approach, the market orga-
nizer would charge the market participants a fixed amount of
money to make an order containing a claim over one partic-
ular state. All orders would be accepted. When the market
organizer closes the market and one of the states is realized,
the total money collected will be divided out to the hold-
ers of claims on that state in proportion of the number of
orders that they hold (the market organizer could take out
his commission before this distribution). This mechanism
exposes the market organizer to no risk and has the advan-
tage of accepting all orders. However, one major drawback
is that the actual payout to a participant with an order for
the realized state will be uncertain. When the participant’s
order is accepted, the market organizer could tell her what
the payout would be if there were no more orders in the
market. However, subsequent orders will change the pay-

outs for realized states. This result does not fit well with
the desire of market participants to hold contingent claim
securities with known state–dependent payouts.

1.2 Previous Work
In our opinion, the more interesting class of solution is

the limit order parimutuel. As we will detail later, the limit
order parimutuel mechanism will pay each holder of a claim
containing the realized state a fixed payment and it allows
participants to submit price and quantity limits for their or-
ders. Lange and Economides [8] have provided a parimutuel
model for contingent claims market that is run by a call
auction. The market organizer will receive orders for a pe-
riod of time until the market is closed. At this point, their
mechanism will determine an implied price for an order on
each state and inform the organizer which orders to accept.
The distinction between this mechanism and the traditional
parimutuel is that the market organizer guarantees a fixed
payout if an order is accepted and one of its specified states
is realized. Each market participant will specify a limit price
corresponding to the maximum amount she is willing to pay
for a contingent claim order. The market organizer will then
determine whether to accept their orders and what price to
charge. This mechanism will satisfy the price consistency
constraints that we referred to earlier in the Introduction.

Lange and Economides’ model produces a self–funded auc-
tion and creates more liquidity by allowing multi–lateral or-
der matching. A multi–lateral order matching means that
the mechanism will attempt to use portions of multiple or-
ders to balance the market organizer’s book. This is a more
efficient way to offset risk than requiring that orders be
matched with only one other order to form a balanced po-
sition. The ability to implement multi–lateral order match-
ing allows participants to submit orders with any possible
desired claim structure rather than requiring a smaller set
of formats to increase liquidity. This model has been im-
plemented by Goldman Sachs and Deutsche Bank to run
markets on options for economic data [2].

Despite its many positive characteristics, the Lange and
Economides model suffers from two problems. First, the
main drawback of their model is that some of the required
constraints are not convex. Thus, their model requires spe-
cial techniques to find the global optimum, and there is no
guarantee that those techniques will yield a solution in poly-
nomial time. Secondly, in order to produce unique state
prices, the market organizer is required to seed the mar-
ket with starting orders. While these starting orders can be
made small, it is unclear what impact they have on the state
prices.

On another front, Yang and Ng [10] have recently de-
veloped an alternative limit order parimutuel model named
the Qualified–Bound–Pricing Method. They have created
a linear parimutuel model with a different objective func-
tion and a two–stage solution procedure. Their mechanism
has many of the same positive characteristics as the Lange
and Economides model such as self–funding, price consis-
tency maintained and providing a guaranteed payout to ac-
cepted orders which include the realized state. However, one
drawback with this approach is that the solution procedure
is iterative and may require one to solve a linear program
many times to determine the solution. Another, and per-
haps more serious issue is that this model can produce an
optimal solution which contains negative state prices.



Table 1: Notations Used in this Paper

Variable Name Description
ai,j State Bid Participant j’s bid on state i
qj Limit Quantity Participant j’s maximum number of bids requested
πj Limit Price Participant j’s maximum price for bid
pi Price Organizer’s price level for state i
xj Order Fill Number of participant j’s bids accepted
cj Bid Price The price of participant j’s bid

1.3 Our Contribution
In this paper, we will describe a new mechanism for cen-

trally organizing a contingent claim market to maximize liq-
uidity. Our model is called the Convex Parimutuel Call
Auction Mechanism (CPCAM). We utilize the limit order
structure to ensure market participants will know with cer-
tainty their payout if their order is accepted and one of their
specified states is realized. In particular, we will present the
following results:

• We give a convex formulation of the parimutuel call
auction mechanism. Using the path–following algo-
rithm recently developed in [11], this results in the first
fully polynomial–time approximation scheme (FPTAS)
for the problem.

• Our mechanism is parimutuel in the sense that the
payouts made by the market organizer will be com-
pletely funded by accepted orders.

• We show that our mechanism will satisfy the desired
price consistency constraints.

• We prove that the mechanism will produce unique
state prices.

• While we require non–zero starting orders to generate
the unique state prices, we prove that the state prices
converge to a unique state price vector as we drive the
magnitude of the starting orders to zero. Moreover,
such a price vector can be found using the aforemen-
tioned algorithm.

• Our mechanism will find the same state prices as the
model of Lange and Economides [8]. Furthermore, the
nonlinear, nonconvex model of Lange and Economides
can be solved as a linear program after obtaining the
state prices from our mechanism.

