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Abstract

Recently, Connelly and Sloughter [14] have introduced
the notion of d–realizability of graphs and have, among
other things, given a complete characterization of the
class of 3–realizable graphs. However, their work has
left open the question of finding an algorithm for re-
alizing those graphs. In this paper, we resolve that
question by showing that the semidefinite programming
(SDP) approach of [11, 33] can be used for realizing 3–
realizable graphs. Specifically, we use SDP duality the-
ory to show that given a graph G and a set of lengths
on its edges, the optimal dual multipliers of a certain
SDP give rise to a proper equilibrium stress for some re-
alization of G. Using this result and the techniques in
[14, 32], we then obtain a polynomial time algorithm for
(approximately) realizing 3–realizable graphs. Our re-
sults also establish a little–explored connection between
SDP and tensegrity theories and allow us to derive some
interesting properties of tensegrity frameworks.

1 Introduction

Due to its fundamental nature and versatile mod-
elling power, the Graph Realization problem has re-
ceived a lot of attention lately. In that problem, one
is given a graph G = (V, E) and a set of non–negative
edge weights {dij : (i, j) ∈ E}, and the goal is to com-
pute a realization of G in the Euclidean space Rd for a
given dimension d, i.e. to place the vertices of G in Rd

such that the Euclidean distance between every pair of
adjacent vertices vi, vj equals to the prescribed weight
dij . The Graph Realization problem and its variants
arise from applications in various areas, the two most
prominent of which being molecular conformation and
wireless sensor network localization. In the former, the
vertices of G correspond to atoms, the edges correspond
to chemical bonds, and the weights correspond to inter–
atomic distances. In the latter, the vertices of G cor-
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respond to sensors, the edges correspond to communi-
cation links, and the weights correspond to distances
between sensors. Furthermore, the vertices are parti-
tioned into two sets – one is the anchors, whose exact
positions are known; and the other is the sensors, whose
positions are unknown. In these contexts, an algorithm
for finding a realization of the vertices in the required
dimension will have interesting biological and engineer-
ing consequences.

It turns out that very early on, Schoenberg [30] and
Young and Householder [35] have studied the case where
all pairwise distances are given (i.e. the underlying
graph is complete). They have shown that the given
pairwise distances arise from points in Rd (but not
Rd−1) iff a certain matrix is positive semidefinite and
has rank d. Such a characterization forms the basis of
various multidimensional scaling algorithms (see, e.g.,
[15]). More recently, the problem is being tackled in
two directions: one is the development of fast and
robust heuristics (see, e.g., [16, 19, 21, 25, 31]), and
the other is a more theoretical study of the problem.
Regarding the latter, Barvinok [9] and Alfakih and
Wolkowicz [1, 2] (also see [17]) have used SDP theory
to show that the problem is solvable in polynomial time
if the dimension of the realization is not restricted.
Moreover, they have given bounds on the dimension
needed to realize the given distances. However, if
we require the realization to be in Rd for some fixed
d, then the problem becomes NP–complete [7, 8, 29].
Thus, a natural problem is to identify families of graphs
that admit polynomial time algorithms for computing a
realization in the required dimension. For instance, in
[33], the authors have introduced the notion of unique
localizability and shown that a certain SDP formulation
can be used to find a realization of a uniquely localizable
graph in the required dimension. Their model requires
the presence of anchors, i.e. vertices that are pinned to
fixed positions, but this requirement is later eliminated
and an alternative notion is being developed in Biswas
et. al. [10]. On another front, Connelly and Sloughter
[14] have introduced the notion of d–realizability and
given a complete characterization of the class of d–
realizable graphs, where d = 1, 2, 3. Informally, a



graph G is d–realizable if, given any set of edge lengths,
whenever G is realizable at all, it can also be realized in
Rd. Their proof employs elements of tensegrity theory
(in particular the notion of stress) and at first sight
seems to have nothing to do with the approach in [33].
As far as algorithmics are concerned, it is trivial to
find a realization of an 1–realizable graph in R, since
a graph is 1–realizable iff it is a forest [14]. It is also
mentioned in [14] that a polynomial time algorithm for
realizing 2–realizable graphs exists. However, finding a
corresponding algorithm for 3–realizable graphs is posed
as an open question.

1.1 Our Contribution In this paper, we resolve the
above question by giving a polynomial time algorithm
for (approximately) realizing 3–realizable graphs. To
explain our approach, it would be helpful to first
review the high–level ideas in the characterization of 3–
realizable graphs [14, 32]. The main bottleneck in the
proof is to show that two graphs, V8 and C5 × C2, are
3–realizable (see Figures 1(c) and 1(d) in Section 5). In
order to achieve that, one first argues that there exists
a realization p of H ∈ {V8, C5 × C2} (not necessarily
in R3) such that the distance between a certain pair
of non–adjacent vertices (i, j) is maximized. Then,
using the Inverse Function Theorem, it can be shown
that such a realization induces a non–zero equilibrium
force on the graph H ′ obtained from H by adding the
edge (i, j). One can then use this equilibrium force
to argue that H can be realized in R3. The obstacle
to obtaining an algorithm from the above arguments
lies of course in the computation of p, and one of our
main results is to show that this can be overcome.
Specifically, using the ideas introduced in [33], we show
that the problem of computing the desired p can be
formulated as an SDP. What is even more interesting
is that the optimal dual multipliers of our SDP give
rise to a non–zero equilibrium force. In fact, we have
established this result under a more general setting.
Consequently, it allows us to take a more algorithmic
approach to tensegrity theory (previous results in that
area usually assume that a starting configuration p
is given) and enables us to derive some interesting
properties of tensegrity frameworks. Last but not least,
it allows us to apply the techniques developed in [14, 32]
to obtain an algorithm for realizing 3–realizable graphs.

