
Solving Min-Max Multi-Depot Vehicle Routing Problem∗

John Carlsson†; Dongdong Ge‡; Arjun Subramaniam§;
Amy Wu¶; and Yinyu Ye‖

October 24, 2006

Abstract

The Multi-Depot Vehicle Routing Problem (MDVRP) is a generalization of the Single-Depot
Vehicle Routing Problem (SDVRP) in which vehicle(s) start from multiple depots and return to
their depots of origin at the end of their assigned tours. The traditional objective in MDVRP is
to minimize the total length of all the tours, and existing literature handles this problem with a
variety of assumptions and constraints. In this paper, we explore the notion of minimizing the
maximal length of a tour in MDVRP (�min-max MDVRP�). We also introduce a heuristic method
based on region partitioning, which is potentially useful for general network applications. A
comparison of the computational implementations for three heuristics is included. Although this
model is advantageous for real-world applications, no prior exploration into min-max MDVRP
has been published to the best of our knowledge.

Keywords: vehicle routing problem, regionpartition, heuristic.

1 Introduction

The Vehicle Routing Problem (VRP) has been one of the central topics in optimization since Dantzig
proposed the problem in 1959 [10]. A simple general model of VRP can be described as follows: a
set of service vehicles need to visit all customers in a geographical region with the minimum cost.
In the Single-Depot Vehicle Routing Problem (SDVRP), multiple vehicles leave from a single lo-
cation (a �depot�) and must return to that location after completing their assigned tours. The
Multi-Depot Vehicle Routing Problem (MDVRP) is a generalization of SDVRP in which multiple
vehicles start from multiple depots and return to their original depots at the end of their assigned
tours. The traditional objective in MDVRP is to minimize the total length of all the tours, and

∗This research is supported in part by the Boeing Company.
†Institute of Computational and Mathematical Engineering.
‡Department of Management Science and Engineering.
§Department of Management Science and Engineering.
¶Department of Computer Science.
‖Department of Management Science and Engineering and, by courtesy, Electrical Engineering, E�mail:

yinyu-ye@stanford.edu; Stanford University, Stanford, CA 94305, USA.

1

existing literature handles this problem with a variety of assumptions and constraints. Common
techniques include integer programming and clustering followed by routing with tabular search im-
provement. The paper [5] by Baltz et al. presented a probabilistic analysis of the optimal solution
for the problem. Another paper [21] proposed a polynomial-time approximation scheme (PTAS)
similar to Arora's PTAS algorithm for TSP.
In our paper, we explore the notion of minimizing the maximal length of a tour in a MDVRP
(�min-max MDVRP�) using both theoretical analysis and implementation. No prior exploration
into min-max MDVRP has been published to the best of our knowledge, but this formulation is
advantageous for a number of applications. Consider a network model in which depots represent
servers and customers represent clients. A network routing topology generated by solving min-
max MDVRP results in a set of daisy-chain network con�gurations that minimizes the maximum
latency between a server and client. This can be advantageous in situations in which the server-client
connection cost is high but the client-client connection cost is low.
The formulation of min-max MDVRP is as follows, with the assumption that all points are randomly
and uniformly distributed in a square:

minimize λ

subject to TSP (Si) ≤ λ, ∀i
∪Si = N ,

where N is the set of all customers, Si ⊂ N is the subset of customers assigned to vehicle i, and
TSP (S) is the minimal TSP tour-length to visit all customers in set S.
Our implementation results demonstrate the e�ciency of the heuristic methods developed in this
paper, as they reduce MDVRP to a sequence of smaller-scale TSP problems in polynomial time. In
addition, the tour length sums that our methods generate are highly comparable to the minimized
total lengths produced by traditional approaches, and our methods are also capable of quickly
processing tens of thousands of customers, a scalability property which is becoming increasingly
important as networks expand in size.
This paper is organized as follows: �rst, we give a theoretical analysis for the optimal solution of
min-max MDVRP by developing lower and upper bounds. Then, by analyzing a region partition
algorithm, we show that the optimal solution to MDVRP is asymptotically close to the optimal TSP
tour of all customers divided by the number of depots constrained by a large customer-to-depot
ratio.
Next, by making use of the fact that a convex equitable region partition yields an even division
of points (i.e. if we divide the service region into a set of subregions with equal area, then each
subregion will contain � asymptotically � the same number of points), we propose a fast approxi-
mation algorithm to generate good initial solutions for min-max MDVRP. It can then be improved
with common local improvement procedures. Moreover, this region partition method for which we
demonstrate both theory and implementation is potentially useful in many network design problems
with regular topology structures, such as the Steiner tree and the minimum spanning tree problems.