Thus, the CPCAM provides an easy–to–solve mechanism
that can be used to run contingent claim markets. The
mechanism is attractive to market organizers due to its solv-
ability and the parimutuel property. Market participants
will value the certainty of payouts, the low transaction costs
(they merely need to submit a limit order for their desired
claim), and the fact that price consistency restrictions are
satisfied.

In Section 2, we will give an overview of the Lange and
Economides model. In Section 3, we will present our convex
formulation and detail some properties that make it attrac-
tive to market organizers and participants. We will also
show that the solution set of our model is closely related to
that of the Lange and Economides model. In Section 4, we
present a short application of the CPCAM. Finally, a dis-
cussion of some ideas for further analysis will be presented
in Section 5.

2. MODELS
Consider a market with one organizer and n participants.

There are S states of the world in the future on which
the market participants are submitting bids for contingent
claims. For each bid that is accepted by the organizer and
contains the realized future state, the organizer will pay the
participant some fixed amount of money w, which, without
loss of generality, equals 1 in this paper. The participants
will submit bids to the organizer which specify the states
which they want contingent claims over, the price at which
they are willing to pay for the bid, and the number of iden-
tical bids that they will buy. The organizer will then decide
whether to accept or reject each bid. If the bid is accepted,
the organizer also decides the number of bids to accept and
the price per bid to be collected from the participant.

The market will not be run as a continuous auction. In-
stead, the market organizer will collect all bids, close the
market and then announce the accepted bids, quantities and
prices.

Throughout the analysis, we will use the notations in Ta-
ble 1. The participants will supply the values of ai,j , qj and
πj for all i, j, which are denoted by the matrix A and vectors
q and π. Thus, these data are considered given for the mod-
els which we will discuss. The market organizer will need to
determine the decision variables pi and xj for all i, j.

Parimutuel Market Microstructure (PMM) Model
The PMM model was developed by Lange and Econo-

mides [8]. They prove that a unique state price vector ex-
ists for a contingent claim market when the organizer prices
according to their principles. They have designed a nonlin-
ear model which maximizes the total money raised by the
market while maintaining constraints for price consistency,
market self–funding and fill order feasibility. Their model
can be formulated as follows:

maximize M = cT x + eT θ

subject to
P

i
pi = 1

cj =
P

i
ai,jpi for 1 ≤ j ≤ n

M =
P

j
xjai,j + θi

pi
for 1 ≤ i ≤ S

cj − πj + yj ≥ 0 for 1 ≤ j ≤ n

xj(cj − πj + yj) = 0 for 1 ≤ j ≤ n

yj(qj − xj) = 0 for 1 ≤ j ≤ n

0 ≤ x ≤ q

p > 0

y ≥ 0

(1)

In this formulation, θ represents a starting order needed to
guarantee uniqueness of the state prices in the solution. The
starting orders are not decision variables — the market or-
ganizer will provide an order for all of the possible states.



The simplest representation of θ is as an S–dimensional vec-
tor composed of all ones. In effect, the market organizer is
seeding the market with this order. In some outcomes, the
market organizer could actually lose some of this seed money
(thus the auction is not completely risk–free). However, the
values of the components of the θ vector can be made ar-
bitrarily small. Any changes to the value of the starting
orders will result in a new value for the state prices. It is
not clear what happens to the state prices as we reduce the
magnitude of the starting orders in this model.

Note that the participants will pay pT aj , where aj is the
j–th column of A, for their order if it is accepted instead
of πj (the limit price). As we will shortly see in the price
consistency constraints, for any accepted order, we will have
pT aj ≤ πj . Thus, the market organizer could decide to
charge a higher price for any accepted order (ensuring that
the new price is still less than or equal to the limit price)
and keep the additional proceeds as profit.

The third constraint is used to ensure that the money
collected is greater than or equal to the money paid out.

The price consistency constraints are equivalent to the
following conditions:

xj = 0 =⇒ pT aj = cj ≥ πj

0 < xj < qj =⇒ pT aj = cj = πj

xj = qj =⇒ pT aj = cj ≤ πj

The fourth, fifth and sixth constraints are equilibrium or
complementarity constraints used to ensure the consistency
of the prices. In these three constraints, we use y as a
dummy variable to ensure the consistency of the prices. If
xj = 0, we have yj = 0 by the sixth constraint, then by the
fourth constraint, we have cj ≥ πj . If 0 < xj < qj , then we
have yj = 0 by the sixth constraint. By the fifth constraint,
we have cj = πj . If xj = qj , then we have cj − πj + yj = 0
by the fifth constraint. Now, since y ≥ 0, we have cj ≤ πj .

While this formulation captures the constraints of the
PMM model adequately, unfortunately, this is not a convex
program. In particular, the complementarity constraints are
not generally convex. We do not believe that there is a man-
ner to incorporate the price consistency conditions as con-
straints without making the formulation non–convex. Thus,
it is not clear whether there exists an efficient algorithm for
this formulation.

