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A Note on the Complexity of Lp Minimization

Dongdong Ge · Xiaoye Jiang · Yinyu Ye

Abstract We discuss the Lp (0 ≤ p < 1) minimization problem arising from sparse solution construction
and compressed sensing. For any fixed 0 < p < 1, we prove that finding the global minimal value of the
problem is strongly NP-Hard, but computing a local minimizer of the problem can be done in polynomial
time. We also develop an interior-point potential reduction algorithm with a provable complexity bound
and demonstrate preliminary computational results of effectiveness of the algorithm.
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1 Introduction

In this note, we consider the following optimization problems:

(P) Minimize p(x) :=
n∑

j=1

xp
j

Subject to x ∈ F := {x : Ax = b, x ≥ 0},
(1)

and

Minimize
n∑

j=1

|xj |p

Subject to x ∈ F ′ := {x : Ax = b},
(2)

where the problem inputs consist of A ∈ Rm×n, b ∈ Rm, and 0 < p < 1.
Sparse signal or solution reconstruction by solving optimization problem (1) or (2), especially for the

cases of 0 < p ≤ 1, has recently received considerable attention; for example, see [6,22] and references
therein. In signal reconstruction, one typically has linear measurements b = Ax where x is a sparse signal,
i.e., the sparsest or smallest support cardinality solution of the linear system. This sparse signal is recovered
by solving the inverse problem (1) or (2) with the objective function ‖x‖0 that is the L0 norm of x and
is defined as the number of nonzero components of x [7]. In this note we essentially consider the Lp norm

functional Lp(x) =
(∑n

j=1 |xj |p
)1/p

where 0 < p ≤ 1 as our optimization objective function. It is easy to see

that Lp
p(x) converges to the L0 norm functional on a bounded set Ω ⊂ Rn. Thus, as a potential approach

to the sparse signal problem, minimizing the Lp norm function of x, or simply p(x), naturally arises.
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In terms of computational complexity, the problem with L0 norm is shown to be NP-hard [19]. On the
other hand, when p = 1, the problem (1) or (2), which is a relaxation problem for the L0 norm problem, is
a linear program, and hence it is solvable in polynomial time. For more general convex programs involving
the Lp norm (p > 1) in the objective (or constraints) and in conic representation, readers are referred to
[20] and [25].

In [7,12], it was shown that if a certain restricted isometry property(RIP) holds for A, then the solutions
of Lp norm minimization for p = 0 and p = 1 are identical. Hence, problem L0 minimization can be relaxed
to problem (2) with p = 1. However, this property may be too strong for practical basis design matrices
A. Instead, one may consider the sparse recovery problem by solving relaxation problem (1) or (2) for a
fixed p with 0 < p < 1. Recently, this approach has attracted many research efforts in variable selection and
sparse reconstruction, e.g., [9,10,13,17]. This approach exhibits desired threshold bounds on any non-zero
entry of a computed solution [11], and computational experiments show that by replacing p = 1 with p < 1,
reconstruction can be done equally fast with many fewer measurements while maintaining robustness to
noise and signal non-sparsity [10].

In this paper we present several interesting properties of the Lp (0 < p < 1) minimization problem.
Minimization problems (1) and (2) are both strongly NP-Hard. However, any basic feasible solution of (1)
or (2) is a local minimizer. Moreover, a feasible point satisfying the first order and second order necessary
optimality conditions is always a local minimizer. This motivates us to design interior-point algorithms,
which iterate within the interior of the feasible region, to generate a local minimizer (hopefully a sparse
local minimizer) satisfying the Karush-Kuhn-Tucker (KKT) optimality conditions .

1.1 Notation and Preliminaries

For the simplicity of our analysis, throughout this paper we assume that the feasible set F is bounded and
A is full-ranked.

A feasible point x is called a local minimum point or local minimizer of problem (1) if there exists ε > 0
such that p(x′) ≥ p(x) for any x′ ∈ B(x, ε)

⋂F where B(x, ε) = {x′ :‖ x′ − x ‖2≤ ε}.
For any feasible solution x of (1), let S(x) be the support or active set of x, that is,

S(x) = {j : xj > 0}.