1.2 Outline of the Paper The rest of the paper
is organized as follows. In Section 2, we define the no-
tions of d–realizability, equilibrium stress and unyielding
tensegrity and introduce the notations that will be used
in the paper. In Section 3, we formulate the problem of
finding an unyielding tensegrity as an SDP and discuss

some of its properties. In Section 4 we analyze the SDP
and show how the optimal dual multipliers give rise to
a non–zero equilibrium stress. In addition, we discuss
how our results are related to those in tensegrity theory.
We then show how to use these results and the tech-
niques in [14, 32] to develop an algorithm for realizing
3–realizable graphs in Section 5. Lastly, we summarize
our results in Section 6 and discuss some possible future
directions.

2 Preliminaries

We begin with some notations and definitions that
will be used throughout the paper. The inner product
of two matrices P and Q is denoted by P • Q ≡
Trace(PT Q). Now, let G = (V, E) be a connected graph
that contains neither loops nor multiple edges, and let
d = {dij ≥ 0 : (i, j) ∈ E} be a set of non–negative
weights on the edges of G. We shall refer to dij as
the length of the edge (i, j). A realization p = (pi)i∈V

of G with respect to d is a function that assigns to
each vertex i a point pi in some Euclidean space, such
that ‖pi − pj‖ = dij for all (i, j) ∈ E. We say that G
is d–realizable if the following holds: given any set of
lengths d on the edges of G, if there exists a realization
p of G with respect to d in Rd′ for some d′, then there
exists a realization q of G with respect to d in Rd. The
notion of d–realizability is introduced by Connelly and
Sloughter [14], and in this paper we are interested in its
algorithmic aspects. Towards that end, we need some
definitions from tensegrity theory (see, e.g., [13, 28]).

Definition 2.1. A tensegrity G(p) is a graph G =
(V, E) together with a configuration p = (pi) ∈ RD ×
· · · × RD = R|V |D such that each edge is labelled as
a cable, strut, or bar, and each vertex is labelled as
pinned or unpinned. G(p) is the realization of G in
RD obtained by locating vertex i at point pi ∈ RD.

The label on each edge is intended to indicate its
functionality. Cables (resp. struts) are allowed to
decrease (resp. increase) in length (or stay the same
length), but not to increase (resp. decrease) in length.
Bars are forced to remain the same length. Regarding
the vertices, a pinned vertex is forced to remain where
it is. Given a graph G = (V, E) and a set of lengths d, if
(i, j) is a cable (resp. strut), then dij will be the upper
(resp. lower) bound on its length. If (i, j) is a bar, then
dij will simply be its length.

An important concept in the study of tensegrities is
that of an equilibrium stress.

Definition 2.2. An equilibrium stress for G(p) is an
assignment of real numbers ωij = ωji to each edge
(i, j) ∈ E such that for each unpinned vertex i of G,



we have
∑

j:(i,j)∈E ωij(pi − pj) = 0. Furthermore, we
say that the equilibrium stress ω = {ωij} is proper if
ωij = ωji ≥ 0 (resp. ≤ 0) if (i, j) is a cable (resp. strut).

Clearly, the zero stress ω = 0 is a proper equilibrium
stress, but it is not too interesting. Thus, it would be
nice to have conditions that guarantee the existence of
a non–zero proper equilibrium stress. It turns out that
the concept of an unyielding tensegrity is useful for that
purpose.

Definition 2.3. Let G = (V, E) be a graph, and let
p and q be two configurations of G. We say that
G(p) º G(q) if for every pinned vertex i, we have
pi = qi, and for every edge (i, j) ∈ E, we have:

|pi − pj |



≥
=
≤



 |qi − qj | if (i, j) is a





cable
bar
strut





We say that G(p) is unyielding if any other configura-
tion q with G(p) º G(q) has the same edge lengths as
p.

As shown in [32], an unyielding tensegrity with at least
one cable or strut has a non–zero proper equilibrium
stress. This result is crucial in the characterization of 3–
realizable graphs [14, 32], as it allows one to argue that
a low–degree vertex and its neighbors can only span
a low dimensional subspace. As we shall see, given a
graph G = (V, E) with at least one cable or strut and a
set of lengths d on the bars (i.e. there are no bounds on
the lengths of the cables and struts), one can efficiently
compute (or more precisely, approximate to arbitrary
accuracy) a realization p of G such that the tensegrity
G(p) is unyielding. Moreover, the associated non–zero
proper equilibrium stress will arise as a by–product of
the computation.