2

We also implement a second approach to min-max MDVRP. By starting from a simple linear
programming-based algorithm, we rapidly assign customers to depots. Then we generate TSP
routes for each depot. By improving certain global parameters, the algorithm can e�ciently generate
feasible routes. In the performance analysis section, we compare the performances of these two
algorithms and a routine heuristic. Finally, we summarize our results and provide a discussion of
their signi�cance.

2 Theoretical Analysis

2.1 Analysis of Optimal Solutions

Since MDVRPs are NP-hard, a great amount of e�orts have been made to design heuristics while
exploring the theoretical bounds is intriguing, too. The paper by Baltz et al. proved the sum of
tour lengths asymptotically approaches αkn

d−1
d asymptotically with the uniform distribution, and αk

depends on the number of depots. In this section, we provide a lower and upper bound for min-max
MDVRP in a planar graph, and prove its asymptotic convergence for a broad class as the problem
size expands. Before starting the work, we will review known results for the probabilistic TSP. The
most celebrated discovery is the BHH theorem (1959) by Beardwood, Halton and Hammersley.

Theorem 1. Suppose Xi's, i ≥ 1, are independent and identically distributed random points uni-
formly distributed in a unit cube [0, 1]d, d ≥ 2. Then with probability one, the length TSP (X1, X2, · · ·Xn)

of an optimal TSP tour traversing all points has the following property:

lim
n→∞ TSP (X1, X2, · · · , Xn)/n

d−1
d = α(d),

where α(d) is a positive constant depending on d.

Considering that we are only interested in planar graphs, in our discussion we de�ne α ≡ α(2).
Denote the set of depots by D = (D1, D2, · · · , Dm), |D| = m. Denote the set of vehicles by
V = (V1, V2, · · · , Vk), |V| = k ≥ m. Denote the set of nodes by N = (N1, N2, · · · , Nn), |N | = n.
Denote the optimal TSP tour for a set S of points by TSP (S). Denote the optimal value of
min-max MDVRP by L, i.e., L is the length of the longest tour. Denote the largest distance
between an arbitrary pair of points in two di�erent sets A and B by Lm(A,B), i.e., Lm(A,B) =

maxx∈A,y∈B ||x− y||. Then we have the following theorem:

Theorem 2. For a general planar graph (points do not necessarily follow any distribution):

TSP (D ∪N)− TSP (D)
k

≤ L ≤ TSP (N)
k

+ 2 ∗ Lm(D,N)

.

Proof. First we prove the lower bound holds.

3

Consider an optimal pattern of min-max MDVRP. Assume in this pattern the total length of all
the tours is Sopt. Noticing that L is the longest tour, we have

k ∗ L ≥ Sopt.

Add one optimal TSP tour T for all the depots in the graph. Now each point(node or depot) in the
graph has an even degree, which implies an Euler tour. This Euler tour can be reduced to a feasible
TSP tour for the set of all the depots and nodes. Thus:

Sopt + TSP ((D)) ≥ TSP (D ∪N)

.
Therefore:

L ≥ TSP (D ∪N)− TSP (D)
k

.
For the upper bound, consider a tour partition heuristic:

1. Generate an optimal TSP tour for nodes.

2. Partition this tour into k equal subtours. Assume they are t1, t2, · · · , tk.

3. For each ti, connect both the starting and ending node to vehicle Vi.

This generates a feasible solution for the MDVRP. The maximal tour-length, which is an upper
bound of L, is at most

TSP (N)
k

+ 2 ∗ Lm(D,N).