Thus, |S| ≤ n. Let x∗ be a local minimum point of problem (1). Although p(x∗) is not differentiable when
x∗ is on the boundary of the feasible region, it is not difficult to verify that its non-zero components must
be local minimizers in the active set of variables, that is, for the problem

min pS(x)(z) :=
∑

j∈S(x)

zp
j , s.t. AS(x)z = b, z ≥ 0,

where AS ∈ Rm×|S| is the submatrix of A exactly consisting of the columns of A according to index set S
(see [11], for example). Thus, x∗ ≥ 0 satisfies the following necessary conditions ([2]).

– The first order necessary condition or KKT condition: there exists a Lagrange multiplier vector y∗ ∈ Rm,
such that

p(x∗)p−1
j − (AT y∗)j ≥ 0, ∀j ∈ S(x∗), (3)

and the complementarity condition holds:

p(x∗)p
j − x∗j (AT y∗)j = 0, ∀j. (4)

– The second order necessary condition:

λT∇2
zzpS(x∗)(z

∗)λ ≥ 0, (5)

for all λ ∈ R|S(x∗)| such that AS(x∗)λ = 0, where z∗ is the vector of all non-zero components of x∗.

The fact that F is bounded and nonempty implies that p(x) has a minimum value (denoted z) and a
maximum value (denoted z̄). An ε-minimal solution or ε-minimizer is defined as a feasible solution x such
that

p(x)− z

z̄ − z
≤ ε. (6)
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Vavasis [23] demonstrated the importance of the term z̄ − z in the criterion for continuous optimization.
Similarly Ye [26] defined an ε-KKT (or ε-stationary) point as an (x, y) that satisfies (3) in the active set
S(x) of x, and the complementarity gap

∑n
j=1

(
p(x∗)p

j − x∗j (AT y)j

)

z̄ − z
≤ ε. (7)

This note is organized as follows: in section 2, we show that the Lp (0 < p < 1) minimization problem
(1) or (2) is strongly NP-Hard. In section 3 we prove that the set of all basic feasible solutions of (1) and (2)
are identical with the set of all local minimizers. In section 4 we present our FPTAS (Fully Polynomial Time
Approximation Scheme) interior-point potential reduction algorithm to find an ε-KKT point of problem (1).
Numerical experiments are conducted to test its efficiency in section 5.

2 Hardness

To help the reader understand the basic idea of the hardness proof, we start by showing that the Lp

(0 < p < 1) minimization problems (1) and (2) are both NP-hard before we prove their strong NP-hardness.
To prove HP-hardness, we employ a polynomial time reduction from the well known NP-complete partition
problem [16]. The partition problem can be described as follows: given a set S of integers or rational numbers
{a1, a2, . . . , an}, is there a way to partition S into two disjoint subsets S1 and S2 such that the sum of the
numbers in S1 equals the sum of the numbers in S2?

An instance of the partition problem can be reduced to an instance of the Lp (0 < p < 1) minimization
problem (1) that has the optimal value n if and only if the former has an equitable bipartition. Consider
the following minimization problem:

Minimize P (x, y) =
∑

1≤j≤n

(xp
j + yp

j )

Subject to aT (x− y) = 0,
xj + yj = 1, ∀j,

x, y ≥ 0.

(8)

From the strict concavity of the objective function,

xp
j + yp

j ≥ xj + yj(= 1), ∀j,
and the equality holds if and only if (xj = 1, yj = 0) or (xj = 0, yj = 1). Thus, P (x, y) ≥ n for any
(continuous) feasible solution of problem (8).

If there is a feasible (optimal) solution pair (x, y) such that P (x, y) = n, it must be true that xp
j + yp

j =
1 = xj + yj for all j so that (x, y) must be a binary solution ((xj = 1, yj = 0) or (xj = 0, yj = 1)), which
generates an equitable bipartition of the entries of a. On the other hand, if the entries of a have an equitable
bipartition, then the problem must have a binary solution pair (x, y) such that P (x, y) = n. Thus we prove
the NP-hardness of problem (1).

Note that the objective value of (8) is a constant n when p = 1, so that any feasible solution is a (global)
minimizer. However, the sparsest solution of (8) has cardinality n if the problem admits an equitable
bipartition.

The same instance of the partition problem can also be reduced to the following minimization problem
in form (2):

Minimize
∑

1≤j≤n

(|xj |p + |yj |p)

Subject to aT (x− y) = 0,
xj + yj = 1, ∀j.