3 A Semidefinite Programming Formulation

Let G = (V, E) and d be as above, where all edges
are bars. Consider a partition of the vertices into two
non–empty sets: the set A = {a1, . . . , am} of pinned
vertices, and the set S = {x1, . . . , xn} of unpinned
vertices. We assume that the coordinates of all the
ai ∈ Rd are given, and that a1 = 0. Let d̄kj be the
length between ak and xj , and let dij be the length
between xi and xj . Let Na = {(k, j) : (ak, xj) ∈ E}
and Nx = {(i, j) : i < j, (xi, xj) ∈ E}. Clearly, we have
E = Na ∪ Nx. We set N c

a = {(k, j) : (ak, xj) 6∈ E},
and define N c

x analogously. Given a graph G and a
set of lengths on its edges, the relation º induces a
partial order on the set of tensegrities G(p), where p
is a configuration that satisfies the edge constraints.
In particular, an unyielding tensegrity can be viewed

as an extremal element in this partial order. This
observation motivates us to formulate the problem of
finding an unyielding tensegrity as an optimization
problem. Specifically, let C1, S1 be disjoint subsets of
N c

a, and let C2, S2 be disjoint subsets of N c
x. Consider

the following semidefinite program, where Z is the
optimizing variable (we refer the reader to [3, 20, 34]
for surveys on semidefinite programming and to [33] for
a motivation of the following formulation):
(3.1)

sup
∑

(k,j)∈S1
(ak; ej)(ak; ej)T • Z

+
∑

(i,j)∈S2
(0; eij)(0; eij)T • Z

−∑
(k,j)∈C1

(ak; ej)(ak; ej)T • Z

−∑
(i,j)∈C2

(0; eij)(0; eij)T • Z

s.t. Z1:d,1:d = Id

(0; eij)(0; eij)T • Z = d2
ij ∀(i, j) ∈ Nx

(ak; ej)(ak; ej)T • Z = d̄2
kj ∀(k, j) ∈ Na

Z º 0

Here, eij ∈ Rn is the vector with 1 at the i–th position,
−1 at the j–th position and zero elsewhere; ej ∈ Rn

is the vector of all zeros except an −1 at the j–th
position; (ak; ej) ∈ Rd+n is the vector of ak on top
of ej ; and Id is the d–dimensional identity matrix. To
gain some intuition on (3.1), suppose that x1, . . . , xn ∈
Rd′ (d′ ≥ d) are such that ‖xi − xj‖2 = d2

ij for all
(i, j) ∈ Nx, and that ‖xj − (ak;0)‖2 = d̄2

kj for all
(k, j) ∈ Na (i.e. we augment ak ∈ Rd to (ak;0) ∈ Rd′).
Let xi = (xi1, xi2, . . . , xid′) ∈ Rd′ for i = 1, 2, . . . , n.
Consider the matrices:

X =




x11 x21 · · · xn1

...
...

. . .
...

x1d x2d · · · xnd




X ′ =




x1,d+1 x2,d+1 · · · xn,d+1

...
...

. . .
...

x1d′ x2d′ · · · xnd′




Y = XT X + (X ′)T X ′

Then, it is straightforward to verify that the matrix:

(3.2) Z =

[
Id X

XT Y

]

is a feasible solution to (3.1). Conversely, suppose that
a matrix Z of the form (3.2) is feasible for (3.1). Then,



we have Y − XT X º 0, and hence there exists an
X ′ ∈ Rr×n such that Y − XT X = (X ′)T X ′, where
r = rank(Y − XT X). Now, let X = [x1, . . . , xn] and
X ′ = [x′1, . . . , x

′
n]. Since Na 6= ∅, the arguments in

[33] show that the points x̃j = (xj ; x′j) ∈ Rd+r satisfy
‖x̃j−x̃i‖2 = d2

ij for all (i, j) ∈ Nx, and ‖x̃j−(ak;0)‖2 =
d̄2

kj for all (k, j) ∈ Na. Thus, we may interpret problem
(3.1) as follows. In essence, we are placing cables
between pairs of vertices in C1 ∪C2 and struts between
pairs of vertices in S1 ∪S2, and problem (3.1) attempts
to find a realization p such that the tensegrity G(p)
is unyielding. Note that we do not assume the sets
C1, C2, S1, S2 are non–empty.

It turns out that it is very instructive to consider
the dual of (3.1), which is given by:
(3.3)
inf Id • V +

∑
(i,j)∈Nx

θijd
2
ij +

∑
(k,j)∈Na

wkj d̄
2
kj

s.t. U ≡ −∑
(k,j)∈S1

(ak; ej)(ak; ej)T

−∑
(i,j)∈S2

(0; eij)(0; eij)T

+
∑

(k,j)∈C1
(ak; ej)(ak; ej)T

+
∑

(i,j)∈C2
(0; eij)(0; eij)T

+
[

V 0
0 0

]
+

∑
(i,j)∈Nx

θij(0; eij)(0; eij)T

+
∑

(k,j)∈Na
wkj(ak; ej)(ak; ej)T º 0

As we shall see, the optimal dual multipliers are closely
related to an equilibrium stress for a certain realization
of G.

4 Analysis of the SDP Formulation

4.1 Dual Multipliers and Equilibrium Stress
The following fact is established in [32] and is crucial
to the proofs in [14, 32]:

Fact 4.1. An unyielding tensegrity with at least one
cable or strut has a non–zero proper equilibrium stress.