3. CONVEX PARIMUTUEL CALL AUCTION
MECHANISM (CPCAM)

We would like to find an alternative formulation of this
problem which have similar constraints as the PMM model
but is also a convex program. The primary constraints are
to ensure that the market is self–funding and that the quan-
tities granted to each participant are consistent based on
the relationship of their limit price and the calculated state
price of the order. Furthermore, it is valuable that the model
has a unique optimum. Below is our alternative parimutuel
formulation, again, with w = 1:

maximize πT x − M +
P

i
θi log(si)

subject to
P

j ai,jxj + si = M for 1 ≤ i ≤ S

0 ≤ x ≤ q

s ≥ 0
(2)

The objective function in this formulation has the following
interpretation. First, recall that θ is the vector of starting
orders. Now, the term πT x − M is the profit to the market
organizer. On the other hand, the term

X

i

θi log(si) =
X

i

θi log

 

M −
X

j

ai,jxj

!

can be viewed as a disutility function (or weighted loga-
rithmic penalty function) for the market organizer that en-
sures she will find an allocation of accepted orders that is
parimutuel. Thus, intuitively, the model (2) is trying to
maximize the profit of the market organizer while remain-
ing parimutuel.

In this section, we will show that the CPCAM model pos-
sesses the following characteristics:

• the CPCAM is a convex program

• the CPCAM creates a self–funding market

• the CPCAM satisfies the price consistency constraints

• the CPCAM produces a unique price vector

• the price vector solution to the CPCAM remains opti-
mal if we charge the participants the calculated state
price of their orders instead of their limit price

• for any given starting order θ, there is a unique limit
to the state price vector as we reduce θ to zero with
each element reduced by the same proportion

To begin, it is easy to see that (2) is a convex program,
as the logarithmic function is concave and the constraints
are linear. In particular, it can be solved (up to any pre-
scribed accuracy) in polynomial time using standard tech-
niques. Now, let pi be the Lagrange multipliers for the first
market self–funding constraints and γj be the Lagrange mul-
tipliers for the constraints x ≤ q. Then, we have the follow-
ing Lagrangian function:

L(x, M, s) = πT x − M +
X

i

θi log(si)

−
X

i

pi

 

X

j

ai,jxj + si − M

!

+
X

j

γj(xj − qj)

From this Lagrangian, we can derive the following KKT
conditions for optimality:

πj −
P

i
piai,j + γj ≤ 0 for 1 ≤ j ≤ n

xj

`

πj −
P

i
piai,j + γj

´

= 0 for 1 ≤ j ≤ n
P

i
pi = 1

θi

si
− pi ≥ 0 for 1 ≤ i ≤ S

si

“

θi

si
− pi

”

= 0 for 1 ≤ i ≤ S

γj(xj − qj) = 0 for 1 ≤ j ≤ n

γ ≤ 0

(3)

Since si > 0 for any optimal solution, this implies that pi =
θi

si
, or si = θi

pi
for all i. Thus, the first constraint in the



CPCAM model is equivalent to M =
P

j
ai,jxj+

θi

pi
, which is

precisely the self–funding constraint from the PMM model.
We note that the KKT conditions require that the pi’s be

summed to one and, furthermore, we can derive the follow-
ing relationships from the KKT conditions:

xj = 0 =⇒ pT aj ≥ πj

0 < xj < qj =⇒ pT aj = πj

xj = qj =⇒ pT aj ≤ πj

Again, these are simply the consistency constraints of the
PMM model.

Note that the CPCAM model involves the market orga-
nizer collecting πj (the limit price) for each accepted order of
the j–th participant. On the other hand, the PMM model
collects pT aj (the parimutuel price) per accepted order. We
would like to determine whether the CPCAM model would
have a different optimum if it was modified so it charged the
participants the parimutuel price rather than the limit price.
The answer is summarized in the following proposition.

Proposition 1. The optimal solution (x∗, p∗) from the
CPCAM model would also be optimal if we replaced πj with
(p∗)T aj in the objective function. Furthermore, the solution
will remain optimal if we replace πj with any cj where πj ≤
cj ≤ (p∗)T aj .

Proof. If we replace πj with (p∗)T aj in the KKT con-
ditions (3) and set x = x∗, p = p∗, s = s∗ and γ = 0, then
our optimal solution (x∗, p∗, s∗) from the CPCAM model,
with γ = 0, will still satisfy all the KKT conditions. Thus,
the optimal solution found using the CPCAM model would
be equivalent to the optimal solution found if the objective
function included (p∗)T aj instead of πj . In fact, the solu-
tion (x∗, p∗) will be optimal if πT x is replaced by cT x where
c is any vector that satisfies πj ≤ cj ≤ (p∗)T aj for all j.
This is due to the fact that we can simply adjust the value
of γ while leaving x and p unchanged to satisfy the KKT
conditions.

Next, we would like to determine whether the prices in the
CPCAM model will be unique as they are in the PMM
model.

Theorem 1. The state price vector p∗ for any optimal
solution to the CPCAM model is unique.