(9)

Note that this problem has no non-negativity constraints on variables (x, y). However, for any feasible
solution (x, y) of the problem, we still have

|xj |p + |yj |p ≥ xj + yj(= 1), ∀j.
This is because the minimal value of |xj |p + |yj |p is 1 if xj + yj = 1, and the quality holds if and only
if (xj = 1, yj = 0) or (xj = 0, yj = 1). Therefore, the instance of the partition problem has an equitable
bipartition if and only if the objective value of (9) is n. This leads to the NP-hardness of (2).

Now we prove a stronger result:
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Theorem 1 The Lp (0 < p < 1) minimization problems (1) and (2) are both strongly NP-hard.

Proof We present a polynomial time reduction from the well known strongly NP-hard 3-partition prob-
lem [15,16]. The 3-partition problem can be described as follows: given a multiset S of n = 3m integers
{a1, a2, . . . , an}. The sum of S is equal to mB and each integer in S is strictly between B/4 and B/2. Can
S be partitioned into m subsets, such that the sum of the numbers in each subset is equal to each other,
i.e., B, which implies each subset has exactly three elements?

We describe a reduction from an instance of the 3-partition problem to an instance of the Lp (0 < p < 1)
minimization problem (1) that has the optimal value n if and only if the former has an equitable 3-partition.
Given an instance of the partition problem, let vector a = (a1, a2, . . . , an) ∈ Rn and n = 3m. Let the sum
of a be mB and each ai ∈ (B/4, B/2). Consider the following minimization problem in form (1):

Minimize P (x) =
n∑

i=1

m∑

j=1

xp
ij

Subject to
∑m

j=1 xij = 1, i = 1, 2, · · · , n,∑n
i=1 aixij = B, j = 1, 2, · · · , m,

xij ≥ 0, i = 1, 2, · · · , n; j = 1, 2, · · · , m,

(10)

From the strict concavity of the objective function, and xij ∈ [0, 1],

m∑

j=1

xp
ij ≥

m∑

j=1

xij(= 1), i = 1, 2, · · · , n.

The equality holds if and only if xij0 = 1 for some j0 and other xij = 0, ∀j 6= j0. Thus, P (x) ≥ n for any
feasible solution of (10).

If there is a feasible (optimal) solution x such that P (x) = n, it must be true that
∑m

j=1 xp
ij = 1 =∑m

j=1 xij for all i so that for any i, xij0 = 1 for some j0 and other xij = 0, ∀j 6= j0. This generates an
equitable 3-partition of the entries of a. On the other hand, if the entries of a have an equitable 3-partition,
then (10) must have a binary solution x such that P (x) = n. Thus we prove the strong NP-hardness of
problem (1) according to [15].

For the same instance of the 3-partition problem, we consider the following minimization problem in
form (2):

Minimize
n∑

i=1

m∑

j=1

|xij |p

Subject to
∑m

j=1 xij = 1, i = 1, 2, · · · , n,∑n
i=1 aixij = B, j = 1, 2, · · · , m,

(11)

Note that this problem has no non-negativity constraints on the variables x. However, for any feasible
solution x of the problem, we still have

m∑

j=1

|xij |p ≥
m∑

j=1

xij(= 1), i = 1, 2, · · · , n.

This is because the minimal value of
∑m

j=1 |xij |p is 1 if
∑m

j=1 xij = 1, and the equality holds if and only if
for any i, xij0 = 1 for some j0 and other xij = 0, ∀j 6= j0.

Therefore, we can similarly prove that this instance of the partition problem has an equitable 3-partition
if and only if the objective value of (11) is n, which leads to the strong NP-hardness of problem (2).

2.1 The Hardness of Smoothed Lp Minimization

To avoid the non-differentiability of p(x), smooth versions of Lp minimization were developed:

(P) Minimize
n∑

j=1

(xj + ε)p

Subject to x ∈ G := {x : Ax = b, x ≥ 0},
(12)

and

Minimize
n∑

j=1

(|xj |+ ε)p

Subject to x ∈ G′ := {x : Ax = b},
(13)
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for a fixed positive constant ε; see [5,9–11].

A similar reduction can be used to derive the NP-hardness of the smoothed versions.

Theorem 2 The smoothed Lp (0 < p < 1) minimization problems (12) and (13) are both strongly NP-hard.