For the lower bound, the inequality holds even we change L to the average length of all the tours.
So this lower bound is not very strong. However, in the underlying corollary, this estimation is still
able to provide us with the possibility to predict the behavior of an optimal solution. Assuming
nodes and depots are uniformly (randomly) distributed in a unit square, we can derive the following
corollaries when the data size becomes large.

Corollary 3. (a) When k = o(
√

n),

lim
n→∞

L√
n/k

= α.

(b) For non-�xed MDVRP, i.e., a vehicle can return to an arbitrary depot instead of its originated
depot, if n = Ω(k log

3
2 k) and k = Θ(m),

lim
n→∞

L√
n/k

= α.

4

Proof. (a) We only consider the case m = Ω(1) (the case m = O(1) is trivial). In this case, when
n,m are su�ciently large, for arbitrarily small ε,

α((1− ε)
√

m + n− (1 + ε)
√

m)
k

≤ L ≤ α(1 + ε)
√

n

k
+ 2Lm(D,N) + ε.

Noticing that m ≤ k and k = o(
√

n), we know TSP (D)/TSP (D ∪N) goes to zero as n goes to 0.
On the other side, Lm(D,N) is bounded by a constant while √n/k goes to in�nity.
(b) Using the inequality above, similarly, for the left side, TSP (D)/TSP (D ∪ N) approaches zero
as n goes to 0.
For the right side. instead of Lm(D,N), we consider the min-max perfect matching problem for
depots and both endpoints of subtours in the tour partition heuristic.
The min-max perfect matching for uniformly distributed points has the bound provided by Leighton
and Shor in 1989 [16]: Xi's and Yi's are independent and uniformly distributed points on a unit
square for 1 ≤ i ≤ r, then there exists a constant C, such that:

min
σ∈P

max
i
||Xi − Yσ(i)|| ≤ Cr−

1
2 (log r)

3
4

with high probability, where P is the set of all permutations of {1, 2, · · · , r}.
First apply this theorem to depots and all starting points of subtours. Then apply it again to depots
and all ending points of subtours. We get L ≤ α(1+ε)

√
n

k + C ∗ k−
1
2 (log k)

3
4 . With n = Ω(k log

3
2 k),

the desired inequality can be derived.

2.2 Bounds by a Region Partition Heuristic

From the discussion above, we conclude that the optimal solution to min-max MDVRP with uniform
distributed points will numerically approach α

√
n/k, the optimal TSP tour-length of nodes divided

by the number of vehicles, under the constraint k = o(
√

n). This matches the natural intuition,
although the constraint is restrictive. We would like to relax this constraint to a broader class and
derive some nontrivial bounds by analyzing local performance in large size problems. In this section
we will present a region partition heuristic with theoretically good performances. We also make an
estimation on upper bounds for all cases k = Ω(

√
n) by a grid region partition.

Before presenting the algorithm, we need several lemmas to review some facts:

Theorem 4. (Convex Region Partition Theorem) Given k points in a convex bounded planar poly-
gon, it is always possible to �nd a partition of the domain into k equal-area convex polygons, with
exactly one point in each face.

This convex region partition theorem was proved in [6] for both continuous and discrete versions
and an algorithm for discrete version was also given. However, an algorithm for continuous version,
i.e., a convex region partition in the theorem, has not been found until Carlsson and Armbruster

5

proposed it now [4]. In this paper, we propose a 3/2-approximation algorithm with time complexity
O(m2 log m), where m is the sum of the number of depots and sides of the polygon.
We will present the algorithm in next section. For the time being, we assume an equitable partition
exists and develop a theoretical rationale for the desirability of such a partition.

Lemma 5. (Occupancy Lemma) [19] Randomly throw n balls into m bins randomly with equal
probability. If n = Ω(m log2 m), then the number of balls in the bin holding the most balls has an
asymptotic performance as n

m .

Proof. This fact can be proved by the Cherno� inequality. We will give a sketch of the proof here.
For any 0 < x < 1, the inequality x − (1 + x) ln(1 + x) ≤ −x2

2 + x3

3 holds by checking Taylor
expansion, which is equivalent to

ex

(1 + x)1+x
≤ e−

x2

2
+x3

3 .