Unfortunately, the proof involves the use of the Inverse
Function Theorem and hence is not constructive. To
obtain a constructive version of Fact 4.1, we proceed
as follows. Let G be a graph with at least one cable
or strut and has at least one pinned vertex. Let d be
the set of lengths on the bars of G. We then formulate
the SDP (3.1) for G, where C1 ∪ C2 contains all the
cables and S1∪S2 contains all the struts in G. Suppose
that problem (3.1) is strictly feasible, i.e. there exists
a primal feasible Z with Z Â 0, and that the graph
G\{a2, . . . , am} is connected. Under these assumptions,
we can establish the following:

Theorem 4.1. Let X̃ = [x̃1, . . . , x̃n] be the positions of
the unpinned vertices obtained from the optimal primal
matrix Z̄ (cf. Section 3), and let {θ̄ij , w̄kj} be the
optimal dual multipliers. Suppose that we assign the
stress θ̄ij (resp. w̄kj) to the bar (i, j) ∈ Nx (resp. (k, j) ∈
Na), a stress of 1 to all the cables, and a stress of −1
to all the struts. Then, the resulting assignment yields
a non–zero proper equilibrium stress for the realization
{(a1;0), . . . , (am;0), x̃1, . . . , x̃n}.
Before we outline the proof of Theorem 4.1, several
remarks are in order. First, the intuition behind
Theorem 4.1 is simple. Suppose that (3.1) and (3.3)
achieve the same optimal value, and that the common
optimal value is attained by the primal matrix Z̄ and
the dual matrix Ū . Then, the desired result should
follow from one of the conditions for strong duality,
namely the identity Z̄Ū = 0. Of course, strong duality
for SDP does not necessarily hold, and even when it
does, there is no guarantee that the optimal value
is attained by any matrix (see [20] or the appendix
for some examples). Thus, some additional technical
assumptions are needed, and as we shall see below,
those that appear in the statement of Theorem 4.1 are
sufficient for our purposes. We remark that in our
applications of Theorem 4.1, we will have only one
pinned vertex, namely a1 = 0. Thus, primal strict
feasibility can be ensured if the given lengths d admit
a realization whose vertices are in general position, and
the connectivity condition is simply the statement that
G is connected. Secondly, we have assumed that the
graph G has at least one pinned vertex, while there is no
such restriction for Fact 4.1 to hold. Such an assumption
is necessary in order to ensure that the entries of Z̄ are
bounded and to guarantee that the points x̃1, . . . , x̃n

satisfy the length constraints (see [33]). On the other
hand, we can no longer argue that the net stress exerted
on a pinned vertex is zero. However, if there is only one
pinned vertex in G, then the net stress exerted on it will
be zero (see Corollary 4.1 and the remark after it), and
thus the conclusion of Theorem 4.1 will coincide with
that of Fact 4.1 applied to the case where none of the
vertices in G are pinned. Moreover, such an assumption
buys us some more information that is not offered by
Fact 4.1. Specifically, the equilibrium stress obtained in
Theorem 4.1 is non–zero on all the cables and struts,
and the magnitudes of the stress on all the cables and
struts are identical. To the best of our knowledge, this
is the first time such a property is observed.

The following proposition guarantees that the gap
between the optimal values of (3.1) and (3.3) is zero,
i.e. strong duality holds.

Proposition 4.1. Suppose that a1 = 0, and that the



graph G\{a2, . . . , am} is connected. Then, the dual
problem (3.3) is strictly feasible, i.e. there exists a dual
feasible U with U Â 0.

Proof. It suffices to show that there exists a choice of
V , θij and wkj such that:

U ′ ≡
[

V 0
0 0

]
+

∑

(i,j)∈Nx

θij(0; eij)(0; eij)T

+
∑

(k,j)∈Na

wkj(ak; ej)(ak; ej)T

−
∑

(k,j)∈S1

(ak; ej)(ak; ej)T

−
∑

(i,j)∈S2

(0; eij)(0; eij)T Â 0

Note that:

U ′ =

[
U ′

11 U ′
12

(U ′
12)

T U ′
22

]

where:

U ′
22 =

∑

(i,j)∈Nx

θijeije
T
ij +

∑

(k,j)∈Na

wkjeje
T
j

−
∑

(k,j)∈S1

eje
T
j −

∑

(i,j)∈S2

eije
T
ij

Let us choose θij = µij > 0 for all (i, j) ∈ Nx,
w1s = νs > 0 for all s such that (1, s) ∈ Na, and
wkj = 0 for all other (k, j) ∈ Na. Using the connectivity
hypothesis, one can show that:

M ≡
∑

(i,j)∈Nx

µijeije
T
ij +

∑

s:(1,s)∈Na

νsese
T
s Â 0

Now, let u ∈ Rn\{0}. Observe that:

(4.4) uT


 ∑

(k,j)∈S1

eje
T
j


 u =

∑

(k,j)∈S1

u2
j ≤ m‖u‖2

(4.5)

uT


 ∑

(i,j)∈S2

eije
T
ij


 u =

∑

(i,j)∈S2

(ui − uj)2 ≤ 4n‖u‖2

Let v∗ = min‖u‖=1 uT Mu. Clearly, we have v∗ > 0. Let
α > 0 be such that αv∗ > 4n+m. Then, it follows from
(4.4) and (4.5) that for u ∈ Rn\{0} with ‖u‖ = 1, we
have:

uT


αM −

∑

(k,j)∈S1

eje
T
j −

∑

(i,j)∈S2

eije
T
ij


u > 0

In particular, we see that by taking θij = αµij and
w1s = ανs, we have U ′

22 Â 0.
To complete the proof of Proposition 4.1, let V =

Id +
∑

(k,j)∈S1
akaT

k . Since a1 = 0 by assumption, we
have U ′

11 = Id, and U ′
12 = −∑

(k,j)∈S1
akeT

j . By a
theorem in linear algebra (cf. Theorem 7.7.6 of [23]),
we have U ′ Â 0 iff U ′

22 − (U ′
12)

T U ′
12 Â 0. Now, note

that (U ′
12)

T U ′
12 does not depend on θij and wkj . Let

w∗ = max‖u‖=1 uT (U ′
12)

T U ′
12u. Since {u : ‖u‖ = 1}

is compact, we see that w∗ < ∞. Thus, by taking a
sufficiently large α (i.e. αv∗ − 4(n + m) − w∗ > 0), we
see that:

uT U ′
22u− uT (U ′

12)
T U ′

12u ≥ αv∗ − 4(n + m)− w∗ > 0

for all u ∈ Rn\{0} with ‖u‖ = 1. In particular, we have
U ′

22 − (U ′
12)

T U ′
12 Â 0 as desired.