Proof For problem (12), we also form a reduced minimization problem similar to the form of (10) for the
3-partition problem with the objective function defined as:

Minimize Pε(x) =
n∑

i=1

m∑

j=1

(xij + ε)p

Subject to
∑m

j=1 xij = 1, i = 1, 2, · · · , n,∑n
i=1 aixij = B, j = 1, 2, · · · , m,

xij ≥ 0, i = 1, 2, · · · , n; j = 1, 2, · · · , m.

(14)

From the concavity of the objective function, for all i, we have

m∑

j=1

(xij + ε)p =
m∑

j=1

(xij + ε
m∑

k=1

xik)p

=
m∑

j=1

(xij(1 + ε) + ε(1− xij))
p

≥
m∑

j=1

(xij(1 + ε)p + εp(1− xij))

= (1 + ε)p + (m− 1)εp

The equality holds if and only if xij0 = 1 for some j0 and xij = 0, ∀j 6= j0. Thus, Pε(x) ≥ n((1+ ε)p +(m−
1)εp) for any feasible solution of (14).

If there is a feasible (optimal) solution x such that Pε(x) = n((1+ ε)p +(m− 1)εp), it must be true that∑m
j=1(xij + ε)p = (1 + ε)p + (m− 1)εp for all i so that for any i, xij0 = 1 for some j0 and xij = 0, ∀j 6= j0.

This generates an equitable 3-partition of the entries of a. On the other hand, if the entries of a have an
equitable 3-partition, then (14) must have a binary solution x such that Pε(x) = n((1 + ε)p + (m − 1)εp).
Thus we prove the strong NP-hardness of problem (14) and thereby (12). Similar arguments can also be
developed to prove the strong NP-hardness of problem (13).

3 The Easiness

The above discussion reveals that finding a global minimizer for the Lp norm minimization problem is
strongly NP-hard as long as p < 1. From a theoretical perspective a strongly NP-hard optimization problem
with a polynomially bounded objective function does not admit an FPTAS unless P=NP [24]. Thus, relaxing
p = 0 to some p < 1 gains no advantage in terms of the (worst-case) computational complexity. We now turn
our attention to local minimizers. Note that, for many optimization problems, finding a local minimizer, or
checking if a solution is a local minimizer, remains NP-hard. Here we show that local minimizers of problems
(1) and (2) are easy to certify and compute.

Theorem 3 The set of all basic feasible solutions of (1) or (2) is exactly the set of local minimizers. Thus,
computing a local minimizer of (1) or (2) can be done in polynomial time.

Proof Let x̄ be a basic feasible solution (or extreme point) of the feasible polytope of (1), where, without
loss of generality, the basic variables are x̄B = (x̄1, · · · , x̄m) > 0 and x̄j = 0, j = m + 1, · · ·n. The feasible
directions form a polyhedral cone pointed at x̄. Consider a directional edge of the feasible direction cone
d = dm+1 := (d1, d2, · · · , dm+1, 0, · · · 0) from x̄ to an adjacent extreme point. Let ‖d‖2 = 1. Since d is
a feasible direction, there exists an appropriate and fixed εm+1 > 0, such that x̄ + εd is feasible for any
0 < ε < εm+1, which implies dm+1 > 0. Thus

p(x̄ + εd)− p(x̄) =
m∑

i=1

((x̄i + εdi)
p − x̄p

i ) + (εdm+1)
p.
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Define the index set I− = {i : di < 0}. If I− is empty, then p(x̄ + εd) > p(x̄) for any ε > 0 so that d is
a strictly increasing feasible direction. If I− is nonempty, one can choose sufficiently small but fixed ε′m+1

such that x̄i + εdi ≥ x̄i

2 for any i ∈ I− and 0 ≤ ε ≤ ε′m+1. Then, for such 0 < ε ≤ ε′m+1

p(x̄ + εd)− p(x̄) ≥
∑

i∈I−
((x̄i + εdi))

p − x̄p
i ) + (εdm+1)

p >
∑

i∈I−
(εdi)p(

x̄i

2
)p−1 + (εdm+1)

p,

where the last inequality comes from the strict concavity of p(x). Note that

∑

i∈I−
(εdi)p(

x̄i

2
)p−1 + (εdm+1)

p > 0

if

ε < ε′′m+1 := d
p

1−p

m+1


p

∑

i∈I−
(−di)(

xi

2
)p−1




1
p−1

. (15)

This again shows that the edge direction, d = dm+1, is a strictly increasing direction within a fixed step
size min{εm+1, ε

′
m+1, ε

′′
m+1} > 0.