Assume n = m log2 m. Consider one arbitrary bin, de�ne xi is 1 if the ith ball falls into this bin,
and 0 otherwise. Let Si = x1 + x2 + · + xi. Note that the expected number of balls falling into a
bin is log2 m, from Cherno� inequality, we know

P = Pr(Sn ≥ (1 + δ) log2 m) ≤ [
eδ

(1 + δ)1+δ
]log m.

Let δ =
√

2
log m ; we may ignore the item of δ3 when m is large, without hurting our argument, as

we can use a small perturbation on the constant of the item of δ2 instead. Applying the inequality
above to Cherno� inequality, we �nd that P ≤ 1

m2 .
Therefore, the probability that one bin has at least (1+

√
2

log m) log2 m balls is at most mP ≤ 1
m .

Simple scaling arguments show that BHH theorem still holds even if the unit cube is replaced by
an arbitrary compact subset K in Rd. This fact suggests that the limit is independent of the shape
of the compact set K.

Lemma 6. [23](generalized BHH theorem) In particular if Xi, i ≥ 1, are i.i.d with uniform distri-
bution on a compact set K of Lebesgue measure one, then the limit in BBH theorem holds and is
still α(d) almost surely.

Now let's consider a simple region partition algorithm for min-max MDPVRP in the case k = m.

Algorithm 1 A region partition algorithm for min-max MDVRP.
1. Divide the region into k equitable convex polygons such that each polygon have exactly one

vehicle inside.

2. Find an optimal TSP tour for each vehicle and the nodes in the same subregion.

With the �xed number of depots, similar to the discussion in last section, we have

6

Figure 1: The perturbation method, and its subsequent e�ects on assignment and routes generation.
Here the routes are suggested by arrows emanating from each depot node.

Lemma 7. If k=O(1),
lim

k→∞
L√
n/k

= α.

Proof. Assume the region with the most nodes has Nmax = n/k + t nodes. From the Occupancy
lemma, we know with high probability, limk→∞ t

n/k = 0. Therefore, from the generalized BHH
theorem, we know:

L ≤ α(1 + o(1))
√

Nmax

√
1
k
≤ α(1 + o(1))

√
(1 + o(1))

n

k

√
1
k
≤ α(1 + o(1))

√
n

k
.

On the same hand, since the region with the most nodes has at least n/k nodes. Hence,

lim
k→∞

L√
n/k

= α

.

The lemma actually claims that the length of the longest tour generated by this algorithm is asymp-
totically close to a lower bound when the size of the problem expands, which means this algorithm
performs asymptotically optimally. As generated graphs in the implementation of our next algo-
rithm, the LP-TSP algorithm, show, the LP-based approach often produces a good area subdivision.
That algorithm also reveals the motivation of the region partition algorithm.
If we have more vehicles than depots available (k > m), we can use the same perturbing idea as
in the latter LP-based algorithm to generate their routes. By a procedure similar to the LP-based
algorithm, if there are two or more vehicles on the same depot, we only need to slightly relocate
vehicles evenly distributed on a small circle centering that depot (�gure 1).
For a su�ciently small perturbation the algorithm remains feasible and the optimal value won't
change greatly.
If the gap between n and m is smaller, for example, n = O(m log m), it is harder to predict the
optimal solution. Motivated by Occupancy Lemma, we still can derive a good upper bound. The
following theorem discusses an extreme case:

7

Theorem 8. Assume k = m, i.e., all vehicles are i.i.d. in the cube; if the number of vehicles is
proportional to the number of nodes, i.e., k = λn, then with high probability, as k →∞,

L ≤ (
α

λ
+ 2

√
2 log n)

1√
n

.

Proof. We divide the unit square into n/ log2 n smaller squares each of which has the side length
log n/

√
n. Then from the Occupancy lemma, we know, with high probability, any small square

has at most log2 n + O(log n) nodes and at least λ(log2 n− O(log n)) vehicles. Assume the square
having the most nodes is R. Then by tour partition heuristic we used before, we know L is at most
the length of the TSP tour of nodes in R divided by the number plus the maximal distance from
starting and ending point to one depot in R. By the generalized BHH theorem, we have

L ≤
α
√

log2 n + o(log n)

λ(log2 n + o(log n))
log n√

n
+ 2

√
2
log n√

n
≈ (

α

λ
+ 2

√
2 log n)

1√
n

.