Proof of Theorem 4.1. By Proposition 4.1 and our
assumptions, both (3.1) and (3.3) are strictly feasible.
Thus, it follows from the duality theory for SDP (see,
e.g., [20]) that there is no gap between the optimal
values of (3.1) and (3.3), and that the common optimal
value is attained in both problems. Let Z̄ (resp. Ū)
be the optimal primal (resp. dual) matrix. Then, the
absence of a duality gap implies that Z̄Ū = 0. Since Z̄
takes the form (3.2), we obtain:

(4.6)

Z̄Ū =
[

V 0
XT V 0

]
+

∑

(i,j)∈Nx

θij

[
0 Xij

0 Yij

]

+
∑

(k,j)∈Na

wkj

[ ∗ X̄kj

∗ Ȳkj

]

−
∑

(k,j)∈S1

[ ∗ X̄kj

∗ Ȳkj

]
−

∑

(i,j)∈S2

[
0 Xij

0 Yij

]

+
∑

(k,j)∈C1

[ ∗ X̄kj

∗ Ȳkj

]
+

∑

(i,j)∈C2

[
0 Xij

0 Yij

]

= 0

where:

(a) Xij is an d × n matrix with xi − xj on the i–th
column and −(xi − xj) on the j–th column;

(b) Yij is an n×n matrix with (y1i−y1j , . . . , yni−ynj)
on the i–the column and −(y1i−y1j , . . . , yni−ynj)
on the j–th column;

(c) X̄kj is an d × n matrix with xj − ak on the j–th
column;



(d) Ȳkj is an n× n matrix with (y1j − xT
1 ak, . . . , ynj −

xT
nak) on the j–th column.

Now, equation (4.6) implies that:

0 =
∑

(i,j)∈Nx

θijXij +
∑

(k,j)∈Na

wkjX̄kj

−
∑

(k,j)∈S1

X̄kj −
∑

(i,j)∈S2

Xij

+
∑

(k,j)∈C1

X̄kj +
∑

(i,j)∈C2

Xij

Consider a fixed column s of the matrix on the right–
hand side. We have:

∑

j:(j,s)∈Nx

θjs(xs − xj) +
∑

k:(k,s)∈Na

wks(xs − ak)(4.7)

−
∑

k:(k,s)∈S1

(xs − ak)−
∑

j:(j,s)∈S2

(xs − xj)

+
∑

k:(k,s)∈C1

(xs − ak) +
∑

j:(j,s)∈C2

(xs − xj) = 0

Thus, if rank(Z̄) = d, then we have just shown that
the optimal dual multipliers {θij , wkj} yield a non–zero
proper equilibrium stress for {a1, . . . , am, x1, . . . , xn}.
Note, however, that there are no restrictions placed on
the pinned vertices a1, . . . , am.

Now, suppose that rank(Z̄) > d. Then, following
the arguments in [33], we have Y − XT X = (X ′)T X ′,
where Y − XT X has rank r. Now, consider the set
x̃j = (xj ; x′j) ∈ Rd+r, where j = 1, 2, . . . , n. Clearly, we
have r ≤ n. Also, we have:

‖x̃j‖2 = Yjj and x̃T
i x̃j = Yij

Using equation (4.6), we have:

0 =
∑

(i,j)∈Nx

θijYij +
∑

(k,j)∈Na

wkj Ȳkj

−
∑

(k,j)∈S1

Ȳkj −
∑

(i,j)∈S2

Yij

+
∑

(k,j)∈C1

Ȳkj +
∑

(i,j)∈C2

Yij

Consider a fixed column s of the matrix on the right–
hand side. Using the identities:

yts − ytj = xT
t xs + (x′t)

T
x′s −

(
xT

t xj + (x′t)
T

x′j
)

= xT
t (xs − xj) + (x′t)

T (
x′s − x′j

)

yts − xT
t ak = xT

t (xs − ak) + (x′t)
T

x′s

we conclude that for each t = 1, 2, . . . , n, we have:

(4.8)

(x′t)
T





∑

j:(j,s)∈Nx

θjs

(
x′s − x′j

)
+

∑

k:(k,s)∈Na

wksx
′
s

−
∑

k:(k,s)∈S1

x′s −
∑

j:(j,s)∈S2

(
x′s − x′j

)

+
∑

k:(k,s)∈C1

x′s +
∑

j:(j,s)∈C2

(
x′s − x′j

)


 = 0

In other words, the bracketed term is perpendicular to
x′t for all t = 1, 2, . . . , n. Thus, we conclude that the
bracketed term is zero. In particular, we have shown
that the optimal dual multipliers {θij , wkj} give rise
to a non–zero proper equilibrium stress for the points
{(a1;0), . . . , (am;0), x̃1, . . . , x̃n}. This completes the
proof.