There are at most (n−m) edge directions of the feasible direction cone, say dj , j = m + 1, · · ·n. Thus,
there exists a fixed εx̄ > 0 such that x̄ + εdj is feasible and

p(x̄ + εdj)− p(x̄) > 0, ∀j = m + 1, · · ·n,

for all 0 < ε ≤ εx̄. Let Conv(x̄, εx̄) denote the convex hull spanned by points x̄ and x̄+εx̄dj , j = m+1, · · · , n.
For any x ∈ Conv(x̄, εx̄) and x 6= x̄, we have p(x) > p(x̄) by the strict concavity of p(x) and that x can be
represented as a convex combination of the corner points of the convex hull. Furthermore, one can always
choose a sufficiently small but fixed ε > 0, such that B(x̄, ε)

⋂F ⊂ Conv(x̄, εx̄). Therefore, by the definition,
x̄ is a (strictly) local minimizer.

On the other hand, if x̄ is a local minimizer but not a basic feasible solution or extreme point of the
feasible polytope, then for any ε > 0, consider the neighborhood B(x̄, ε)

⋂F . There must exist a feasible
direction d with ‖d‖2 = 1 such that both x̄ + ε′d and x̄ − ε′d are feasible for sufficiently small 0 < ε′ < ε,
and they both belong to B(x̄, ε)

⋂F . The strict concavity of p(x) implies that one of two must be smaller
than p(x̄). Thus, x̄ cannot be a local minimizer.

Similarly, we can prove that the set of all basic solutions of (2) is exactly the set of all of its local
minimizers.

It is well known that computing a basic feasible solution of (1) or (2) can be done in polynomial time
as solving a linear programming feasibility problem (e.g., [27]), which completes the proof.

Furthermore, one can observe the following property of a local minimizer.

Theorem 4 If the first order necessary condition (3) and the second order necessary condition (5) hold at
x and x ∈ F , then x is a local minimizer of problem (1).

Proof If x is in the interior of the feasible region F and satisfies the first order condition (3), the strict
concavity of p(x) implies x must be the unique maximum point.

If x lies on the boundary, define its support set S and positive vector z as in the second order necessary
condition (5). Since ∇2

zzpS(z) is negative definite, we know that λT∇2
zz(z)λ cannot be nonnegative in the

null space of AS unless {λ : ASλ = 0} = {0}. Thus, the second order necessary condition (5) holds only
when x is a basic feasible solution. By Theorem 3, x is a local minimizer.

Example 1 This example shows that not all basic feasible solutions have a good sparse structure and the
L1 minimization does not always work. Let

A =




2 4 2 2 2 4
2 2 4 5 4 4
1 2 2 0 6 4


 , b =




8
8
4


 .

It is not difficult to verify that the only optimal basic feasible solution for the L1 minimization is
x = (0, 1.2, 0, 0.8, 0, 0.4)′ and the optimal value is 2.4. However, it is not the sparsest solution. A sparsest
solution can be given by x = (4, 0, 0, 0, 0, 0)′. One can also observe that any basic feasible solution containing
column 1 is the sparsest solution, but other basic feasible solutions are all dense with cardinality 3.
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4 Interior-Point Algorithm

From a complexity point of view, Theorem 3 implies that a local minimizer of the Lp minimization can be
computed in polynomial time as a linear program to find a basic feasible solution. Of course, we are really
interested in finding a sparse basic feasible solution; if we start from non-sparse basic feasible solution, there
is little hope to find a sparser one by solving problem (1) since the starting point is already a strict local
minimizer.

Naturally, one would start from an interior-point feasible solution such as an (approximate) analytic
center x0 of the feasible polytope (if it is bounded and has an interior feasible point), and consider an
interior-point algorithm for approximately solving (1). Moreover, p(x) is differentiable in the interior feasible
region. Hopefully, the interior-point algorithm would generate a sequence of interior points that bypasses
non-sparse basic feasible solutions and converges to a sparse one.

This is exactly the idea of the potential reduction algorithm developed in [26] for nonconvex quadratic
programming. The algorithm starts from the initial point, follows an interior feasible path and finally
converges to either a global minimizer or a KKT point or local minimizer. At each step, it chooses a new
interior point which produces the maximal potential reduction to a potential function by an affine-scaling
operation. See [18] or [27] for an extensive introduction of interior-point algorithms.