.

Therefore, by the generalized BHH theorem, we can see in the case m = λn, the m = λn is the
extreme case m reaches the largest value it can have. For the rest case, one can follow the procedure
to get an upper bound similarly.
We already have an asymptotic estimation for the case k = o(

√
n), and applying the similar argu-

ment to the preceding theorem we have the following result for the case when k = Ω(
√

n):

Corollary 9. Assume all vehicles are uniformly distributed in the cube and k = Ω(
√

n), then with
high probability, as k →∞,

L ≤ α
√

n

k
+ 2

√
2
log k√

k
.

Many network structures, like minimum spanning trees and Voronoi graphs, have similar conclusions
to that of the travelling salesman tour, i.e. their lengths converge asymptotically in a manner
similar to the BBH theorem. Region subdivision is therefore a potentially powerful tool not only
in vehicle routing but also in many network applications. It is worth extra e�ort to investigate
how to implement subdivision quickly. Paper [6] gave the proof for the existence of a convex
region subdivision and an algorithm with runtime O(N

4
3 log N) for the discrete version in which the

dividing subjects are red and blue points. Noticing that an area can be approximated within any ε

factor by taking enough sampling points, we can implement their algorithm to get a near optimal
convex subdivision. We have also been looking for a quick method to realize it. The current result
is that we can realize a ham sandwich cut for two arbitrary polygons(discrete or continuous) in
O(n log n) time, which motivates us to �nd a 3

2 -approximation algorithm in O(mn log m) time, m

is the sum of the number of nodes and sides of the initial polygon.

8

Figure 2: A mixed ham-sandwich cut.

3 Convex Region Partition

As our �rst heuristic, we describe an algorithm that takes as input a convex planar region C and a
set of n points X = x1, . . . , xn, and outputs a partition of C into n convex subregions C1, . . . , Cn,
satisfying the property that

maxi (AreaCi)
mini (AreaCi)

≤ 3/2

Note that if we have an optimal solution to the problem, then all of the Ci have equal area, so we
have

maxi (AreaCi)
mini (AreaCi)

= 1

so that we can treat maxi (AreaCi) /mini (AreaCi) as an objective function which is obviously
bounded below by 1. We make a weak assumption that the points X lie in general position, i.e.
that no three points are collinear.

3.0.1 Ham-Sandwich Cuts

A well-known geometric result is the ham-sandwich theorem, which says that any two regions in the
plane can be simultaneously broken into two regions of equal area by a single line. In particular, a
region C and a set of points P of even cardinality can be simultaneously bisected by a single line.
[3] gives an algorithm for �nding such a line(see �gure 2).
If the number of points n satis�es n = 2k, k ∈ Z, then we can �nd a partition of C into n regions of
equal area each containing a single point by recursively taking mixed ham-sandwich cuts, as shown
in �gure 3. For general n, it is not hard to show that taking recursive ham-sandwich cuts (rounded
to the nearest even number) gives a 2-approximation to a convex region partition.

9

Figure 3: Recursive ham-sandwich cuts for the case n = 16.

A

q r

p B

q r

p

C

q r

p

X
q r

p

Yq r

p
Z

q r

p

Figure 4: Setup for solving the n = 3 instance of CPP.

3.0.2 Extensions

We can improve our approximation ratio by explicitly �nding a convex region partition for the case
n = 3. We can obtain a 3/2-approximation to CPP if we can explicitly �nd a solution for the case
n = 3 by performing recursive ham-sandwich cuts and solving the case n = 3 if it is needed. In this
section we discuss the solution.
Given a polygon with area A = 1 containing three points p, q, and r, consider the subregions
A,B, C, X, Y, Z shown in �gure 4. Assuming none of the subregions has area exactly equal to 1/3

or 2/3, one of the following must be true:

1. All regions A,B,C, X, Y, Z have area less than 1/3.

2. There exist two overlapping regions, one of which has area less than 1/3 and one of which has
area greater than 1/3.

3. All regions A,B,C, X, Y, Z have area between 1/3 and 2/3.

10

q

p

rR

v

w

w’

v’

Figure 5: Case 1. After sorting the vertices lying between `q and `pr (indicated with bubbles in the
diagram) we �nd that the line for which the area of R is 1/3 lies between vertices v and w. We
form the quadrilateral

{
v, w, v

′
, w

′
}

and solve analytically.