Corollary 4.1. Let X̃ and {θ̄ij , w̄kj} be as in Theo-
rem 4.1. Let

ω((ak;0)) ≡
∑

s:(k,s)∈Na

wks((ak;0)− x̃s)

−
∑

s:(k,s)∈S1

((ak;0)− x̃s)

+
∑

s:(k,s)∈C1

((ak;0)− x̃s)

be the net stress exerted on the pinned vertex (ak;0).
Then, we have

∑m
k=1 ω((ak;0)) = 0.

Proof. The desired result follows upon summing (4.7)
and the bracketed term in (4.8) over s = 1, . . . , n and
then interchanging the order of summation.

In particular, we see that if there is only one pinned
vertex a1, then the net stress exerted on a1 is zero at
the solution (X̃, θ̄ij , w̄kj).

4.2 Computational Aspects We now discuss the
computational aspects of (3.1). In general, semidefinite
programs can only be approximated in polynomial time
to within an additive error of ε for any given ε > 0.
More precisely, we have the following (see, e.g., [12]):

Fact 4.2. Let ε > 0 be given. Then, the worst–case
number of total arithmetic operations needed to compute
a feasible solution (Z,U) to (3.1) and (3.3) with duality
gap accuracy ε (i.e. Z • U ≤ ε) is O(

√
n(n3 + n2|E| +

|E|3) log(1/ε)), where |E| is the number of edges in G.



Definition 4.1. We say that (Z, U) is an ε–
approximate solution if (i) Z (resp. U) is a feasible
solution to (3.1) (resp. (3.3)), and (ii) Z • U ≤ ε for
some ε > 0.

To see how an ε–approximate solution affects the results
of Theorem 4.1, we first observe the following:

Proposition 4.2. Let (Z,U) be an ε–approximate so-
lution for some ε ∈ (0, 1). Then, all entries of the ma-
trix ZU have absolute value at most ε.

Now, using the arguments in the proof of Theorem 4.1,
we can establish the following theorem. We omit the
details here.

Theorem 4.2. Let ε > 0 be given. Then, there exists
an δ > 0 such that if (X̃, θ̄ij , w̄ij) is extracted from an δ–
approximate solution (Z̄, Ū) and ω(x̃i) is the net stress
exerted on the unpinned vertex x̃i, we have ‖ω(x̃i)‖ ≤ ε
for all i = 1, . . . , n. Moreover, δ can be chosen to be
polynomially bounded.

Thus, by using SDP, we can only find a solution that
solves a “nearby” problem in polynomial time. We shall
investigate this in greater detail in the full version of this
paper.

5 An Algorithm for Realizing 3–Realizable
Graphs

In this section, we give an algorithm for realizing
3–realizable graphs and hence resolve an open question
posed in [14]. Before we proceed, let us recall some
of the structural properties of an 3–realizable graph.
It is clear from the definition that the class of d–
realizable graphs is closed under the operation of taking
minors. Thus, by the celebrated Graph Minor Theorem
of Robertson and Seymour [26], there exists a finite list
of forbidden minors for d–realizability. Using the results
of Arnborg et. al. [5], Connelly and Sloughter [14] were
able to show that a graph is 3–realizable iff it does not
contain K5 or K2,2,2 as a minor (see Figure 1). Now, let
G be an 3–realizable graph. Then, it either (i) contains
an V8 or an C5×C2 as a minor (see Figure 1), or (ii) does
not contain either graphs as a minor. If it is the latter,
then by the results of Arnborg et. al. [5] G is a partial
3–tree (to be defined below). Otherwise, by Proposition
1.7.2 of [18], G contains a subdivision of V8 or C5 × C2

(a graph H is a subdivision of a graph G if H can be
obtained from G by replacing every edge (i, j) of G with
a path from i to j). Now, let G′ be the graph obtained
by removing one such subdivision (call it H) from G.
Then, it is shown in [14] that each component of G′ can
connect to only one of the subdivided edges of H in G.
The preceding discussion suggests that we only need to

find algorithms for the following tasks: (i) realizing a
partial 3–tree; (ii) realizing an V8 and its subdivisions;
(iii) realizing an C5 × C2 and its subdivisions; and (iv)
finding a subdivision of V8 or C5×C2 in an 3–realizable
graph. We now formalize these ideas and treat each of
these items in turn. In particular, we will show that if
an optimal solution to (3.1) and (3.3) is available to us,
then each of the tasks (i)–(iv) above can be achieved in
polynomial time.

(a) K5 (b) K2,2,2

8 1

2

3

45

6

7

(c) V8

1

3

5

7

102

4

6

8

9

(d) C5 × C2

Figure 1: Forbidden Minors for Partial 3–Trees

5.1 Realizing Partial 3–Trees We first introduce
the notions of k–tree and partial k–tree.

Definition 5.1. An k-tree is defined recursively as
follows. The complete graph on k vertices is an k–tree.
An k–tree with n + 1 vertices (where n ≥ k) can be
constructed from an k–tree with n vertices by adding
a vertex adjacent to all vertices of one of its k–vertex
complete subgraphs, and only to those vertices. A partial
k–tree is a subgraph of an k–tree.