Proof. We know from the KKT conditions that pisi = θi

for all i. Now, if the si’s are unique then the pi’s must also
be unique. Thus, we will show that the si’s must be unique.

We will first state a general lemma applying to the follow-
ing problem:

minimize cT x −Pn

j=1
wj log(xj)

subject to Āx = b
x ≥ 0

(4)

where Ā is an m × n matrix with full row rank and the
feasible region is non–empty and has an interior. Our proof
is similar to that found in [11].

Lemma 1. Let x∗ = (x∗

1, . . . , x
∗

n) be an optimal solution
to (4), and let J = {1 ≤ j ≤ n : wj > 0}. Then, x∗

j is
unique for all j ∈ J , i.e. if x′ = (x′

1, . . . , x
′

n) is another
optimal solution to (4), then we have x∗

j = x′

j for all j ∈ J .

Proof. Without loss of generality, we may assume that
w1, . . . , wk > 0 and the remaining wj are zero. Then, the
necessary and sufficient optimality conditions are:

zjxj = wj for 1 ≤ j ≤ k

zjxj = 0 for k + 1 ≤ j ≤ n

z + ĀT y = c

Āx = b

x, z ≥ 0

The proof is by contradiction. Let (x∗, y∗, z∗) be an optimal
solution and (x′, y′, z′) be another optimal solution where
x∗

1 6= x′

1. Since we have:

x∗

1z
∗

1 = x′

1z
′

1 = w1 > 0

we must have z∗

1 6= z′

1, and

(x∗

1 − x′

1)(z
∗

1 − z′

1) < 0

On the other hand, since (x∗ − x′) is in the nullspace of Ā
and (z∗ − z′) is in the row–space of Ā, we have:

(x∗ − x′)T (z∗ − z′) =
n
X

j=1

(x∗

j − x′

j)(z
∗

j − z′

j) = 0

Thus, there must be at least one j̄ ∈ {2, . . . , n} such that:

(x∗

j̄ − x′

j̄)(z
∗

j̄ − z′

j̄) > 0

Without loss of generality, suppose that x∗

j̄ > x′

j̄ ≥ 0. If j̄ ≤
k, then we must have z∗

j̄ ≥ z′

j̄ > 0 and wj̄ = x∗

j̄ z∗

j̄ > x′

j̄z
′

j̄ =

wj̄ , which is a contradiction. If j̄ > k, then we must have
z∗

j̄ ≥ z′

j̄ ≥ 0 which, from x∗

j̄ z∗

j̄ = 0, implies that 0 = z∗

j̄ = z′

j̄ .

This contradicts the fact that (x∗

j − x′

j)(z
∗

j − z′

j) > 0.
Therefore, we must have (x∗

1 − x′

1)(z
∗

1 − z′

1) = 0 which,
together with x∗

1z
∗

1 = x′

1z
′

1 = w1 > 0, imply that:

x∗

1 = x′

1 and z∗

1 = z′

1

In a similar fashion, we can show that x∗

j = x′

j and z∗

j = z′

j

for j = 2, . . . , k. This completes the proof.

Now, we can rewrite the CPCAM model in the form of the
above problem. First, let us add a slack variable for the
constraint x ≤ q. We can rewrite this constraint as x+u = q
with u ≥ 0. Let

x̄ =

0

B

B

@

s
x
M
u

1

C

C

A

, θ̄ =

0

B

B

@

θ
0
0
0

1

C

C

A

, c =

0

B

B

@

0
−π
1
0

1

C

C

A

b =

„

0
q

«

, Ā =

»

I A −e 0
0 I 0 I

–

(5)

where e is the vector of all ones. Then, we can rewrite the
CPCAM model as:

minimize cT x̄ −Pj θ̄j log(x̄j)

subject to Āx̄ = b
x̄ ≥ 0

From the lemma above, it follows that all s∗i = x̄∗

i , where
i = 1, . . . , S, will be unique since θ̄i = θi > 0 for 1 ≤ i ≤ S.
Thus, the state prices p∗

i = θi/s∗i for any optimal solution to
the CPCAM model will be unique as well. This completes
the proof of Theorem 1.



3.1 Elimination of Starting Orders Sizes
One somewhat unnatural part of this formulation is the

use of the starting orders. In essence, the market orga-
nizer needs to seed the market with these starting orders
to guarantee the uniqueness of the optimal state price vec-
tor. However, the market organizer could actually lose this
seed money in some outcomes. In practice, we can set the
starting orders to be very small so that this is not an issue.
On the other hand, it is natural to ask whether the starting
orders can be removed altogether from the model. In this
section, we will show that this is indeed possible.

For each starting order θ, there will be a unique state price
vector. Now, imagine that we set the starting order to be
equal to µθ with 0 < µ < 1. Now, as we reduces µ to zero,
we would like to know what happens to the resulting state
price vector. We will show below that the state price vector
will converge to a unique limit point as µ ↘ 0. In fact, we
shall establish this result under a more general setting.