If the vertices of C are sorted in clockwise order, then we can clearly determine which of the above
cases holds for a given instance in O (k) time, where k is the number of vertices of C. We consider
each case separately below. Note that in cases 1 and 2, it su�ces to �nd a single sub-region with
area 1/3 that contains one of the three points.

Case 1 By assumption, A and X have area less than 1/3. Let `q denote the line parallel to `pr,
i.e. the line de�ning region X. There must exist a line `∗ lying between `q and `pr (parallel to
both of them) that de�nes a subregion R with area exactly equal to 1/3. In order to determine this
line analytically, let V denote the set of vertices of the polygon lying between `q and `pr. We can
sort the elements of V based on their distance to line `q. After performing a binary search we can
conclude that `∗ must lie between two particular points v and w, on the boundary of the polygon,
that share an edge (which may be vertices of the polygon). We can therefore reduce the problem
to that of cutting o� a portion of a quadrilateral

{
v, w, v

′
, w

′
}
with a line of �xed slope, which can

be accomplished in constant time.
This case is illustrated in �gure 5.

Case 2 Without loss of generality, assume that A and B are the overlapping regions in question,
with AreaA < 1/3 and AreaB > 1/3. Let V denote the (sorted) set of all vertices lying in A or

11

R

p

q

r

v’

w’

w

v

Figure 6: Case 2. After sorting the vertices lying in regions A or B (indicated with bubbles in the
diagram) we �nd that the line for which the area of R is 1/3 must intersect the boundary of the
polygon somewhere between vertices v and w. We form the hourglass shape

{
v, w, p, v

′
, w

′
}

and
solve analytically.

B. By the intermediate value theorem there must exist a line `∗ through point p that de�nes a
subregion R with area exactly equal to 1/3. We will determine this region analytically by performing
a binary search on the vertices v ∈ V . After the search we can conclude that `∗ must intersect the
polygon somewhere between two points v and w, on the boundary of the polygon, that share an
edge (which may be vertices of the polygon) . We can therefore reduce the problem to that of
cutting o� a �xed portion of an hourglass shape

{
v, w, p, v

′
, w

′
}
with a line through point p, which

can be accomplished in constant time.
This case is illustrated in �gure 6.

Case 3 Without loss of generality, assume that we can project point p orthogonally onto side qr

(if this is not possible we merely change the labels of the vertices). Let point m be the bisector of
side qr.
We �rst desire a sector R based at m containing p with area 1/3 for which line `qr is a supporting
hyperplane, as shown in �gure 7. By assumption, such a sector must exist, because AreaZ > 1/3.
We can �nd such a sector using algorithm 2.
Let w

′ be the point other than w at which line `mw intersects the boundary of the polygon. Note
that by our choice of m, line `mw must have q and r on opposite sides. Let S be the sub-region
de�ned by `mw that contains r. If AreaS > 1/3, then by the original assumption we can perform a
binary search to obtain a (unique) sector based at m, one of whose sides is segment mw, containing
r with area 1/3. If AreaS < 1/3, then we essentially have to solve Case 2: by the intermediate

12

p

q rm

R

Figure 7: Case 3. By assumption, since 1/3 < AreaZ < 2/3, sector such as R exists.

Algorithm 2 Finding a sector based at m containing p with area 1/3
1. Let s be the point where line `mp intersects the boundary of the polygon. Let x and y be the

points at which `pq intersects the boundary of the polygon. Let t and u be the two vertices
that share an edge with s that lie on the same side of `pq as s (it may be that t = x or that
u = y).

2. Compute the area Amtu of triangle 4mtu. If Amtu > 1/3, determine (non-unique) v and
w lying on line segment tu analytically so that Amvw = 1/3 and p ∈ 4mtu and terminate,
setting R = 4mtu . Otherwise, go to step 3.