Suppose that we are given an 3–tree G with feasible
edge lengths (i.e. there exists a realization of G in Rd′

for some d′ with those edge lengths), and that G is
constructed by adding the vertices v1, v2, . . . , vn, in that
order. It is then easy to find a realization of G in R3

in linear time. First, we realize the triangle v1, v2, v3

in R3. Now, suppose that for k ≥ 3, v1, . . . , vk has
been realized. Then, in order to realize vk+1, we simply
compute its position via its neighbors vi1 , vi2 , vi3 , where
1 ≤ i1, i2, i3 ≤ k. If the order of the vertices is not given,
we can find an ordering in linear time [4, 27] and then
proceed as above.

Now, suppose that we are given a partial 3–tree
G with feasible edge lengths. We can first use, e.g.,



the SDP model in [33] to find a realization of G in
Rd for some d. This way we also obtain all pairwise
distances among the vertices in G. Now, we embed G
into an 3–tree Ĝ using the algorithm in [4]. Since this
embedding does not introduce any extra vertices, we
can use the relevant distance information on the edges
of Ĝ to realize Ĝ, and hence G, in R3 via the algorithm
given in the preceding paragraph.

5.2 Realizing V8 and its Subdivisions It is shown
in [32] that V8 (see Figure 1(c)) is 3–realizable. We now
use the machinery developed in Sections 3 and 4 to give
an algorithm for realizing V8 in R3. We first augment
V8 to V ′

8 by adding a strut between vertices 1 and 4
(such a device is first introduced in [32]). Then, we pin
vertex 1 at the origin (i.e. a1 = 0). Suppose that the
given edge lengths admit a realization whose vertices
are in general position. Then, the graph V ′

8 satisfies
the assumptions of Theorem 4.1. Now, consider the
following semidefinite program:
(5.9)

sup (a1; e4)(a1; e4)T • Z

s.t. Z1:3,1:3 = I3

(0; eij)(0; eij)T • Z = d2
ij (i, j) ∈ E(V8)

i, j 6= 1

(a1; ej)(a1; ej)T • Z = d̄2
1j (1, j) ∈ E(V8)

Z º 0

In other words, we would like to find a realization
that maximizes the length of the strut. Let p =
(0, x̃2, . . . , x̃8) be a realization obtained from an optimal
solution to (5.9). Then, Theorem 4.1 and Corollary
4.1 guarantee that the corresponding dual multipliers
yield a non–zero proper equilibrium stress ω for the
tensegrity V ′

8(p). Once such an ω is given, we can
use the procedure described in [32] to “round” the
realization p into R3 in constant time. We omit the
details here.

Now, consider a subdivision H of V8. We label the
vertices of H by {1, 2, . . . , 8, s1, . . . , sl}, where vertices
1, 2, . . . , 8 are those from V8 and s1, . . . , sl are those
that arise from subdivisions of edges. Note that we
can determine the vertices {1, 2, . . . , 8} in time linear
in the size of H. To realize H in R3, we can use the
idea in Section 5.1, namely, we first find some realization
of H and obtain the distance between vertices i and j
in H, where 1 ≤ i, j ≤ 8 and (i, j) ∈ E(V8). Then,
we can feed that information to the SDP (5.9) and
realize the vertices 1, 2, . . . , 8 in R3. To realize the
remaining vertices inR3, it suffices to solve the following
problem: given a path u1, . . . , uk with feasible edge

lengths and pinned vertices u1 and uk, find a realization
of the unpinned vertices such that the affine span of
{u1, . . . , uk} is R2. This is equivalent to finding a
realization in R2 of the graph G defined as follows: it
has unpinned vertices w1, . . . , wk and edges {(wi, wi+1) :
1 ≤ i ≤ k − 1} ∪ {(w1, wk)}. The edge lengths are
given by ‖wi+1 − wi‖ = ‖ui+1 − ui‖ for 1 ≤ i ≤ k − 1,
and ‖wk − w1‖ = ‖uk − u1‖ (recall that u1 and uk are
pinned and hence we can compute ‖uk −u1‖ from their
coordinates). Since G is series–parallel, it is 2–realizable
by the result of [14]. Moreover, the desired realization
can be computed in linear time (see Section 6 of [14]).

5.3 Realizing C5 × C2 and its Subdivisions The
graph C5×C2 (see Figure 1(d)) is 3–realizable [32], and
we can realize it in R3 using similar ideas as above.
We again assume that the assumptions of Theorem 4.1
are satisfied. To begin, we first augment C5 × C2 to
G by adding a strut between vertices 1 and 6, and
we pin vertex 1 at the origin. Then, we formulate a
semidefinite program similar to (5.9) and obtain a non–
zero proper equilibrium stress ω for some realization of
G in polynomial time. Then, we can again use ω and
the arguments in [32] to “round” the solution into R3

in constant time. Lastly, we can realize subdivisions of
C5 ×C2 in R3 using the ideas described in Section 5.2.

5.4 Finding a Subdivision of V8 or C5 × C2 in
an 3–Realizable Graph Let G be an 3–realizable
graph. We now show how the algorithm of Matoušek
and Thomas [24] can be used to obtain a subgraph of G
that is a subdivision of V8 or C5×C2. To avoid clumsy
sentences, we shall also use the term “homeomorphic”
for subdivision – a graph H1 is homeomorphic to H2 if
H1 is a subdivision of H2. We first recall the following
facts:

Fact 5.1. The following statements are true.

(a) (Asano [6]) For an 3–connected graph H, a graph
H ′ has a subgraph homeomorphic to H iff there
is an 3–connected component of H ′ that has a
subgraph homeomorphic to H.