To begin, let 1 ≤ k < n and θ1, . . . , θk > 0 be such that
P

i
θi = 1. Let µ > 0 be given, and consider the following

parametric problem:

(Pµ) :

minimize cT x − µ
Pk

i=1
θi log(xi)

subject to Āx = b

x ≥ 0

It is easy to see that the parametric CPCAM model:

maximize πT x − M + µ
P

i
θi log(si)

subject to
P

j
ai,jxj + si = M for 1 ≤ i ≤ S

0 ≤ x ≤ q

s ≥ 0

can be cast into the form above. Indeed, using the nota-
tions of (5) we can rewrite the parametric CPCAM model
as follows:

minimize cT x̄ − µ
PS

i=1
θ̄i log(x̄i)

subject to Āx̄ = b
x̄ ≥ 0

Henceforth, we shall restrict our attention to (Pµ) where,
for notational simplicity, we shall denote Ā by A. Now, the
dual associated with (Pµ) is given by:

(Dµ) :

maximize bT y + µ
Pk

i=1
θi log(zi)

subject to AT y + z = c

z ≥ 0

Let x(µ) be the minimizer for (Pµ) and (y(µ), z(µ)) be the
maximizer for (Dµ). We are interested in the behavior of
(x(µ), y(µ), z(µ)) as µ ↘ 0. The optimality conditions for
(Pµ) are given by:

ci − (AT y)i − µθi

xi

= 0 for 1 ≤ i ≤ k

ci − (AT y)i ≥ 0 for k < i ≤ n

xi

“

ci − (AT y)i

”

= 0 for k < i ≤ n

Similarly, the optimality conditions for (Dµ) are given by:

b = Ax

µθi

zi

− xi = 0 for 1 ≤ i ≤ k

xi ≥ 0 for k < i ≤ n

xizi = 0 for k < i ≤ n

Note that z = c−AT y. It follows that x(µ)T z(µ) = µ (recall
that

P

i
θi = 1). The following lemma is straightforward.

Lemma 2. Let x(µ) = (x1(µ), x2(µ)), where:

x1(µ) = (x1(µ), . . . , xk(µ))

x2(µ) = (xk+1(µ), . . . , xn(µ))

Let z(µ) = (z1(µ), z2(µ)) be defined analogously. Let µ0 > 0
be given. Then, for any 0 < µ ≤ µ0, we have (x1(µ), z1(µ))
bounded.

Proof. Since x(µ0)− x(µ) belongs to the nullspace of A
and z(µ0) − z(µ) belongs to the row–space of A, we have
(x(µ0) − x(µ))T (z(µ0) − z(µ)) = 0. It follows that:

k
X

j=1

x(µ0)jz(µ)j + x(µ)jz(µ0)j

≤
n
X

j=1

x(µ0)jz(µ)j + x(µ)jz(µ0)j

≤ 2µ0

Note that for j = 1, . . . , k, we have x(µ0)jz(µ0)j = µ0 > 0.
It follows that:

k
X

j=1

θj

„

z(µ)j

z(µ0)j

+
x(µ)j

x(µ0)j

«

≤ 2

which completes the proof.

Now, let {µn} be such that µn ↘ 0. Lemma 2 implies that
each of the sequences {x1(µn)} and {z1(µn)} has an accu-
mulation point. We will show that x1(µn) (resp. z1(µn)) ac-
tually converges to a unique limit point x1(0) (resp. z1(0)).
To do this, we first recall a well–known fact from the the-
ory of linear programming and introduce some notations.
Consider the following primal–dual pair of linear programs:

(LP–P) :

minimize cT x

subject to Ax = b

x ≥ 0

(LP–D) :

maximize bT y

subject to AT y + z = c

z ≥ 0

By a result of Goldman and Tucker [5], there exists a pair
of strictly complementary solutions (x∗, z∗) to (LP–P) and
(LP–D). Let (P ∗, D∗) be the strict complementarity par-
tition of the index set {1, . . . , n}, i.e. P ∗ = {j : x∗

j > 0}
and D∗ = {j : z∗

j > 0}, and set P ∗ ≡ P ∗ ∩ {1, . . . , k} and

Z∗ ≡ D∗ ∩ {1, . . . , k}. Note that such a partition is unique,
i.e. every pair of strictly complementary solutions to (LP–P)



Table 2: Bidding Information

Order State 1 State 2 State 3 State 4 State 5 Price Limit Quantity Limit
1 0 0 0 1 1 0.4032 100
2 1 0 0 1 1 0.95 100
3 0 0 1 0 0 0.5486 100
4 0 0 0 1 1 0.40 100
5 0 1 0 1 1 0.95 100
6 0 1 0 0 0 0.50 100
7 0 1 1 0 0 0.40 100
8 0 1 0 0 0 0.5938 100

and (LP–D) defines the same partition. Now, for x, z ∈ R
n,

we define a potential function Λ as follows:

Λ (xP∗ , zD∗) =
X

j∈P∗

θj log(xj) +
X

j∈D∗

θj log(zj)

where xP∗ and zD∗ are the vectors (xj)j∈P∗ and (zj)j∈D∗ ,
respectively. Since Λ is strictly concave, it has a unique
maximizer

`

x∗

P∗
, z∗

D∗

´

over all pairs of strictly complemen-
tary solutions to (LP–P) and (LP–D). We now show that:

Theorem 2. As µ ↘ 0, the solutions x1(µ) and z1(µ)
converge to the unique limit points x1(0) = x∗

P∗
and z1(0) =

z∗

D∗
, respectively.