3. Using the fact that Amtu < 1/3 and that AreaZ > 1/3, perform a binary search to determine
(non-unique) v and w that de�ne a sector R containing p with area 1/3 and terminate.

13

Algorithm 3 A 3/2-approximation to CPP.
1. If n = 1 (i.e. only one point), assign x1 to C and terminate. If n = 3, solve the problem

explicitly using the case-by-case analysis and terminate.

2. Let ` be a mixed ham-sandwich cut that breaks C in half and evenly divides the points xi (if
n is odd, ignore one point chosen at random). Let X1 be the set of points assigned to C1 and
X2 the set of points assigned to C2.

3. Apply steps 1 and 2 recursively to C1, X1 and C2, X2.

value theorem there exists a line going through point m that de�nes a region containing r with area
exactly equal to 1/3.
The complete regional subdivision algorithm is described in algorithm 3. Noting that each case
above can be solved in running time O (k log k), where k is the number of vertices of the polygon,
because the most expensive operation needed is a binary search whose objective function is the area
of some sub-region of the polygon. Since we can compute a mixed ham-sandwich cut in O (m log m),
where m = n+k, and since we can introduce no more than one additional vertex to each sub-region
at each step of the subdivision algorithm, we can conclude that the running time of algorithm 3 is
O (mn log m).

4 A Min-Max MDVRP Heuristic

In this section we present a two-stage LP-based heuristic, which uses global adjustment during post-
re�nement periods. Initially, we assign each node to exactly one depot; next, we simultaneously �nd
TSP tours based on the assignment and minimize the maximal length of any single tour (makespan).
We assume all points are uniformly distributed on a square and the locations of depots are randomly
distributed. A depot is allowed to have more than one vehicle. Each vehicle must return to the
depot from which it originates.
Although many algorithms have been applied to solve SDVRP, few have focused on MDVRP. We
are unaware of any existing speci�c heuristic or theoretical results for min-max MDVRP, especially
in the large-size case. For general literature, one main idea is a 2-stage heuristic by Wren and
Holliday [22]: construct an initial solution, then apply a number of local improvements. The initial
solutions to these algorithms are constructed quite naively: nodes are often assigned to their closest
depots at the �rst stage. Gillet and Johnson [12] proposed a clustering heuristic which used sweep
heuristic at each depot. Golden et al. [14] presented two heuristics for MDVRP; the second heuristic
is to speci�cally solve the large-size problem by a 2-stage algorithm which assigns nodes to depots
�rst and then built TSP tours for each vehicle. Chao et al. proposed a simple initialization heuristic
followed by a re�nement, which gained the best performance in many benchmark problems [8]. In

14

2002, Giosa et al. proposed a series of 2-stage heuristics to solve MDVRPTW [13]. Recently,
Andrew Lim and Fan Wang [17] gave a one-stage approach to MDVRP with the constraint each
depot only has �xed number of vehicles.
Our heuristic is based on load balancing : the load for each vehicle must be almost balanced in
an optimal plan, so each vehicle is assigned the same working load, such as the number of nodes
to serve. This natural guess is plausible considering that the distribution of nodes in our model is
uniform. We carefully balance the number of nodes assigned to each depot by linear programming at
the �rst step, then generate a near-optimal route for each vehicle by using the Concorde TSP solver
[9]. The solution is also further improved by global adjustment of the number of nodes assigned to
depots, rather than traditional local procedures to improve local tours.
The terms and heuristic are described as follows:
First assume each depot has exactly one vehicle, and no two depots share a location (this assumption
will be generalized later). Suppose each node Xj , 1 ≤ j ≤ n, is located at (xj , yj), and each vehicle
Vi, 1 ≤ i ≤ k, is located at (vi, wi). The distance cij between Xj and Vi is ||(xj , yj)− (vi, wi)||.
De�ne xij to be a binary variable indicating if node Xj is assigned to vehicle Vi or not. We build
the underlying linear program:

(LP) : maximize
∑

1≤i≤k,1≤j≤n

cijxij

subject to
∑

1≤j≤n

xij =
n

k
, ∀i,

∑

1≤i≤k

xij = 1, ∀j,

xij ≥ 0, ∀i, j,

where, without loss of generality, we assume that n/k is an integer.
A sketch of the heuristic is as follows:

Algorithm 4 A Load balancing algorithm for min-max VRP.
1. Build a linear program as above and solve it.