We now extend the potential reduction algorithm for the Lp minimization. The algorithm starts from
an interior-point feasible solution such as the analytic center x0 of the feasible polytope. As in linear
programming, one could consider the potential function

φ(x) = ρ log




n∑

j=1

xp
j − z


−

n∑

j=1

log xj = ρ log(p(x)− z)−
n∑

j=1

log xj , (16)

where z is a lower bound on the global minimal objective value of (1) and ρ satisfies parameter ρ > n. For
simplicity, we set z = 0 in this paper, since the Lp minimization objective function is always nonnegative.
Note that

∑n
j=1 xp

j

n
≥




n∏

j=1

xp
j




1/n

and therefore
n

p
log(p(x))−

n∑

j=1

log xj ≥ n

p
log n.

Thus, if φ(x) ≤ (ρ − n/p) log(ε) + (n/p) log n, we must have p(x) ≤ ε, which implies that x must be an
ε-global minimizer.

Give an interior point x, the algorithm looks for the best possible potential reduction from x. In a
manner similar to the algorithm discussed in [26], one can consider a potential reduction φ(x+) − φ(x) by
one-iteration update from x to x+.

Note that

φ(x+)− φ(x) = ρ(log(p(x+))− log(p(x))) + (−
n∑

j=1

log(x+
j ) +

n∑

j=1

log(xj)).

Let dx with Adx = 0 be a vector such that x+ = x + dx > 0. Then, from the concavity of log(p(x)), we
have

log(p(x+))− log(p(x)) ≤ 1

p(x)
∇p(x)T dx.

On the other hand, by restricting ‖X−1dx‖ ≤ β < 1, where X = Diag(x), we have (see Section 9.3 in [3]
for a detailed discussion)

−
n∑

j=1

log(x+
j ) +

n∑

j=1

log(xj) ≤ −eT X−1dx +
β2

2(1− β)
.

From the analysis above, if ‖X−1dx‖ ≤ β < 1, then x+ = x + dx > 0, and

φ(x+)− φ(x) ≤ (
ρ

p(x)
∇p(x)T X − eT )X−1dx +

β2

2(1− β)
.
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Let d′ = X−1dx. Then, to achieve a potential reduction, one can minimize an affine-scaled linear function
subject to a ball constraint as it is done for linear programming (see Chapter 1 and 4 in [27] for more details):

Z(d′) := Minimize
(

ρ
p(x)∇p(x)T X − eT

)
d′

Subject to AXd′ = 0
‖d′‖2 ≤ β2.

(17)

This is simply a linear projection problem. The minimal value is Z(d′) = −β · ‖g(x)‖ and the optimal
direction is given by d′ = β

‖g(x)‖g(x). Here

g(x) = −(I −XAT (AX2AT )−1AX)(
ρ

p(x)
X∇p(x)− e)

= e− ρ

p(x)
X(∇p(x)−AT y),

where y = (AX2AT )−1AX(Xp − p(x)
ρ e).

If ‖g(x)‖ ≥ 1, then the minimal objective value of the subproblem is less than −β so that

φ(x+)− φ(x) < −β +
β2

2(1− β)
.

Thus, the potential value is reduced by a constant if we set β = 1/2. If this case would hold for O((ρ −
n/p) log 1

ε ) iterations, we would have produced an ε-global minimizer of (1).

On the other hand, if ‖g(x)‖ ≤ 1, from g(x) = e− ρ
p(x)X(∇p(x)−AT y), we must have

ρ

p(x)
X(∇p(x)−AT y) ≥ 0,

ρ

p(x)
X(∇p(x)−AT y) ≤ 2e, ∀j.

In other words,
(
∇p(x)−AT y

)
j
≥ 0,

xj

p(x)

(
∇p(x)−AT y

)
j
≤ 2

ρ
, ∀j.

The first condition indicates that the Lagrange multiplier y is feasible. For the second inequality, by
choosing ρ ≥ 2n

ε we have 1
p(x)x

T (∇p(x)−AT y) ≤ ε. Therefore,

xT (∇p(x)−AT y)

z̄ − z
≤ xT (∇p(x)−AT y)

p(x)
≤ ε,

which implies that x is an ε-KKT point of (1); see (7).

Concluding the analysis above, we have the following lemma.

Lemma 1 The interior-point algorithm returns an ε-KKT or ε-global solution of (1) in no more than
O(n

ε log 1
ε ) iterations.