Proof. Let (x∗

P∗ , z∗

D∗) be a pair of strictly complemen-
tary solutions to (LP–P) and (LP–D) that maximizes the
potential function Λ. By strict complementarity, we have:

n
X

j=1

`

x(µ)jz
∗

j + x∗

j z(µ)j

´

= µ

from which it follows that:

k
X

j=1

θj

„

z∗

j

z(µ)j

+
x∗

j

x(µ)j

«

+
X

j>k

1

µ

`

x(µ)jz
∗

j + x∗

j z(µ)j

´

= 1

(6)
In particular, since each of the summands is non–negative,
we have:

x(µ)j ≥ θjx
∗

j > 0 for j ∈ P ∗

z(µ)j ≥ θjz
∗

j > 0 for j ∈ D∗

from which it follows that x(µ)j → 0 for j ∈ D∗ and z(µ)j →
0 for j ∈ P ∗ as µ ↘ 0. Moreover, by (6), we have:

k
X

j=1

θj

„

z∗

j

z(µ)j

+
x∗

j

x(µ)j

«

=
X

j∈P∗

θjx
∗

j

x(µ)j

+
X

j∈D∗

θjz
∗

j

z(µ)j

≤ 1

By the weighted arithmetic–mean–geometric–mean inequal-
ity, it follows that:

2

4

Y

j∈P∗

„

x∗

j

x(µ)j

«θj

3

5

2

4

Y

j∈D∗

„

z∗

j

z(µ)j

«θj

3

5 ≤ 1

or equivalently,
2

4

Y

j∈P∗

`

x∗

j

´θj

3

5

2

4

Y

j∈D∗

`

z∗

j

´θj

3

5

≤

2

4

Y

j∈P∗

(x(µ)j)
θj

3

5

2

4

Y

j∈D∗

(z(µ)j)
θj

3

5 (7)

Now, note that the LHS is simply the maximum value of Λ
over all pairs of strictly complementary solutions to (LP–P)
and (LP–D), and (x(0)P∗ , z(0)D∗) is one such pair of solu-
tions. It follows that (7) holds with equality, with x(0)P∗ =
x∗

P∗
and z(0)D∗ = z∗

D∗
by the uniqueness of the maximizer.

This completes the proof.

In particular, Theorem 2 allows us to eliminate the starting
orders altogether by taking µ ↘ 0, and our model will still
yield a unique price vector p such that the market is self–
funding and the prices are consistent. Moreover, such an p
can be computed efficiently using the path–following algo-
rithm developed recently in [11]. Specifically, from (5), we
see that x̄ ∈ R

N , and Ā is an M ×N matrix, where M = 2n
and N = 2n + S + 1. By the result of [11], we can compute,
for any ε > 0, a solution (x̄, ȳ, z̄) that satisfies:

‖Z̄x̄ − θ̄‖ ≤ ε

Āx̄ = b̄

−ĀT ȳ + z̄ = 0

x̄, z̄ ≥ 0

in O(
√

N log(ε−1N max(θ)) iterations, and each iteration
solves a system of linear equations in O(NM2 + M3) arith-
metic operations. Here, we have Z̄ = Diag(z̄) and max(θ) =
maxi θi. To the best of our knowledge, this is the first
fully polynomial–time approximation scheme (FPTAS) for
the contingent claim markets problem.

3.2 Example of Limiting Behavior
As stated previously, we have introduced the starting or-

ders θ into our model to guarantee the uniqueness of the
state prices. However, such uniqueness is no longer guar-
anteed when θ = 0, as there are instances with multiple
optimal solutions. For these instances, an interesting ques-
tion is how the selection of θ impacts the limiting solution
when we examine the model with µθ as the starting orders
and gradually drive µ to zero.

Below we construct an example where we examine two
different θ vectors (θ1 and θ2) that lead to different state
price vectors as µ ↘ 0. The allocations, xµθ1

and xµθ2
, in

these two cases will converge to the same point as µ ↘ 0.
However, we will see that the limiting prices will be different
in the two cases.

In our example, there are 5 states and 8 bids on those
states. Table 2 shows the bidding information.

Now, if we set θ = 0 and solve the model, we will find the
following prices:

p1 p2 p3 p4 p5

0 0.5 0.05 0.45 0



However, notice that these prices are not unique. In par-
ticular, note that the bids always include both states 4 and
5 or neither state 4 nor 5. Thus, the model cannot distin-
guish between these states. In fact, any price vector p that
satisfies p4 + p5 = 0.45 and with the other prices as stated
above will be optimal.