(b) (Connelly and Sloughter [14]) If an edge is added
between a non–adjacent pair of vertices of V8

(resp. C5 × C2), then the resulting graph has K5

(resp. K5 or K2,2,2) as a minor.

(c) (Connelly and Sloughter [14]) Let G be an 3–
realizable graph. Suppose that G contains a subdi-
vision of H, where H ∈ {V8, C5×C2}. Remove the
subdivision of H from G and consider the compo-
nents of the resulting graph. Then, each component



is connected in G to exactly one of the subdivided
edges of H.

Using these facts, we can establish the following:

Proposition 5.1. Let G be an 3–realizable graph con-
taining a subgraph homeomorphic to H ∈ {V8, C5×C2}.
Then, one of the triconnected components of G is iso-
morphic to H.

Proof. Since V8 and C5 × C2 are 3–connected, if G has
a subgraph homeomorphic to either one, then by Fact
5.1(a) one of the triconnected components will have a
subgraph homeomorphic to H. Let G′ be one such
component. We claim that G′ is isomorphic to H.
Suppose that this is not the case. Let us remove the
subdivision of H from G′, and let G′′ be one of the
resulting components. (We may assume without loss
that G′′ is non–null, for a subdivision of H is either
isomorphic to H or is not triconnected.) Using Facts
5.1(b) and 5.1(c), it can be shown that G′′ is connected
in G′ to only one of the subdivided edges of H. However,
if we remove the two end vertices of that subdivided
edge in G′, then we will disconnect G′′ from the rest of
G′, which contradicts the fact that G′ is triconnected.
This establishes the claim.

Armed with Proposition 5.1, we propose the following
algorithm. First, decompose G into triconnected com-
ponents using the linear time algorithm in [22]. Then,
we check each of the triconnected components for the
presence or absence of V8 or C5 × C2. For this we can
run the linear time algorithm in [24] on each of those
components and see if the component reduces to a null
graph or not. If the component does not reduce to a null
graph, then it is isomorphic to either V8 or C5×C2, and
the number of vertices in the component will determine
which one it is. The desired subdivision can then be
extracted from G using the method outlined in [6]. We
summarize as follows:

Proposition 5.2. Let G be an 3–realizable graph with
n vertices. Then, a subdivision of V8 or C5 × C2 in G
can be found in O(n) time.

5.5 Putting Everything Together We are now
ready to give the algorithm for realizing an 3–realizable
graph G. First, we find a subgraph H of G that is
homeomorphic to either V8 or C5 × C2 in G. If there
is no such H, then G is a partial 3–tree, and hence
we can use the algorithm in Section 5.1. Otherwise, we
proceed as follows. For concreteness’ sake, suppose that
H is a subdivision of V8, and its vertices are labelled
using the convention in Section 5.2. We first realize
vertices 1, 2, . . . , 8 of H inR3 as in Section 5.2. As a by–
product, we also obtain the distance between vertices i

and j, where 1 ≤ i < j ≤ 8 and (i, j) ∈ E(V8). Now,
consider the components that arise from the removal of
H from G. By Fact 5.1(c), we can associate each of these
components to a subdivided edge (i, j). Let V(i,j) be the
union of all vertices from the components associated
with (i, j) and all the vertices on the subdivided edge
(i, j). Let H(i,j) be the induced subgraph of G on the
vertices in V(i,j), and let H ′

(i,j) be obtained from H(i,j)

by adding the edge (i, j) if it is not already there and
assigning it the length ‖xi−xj‖, where xi is the position
of vertex i computed above. Then, we can apply our
algorithm on H ′

(i,j) and repeat until all vertices of G
are realized.

6 Conclusion

In this paper we have studied a connection between
SDP and tensegrity theories, as well as the notion of d–
realizability of graphs, which is introduced in [14]. We
have shown that the problem of finding an unyielding
tensegrity can be formulated as an SDP, and that the
optimal dual multipliers give rise to a non–zero proper
equilibrium stress. This gives a constructive proof
of (a variant of) a result in tensegrity theory that
is previously established by non–constructive means,
e.g. the Inverse Function Theorem. We then combine
this result with the techniques in [14, 32] to design
an algorithm for realizing 3–realizable graphs, thus
answering an open question posed in [14]. We believe
that our techniques can be applied to derive some other
interesting properties of tensegrity frameworks, and this
will be a subject of further research.
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7 Appendix

7.1 A Pathological Case for the SDP In the

discussion of Theorem 4.1 we have assumed that problem

(3.1) is strictly feasible. It is interesting to see what could go

wrong if that assumption is not satisfied. Consider the graph

in Figure 2. Here, the vertices 1, 2 and 3 are collinear, and

4

1 2 3

Figure 2: A Pathological Case for the SDP

the edges (1, 2), (2, 3) and (1, 3) are all present. We would

like to maximize the length of the strut (2, 4). Clearly, such

a configuration can span at most two dimensions, and hence

the corresponding primal SDP (3.1) is not strictly feasible.

Suppose now that we pin vertex 1 at the origin and try to

solve the SDP. As argued before, the algorithm will assign a

stress of −1 on the strut (2, 4). However, the stress around

vertex 2 will not be at equilibrium. The issue here is that

when (3.1) is not strictly feasible, the optimal value may

not be attained by any dual matrix U , even though there is

a sequence of dual–infeasible matrices {Un} such that their

associated objective values tend to the optimal value.