A more careful computation will make the complementarity point satisfy the second order necessary con-
dition; see [26]. By combining these observations with Theorem 4, we immediately conclude the convergence
of our interior-point algorithm.

Corollary 1 The potential reduction algorithm that starts from the (approximate) analytic center of the
polytope and generates a sequence of interior points converging to a local minimizer is an FPTAS to compute
an approximate local minimizer for the Lp minimization problem.

To conclude, some interior-point algorithms, including the simple affine-scaling algorithm that always
goes along a descent direction, can be effective (with fully polynomial time) in tackling the Lp minimization
problem as well.
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Fig. 1 Successful sparse recovery rates of Lp and L1 solutions, with matrix A constructed from (a) a binary matrix; (b) a
Gaussian random matrix; and (c) a Bernoulli random matrix.

5 Computational Experiments of the Potential Reduction Algorithm

In this section, we compute a solution of (1) using the interior-point algorithm above and compare it with
the solution of the L1 problem, i.e., the solution of (1) with p = 1, which is also computed by an interior-
point algorithm for linear programming. Our preliminary results reinforce our reasoning that interior-point
algorithms likely avoid some local minimizers on the boundary and recover the sparse solution. A more
extensive computation is in working process.

We construct 1000 random pairs (A, x) with matrices A size of 30 by 120 and vectors x ∈ R120 for
sparsity ‖x‖0 = s with s = 1, 2, · · · , 20. With the basis matrix given, the vector b = Ax is known. We
use several basis design matrices A to test our algorithms. In particular, let A = [M,−M ] where M is
one of the following matrices: (1) Sparse binary random matrices where there are only a small number of
ones in each column; (2) Gaussian random matrices whose entries are i.i.d. Gaussian random variables; (3)
Bernoulli random matrices whose entries are i.i.d. Bernouli random variables. We note that Gaussian or
Bernoulli random matrices satisfy the restricted isometry property [7,8], i.e., columns of the basis matrix
are nearly orthogonal, while sparse binary random matrices only satisfy a weaker form of that property [1].
Because two copies of the same random matrices are concatenated in A, column orthogonality will not be
maintained, which suggests that sparse recovery by the L1 problem will fail. We solve (1) with p = 1/2
by the interior-point algorithm developed above and compare the successful sparse recovery rate with the
solutions of the L1 problem. A solution is considered to successfully recovering x if the L2 distance between
the solution and x is less than 10−3.

The phase transitions of successful sparse recovery rates for Lp and L1 problem for three cases of
basis matrices are plotted in figure 5. We observe that the L0.5 interior-point algorithm performs better in
successfully identifying the sparse solution x than the L1 algorithm does. Moreover, we note that when the
basis matrices are binary, we have comparatively lower rates of successful sparse recovery (when sparsity
s = 4, for example, successful recovery rate for Lp solutions is about 95% for binary random matrices,
compared with almost 100% for Gaussian or Bernoulli random matrices; for L1 solutions it is about 80%
for binary random matrices compared with about 90% for Gaussian or Bernoulli random matrices). This
may be supported by the fact that sparse binary random matrices have even worse column orthogonality
than Gaussian or Bernoulli cases. Our simulation results also show that the interior-point algorithm for the
Lp problem with 0 < p < 1 runs as fast as the interior-point method for the L1 problem, which makes the
interior-point method competitive for large scale sparse recovery problems.

As a final remark, we aim to compare the solution sparsity between the Lp and the L1 minimization
models but not the algorithms. Thus, the L1 minimizer we used in our experiments is independent of the
specific choice of computational techniques. We note that many classes of computational techniques have
arisen in recent years for solving sparse approximation problems; see [22] for a state-of-the-art survey. Some
of those methods such as the Orthogonal Matching Pursuit [14,21], iterative thresholding [4], etc, can be
shown to be able to approximately find the L1 minimizer under good RIP conditions on the basis matrix A.
In our case, when the basis matrix A does not have a good RIP property, these computational techniques
have frequently failed. For example, the orthogonal matching pursuit algorithm exhibited difficulties in
identifying which bases maximize the absolute value of the correlation with the residual due to the fact that
there are two copies of the same basis that only differ in signs; the iterative thresholding approach could
not converge to a sparse solution with our basis matrix. However, when A has a good RIP property, we see
no significant recovering difference among all these methods.
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