Now, we examine the convergence of the state price vector
for two different θ vectors as µ ↘ 0. We will normalize each
θ vector such that the sum of its components will be equal
to one. Here are our two θ vectors:

– State 1 State 2 State 3 State 4 State 5
θ1 0.2 0.2 0.2 0.2 0.2
θ2 0.167 0.167 0.167 0.333 0.167

Now, let us examine the paths and limiting state prices
for each of these θ vectors as µ ↘ 0. Below is a table of the
state prices for various values of µ when θ1 is used:

µ p1 p2 p3 p4 p5

1000 0.184 0.226 0.184 0.203 0.203
100 0.081 0.434 0.081 0.202 0.202
10 0.025 0.500 0.025 0.225 0.225
1 0.025 0.500 0.025 0.225 0.225

0.1 0.025 0.500 0.025 0.225 0.225

We see that p4 and p5 both converge to 0.225. This is
an optimal solution to the problem when θ = 0. However,
the introduction of the non–zero starting orders results in a
unique price vector.

Next, we have a similar table for θ2:

µ p1 p2 p3 p4 p5

1000 0.148 0.202 0.163 0.324 0.163
100 0.071 0.456 0.071 0.269 0.135
10 0.025 0.500 0.025 0.300 0.150
1 0.025 0.500 0.025 0.300 0.150

0.1 0.025 0.500 0.025 0.300 0.150

Again, this is an optimal solution to the problem when
θ = 0. However, since we have different weights on the
components of θ2, we converge to a different price vector
than θ1. In terms of the order allocation, it turns out that
both xµθ1

and xµθ2
converge to the same order allocation x

as µ ↘ 0. The limiting allocation x is given in the following
table:

Order x
1 0
2 100
3 100
4 0
5 0
6 0
7 0
8 100

In summary, this example shows the limiting behavior of
the price vector with different θ vectors. In particular, one
can view the entries of the θ vector as relative weights as-
signed to each state, and the limiting state prices will de-
pend only on the proportion of these weights and not on their
magnitudes. This gives the market organizer additional flex-
ibility in her pricing, as she is free to choose the θ vector.
In addition, the limiting allocations xµθ will also converge

to an optimal allocation. This is an important fact for the
market organizer since the allocations are important to her
as they determine her outcomes. She does not necessarily
care about what the state prices are.

3.3 Solution Similarity
Our CPCAM model provides many of the stated benefits

of the PMM model but is also a convex program and, thus,
easier to solve. In this section, we show that in fact the
feasible solutions of the PMM model correspond precisely to
the optimal solutions of the CPCAM model. To begin, let us
consider the PMM model (1) and the CPCAM model (2). It
is clear that the constraints in the PMM model are precisely
the KKT conditions (3) of our CPCAM model. Since there
is a unique state price vector p∗ that satisfies (3) by Theorem
1, we see that the PMM model will necessarily generate the
same state price vector as the CPCAM model. Now, let
s∗ > 0 be the (unique) vector that satisfies p∗

i s
∗

i = θi for
i = 1, 2, . . . , S. Then, we see that (1) is equivalent to the
following problem:

maximize (p∗)T Ax

subject to Ax − Me = s∗

0 ≤ x ≤ q

AT p∗ − π + y ≥ 0

xj((p
∗)T aj − πj + yj) = 0 for 1 ≤ j ≤ n

yj(qj − xj) = 0 for 1 ≤ j ≤ n

y ≥ 0
(8)

Since any feasible solution x of (8) must have xj = 0 if
πj < (p∗)T aj , we see that problem (8) can be further relaxed
to the following problem:

maximize (p∗)T Ax

subject to Ax − Me = s∗

xj = 0 if πj < (p∗)T aj

0 ≤ x ≤ q

(9)

On ther other hand, every feasible soluion of (9) is also
feasible for (8) by assigning yj = 0 if 0 ≤ xj < qj and
yj = πj − (p∗)T aj if xj = qj . Thus, we summarize as fol-
lows:

Theorem 3. The set of feasible solutions of the PMM
model (1) coincides with the set of optimal solutions of the
CPCAM model (2) and they produce the identical state price
vector. Furthermore, the PMM model can be solved as a
linear program (cf. (9)) after obtaining the state price vector
p∗.

In summary, we have shown that the CPCAM model will
produce unique prices if the market organizer provides posi-
tive starting orders for each state. In addition, we have seen
from the KKT conditions that these prices will be consistent
and non–negative. The CPCAM model will produce a mar-
ket that is self–funding (except in the case of the starting
orders). We have also shown that the same prices will be
found if we had modified the objective function to contain
(p∗)T aj instead of πj . Therefore, the CPCAM model shares
several key characteristics of the PMM model. However,
the CPCAM model also happens to be a convex program
and hence can be solved (up to any prescribed accuracy) in
polynomial time.



4. SAMPLE APPLICATION
To demonstrate the CPCAM, we ran a limit order call

auction for students in a graduate optimization course at
Stanford. The auction was organized around the 2004 NFL
playoffs. Students were bidding on claims for the Super-
bowl winner. At the time that we ran the auction, there
were 8 teams remaining in the playoffs: Atlanta, Indianapo-
lis, Minnesota, New England, New York Jets, Philadelphia,
Pittsburgh and St. Louis. If a student had a bid accepted
and had specified the winning team, they would be awarded
one extra credit point. The student’s net extra credit would
be the total extra credit points won minus the limit prices
of his accepted orders. We placed restrictions on the num-
ber of orders that each student could submit (100). During
the course of the auction, we received orders from 48 stu-
dents with a total of 4,375 orders. After solving the CPCAM
model, we accepted 1,980 orders. The following prices were
calculated for each state:

Team Price
Atlanta 0.001
Indianapolis 0.045
Minnesota 0.002
New England 0.400
New York Jets 0.001
Philadelphia 0.049
Pittsburgh 0.500
St. Louis 0.002

One can think of the state prices as an estimate of the
probability of each state being realized. It is interesting
in this case that the CPCAM calculated rather high state
prices for New England (the 2003 Superbowl champion who
also ended up winning the 2004 Superbowl) and Pittsburgh
(the team with the best regular season record in the NFL).
Clearly, our students tended to include these “favorites” in
their orders and the resulting prices reflect that demand.

5. DISCUSSION
The CPCAM is a valuable mechanism for centrally orga-

nizing contingent claim markets. It possesses many charac-
teristics that are beneficial to both market organizers and
market participants. It is interesting to note that, while the
mechanism will produce unique state prices p, the order fills
x are not unique in general. Thus, there are some degrees of
freedom concerning how to allocate order fills when market
participants submit orders whose calculated state price is
equal to their limit price. We could choose to build a set
of order fill preference rules into the CPCAM to ensure a
unique solution for order fills. In the second stage of their
model, Yang and Ng [10] use an order fill preference rule
where the earliest orders are filled first. It would be worth-
while to consider other order fill preference rules (such as
giving preference to the largest orders) and study how they
could be effectively incorporated into the CPCAM.

In real market situations, market participants may want
to submit different types of orders to create hedged posi-
tions. However, to ensure proper hedging, the participant
will want to make sure that different orders are accepted in
some appropriate proportion. We can easily allow this type
of conditional order specification in the CPCAM formula-
tion. For example, if a market participant had submitted
two separate order types but wanted the number of accepted

orders of the first type to be no larger than twice the number
of accepted orders of the second type, we could simply in-
troduce the linear constraint x1 ≤ 2x2 into the model. The
convexity of the model would be retained and we could easily
solve it using the aforementioned algorithm. Such flexibility
of the CPCAM could be of great use to market participants.

It is also interesting to note the similarity between the
CPCAM model and the Qualified–Bound–Pricing model of
Yang and Ng [10]. Our CPCAM formulation is similar to
their first stage optimization problem (where they qualify or-
ders) other than the fact that the CPCAM has an additional
barrier function in the objective function. However, there
are several advantages of the CPCAM formulation over the
Yang and Ng formulation. First, the CPCAM can be solved
in one step. Secondly, it appears that the Yang and Ng for-
mulation is only self–funding if the participants are charged
their limit prices instead of the calculated state prices for
their bids. The CPCAM is self–funding (with the exception
of the starting orders) for any price charged to participants
that is greater than or equal to the calculated state prices.
Note that the limit prices for accepted bids will always be
greater than or equal to the calculated state prices.

Another critique that we had of the Yang and Ng model
was that it can lead to negative state prices which is not
desirable. Negative state prices could be confusing to market
participants — implying that they would actually be paid
if they had submitted an order for a particular state while
still holding a claim for a payment if that state were realized.
However, by removing the restriction that the state prices
must be non–negative, the market organizer may be able to
accept more orders and thus create a more liquid market.
The market may suffer because the market organizer may
choose not to announce state prices to avoid confusion but
the market may actually function more effectively. It would
be interesting to better understand the types of conditions
that lead to negative state prices.

One can interpret the state prices calculated by the CP-
CAM as representing the probability that a certain state
is realized. An interesting avenue for research would be to
determine whether the state prices calculated by the CP-
CAM formulation have any predictive power. There have
been some experimental and empirical work done to better
understand the value of market mechanisms for aggregat-
ing information and predicting uncertain events (see Berg
et al. [1] and Plott [9]). Additionally, there has been a good
amount of research done to study the predictive value of
market prices in standard parimutuel markets where bidders
are only bidding on one state and the value of their potential
payout is not fixed (see Feeney and King [4], Koessler and
Ziegelmeyer [6] and Koessler et al. [7]). However, it would be
interesting to determine whether the type of call auction and
mechanism that we have studied would lead participants to
bid truthfully. Finally, it would be valuable to know if the
mechanism aggregates the bidding information in a manner
that is useful for making predictions based on the calculated
state prices.
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