2. Build a TSP tour for each vehicle by the Concorde solver. Assume that their length is sorted
in a descending order {`1, · · · , `k}.

3. If we have (`1− `k)/`k ≤ r, with r a small constant, or if we have run the integer program too
many times, we stop and output a current best solution. Otherwise, we decrease the number
of nodes assigned to vehicles having longer tours and increase the number of nodes assigned
to vehicles having shorter tours (we will explain details later). This way, we generate a new
revised LP. Return to step 1 and re-run the algorithm.

15

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

(a)
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

(b)
0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100

(c)

Figure 8: The initial input to the algorithm (a), the assignment (b), and the �nal construction of
TSP tours (c).

A sketch of the algorithm in one loop is shown in �gure 8.
There are several details we need to explain in our algorithm.
Note 1: At step 1, the LP program is a typical network �ow model, so that any vertex solution to
the program will be integral when the number of nodes on the right-hand-side are integers.
Note 2: r in step 3 is a ratio threshold to measure the output, which can be adjusted according to
the need to control accuracy. In most cases, setting r = 25% is enough to achieve a satisfactory
result.
Note 3: In step 3, if (`1 − `K)/`K ≤ r, we adjust the number of nodes assigned to each depot by
the following procedure:

• Build the sets L+ = {i : Li − L̄ > 0}, L− = {i : Li − L̄ < 0}, where L̄ is the average of tour
length.

• Consider the set that has fewer elements. Without loss of generality, assume it is L+, and
s = |L+|, then for any i ∈ L+, de�ne the relative drift d+

i = Li−L̄
L̄

. Decrease the number
of nodes assigned to depot i by [c ∗ di

r](c is a positive constant). Sort elements in L− in the
descending order of their tour lengths. Then de�ne d−i = L̄−Li

L̄
for the �rst s elements in L−.

Increase the number of nodes in the same way.

• If the number of nodes removed from L+ is more than the number of nodes added to L−, add
one node to each element in L− sequentially starting from the depot which has the fewest
nodes, keep doing that until nodes are balanced. Do the same procedure for the case the
number of nodes removed from L+ is less than the number of nodes added to L−.

Note 4: The parameters r, c are empirically decided. We set c = 2 here. The numerical values we
choose to use here are based on implementation results.

16

5 Performance and Analysis

There are no speci�c benchmark problems for min-max MDVRP in available literature. Most
available MDVRP benchmarks have time window constraints, and their sizes are generally small,
varying between 50 ∼ 1000(see [20]). Thus, we generated 12 MDVRP instances ourselves, and
the results are reported in this section. These instances vary in size with respect to the number
of depots (2 to 32) and to the number of nodes (100 to 2048), and the depot and node locations
were randomly generated. Note that the data presented represent the average values obtained
from repeating each experiment �ve times. Tests were conducted on a Pentium 4 1.8GHz/512 MB
notebook. The implementation was done in Matlab and makes use of the COPL LP Solver and the
Concorde TSP solver [9].
We �rst compare the performance of three heuristics after one iteration in Table 1 and 2: the LP-
TSP approach, region partitioning and a traditional approach. The algorithm for the traditional
approach can be speci�ed as follows:

Algorithm 5 A nearest neighbor clustering and routing algorithm.
1. Assign each point to a single depot by the nearest neighbor method.

2. Find a TSP route for each cluster; get an initial solution for the problem.

3. Run the local improvement method to improve the solution.

We have also implemented a modi�ed version of a local improvement procedure proposed by Chao,
Golden and Wasil [8] called "1-point movement". In Table 3 and 4, we compare the performances
of three heuristics. The �rst heuristic uses a LP based load balancing technique to distribute the
load evenly amongst vehicles. The second heuristic starts with the same initial assignment as
our heuristic and improves the solution using the modi�ed 1-point movement method. The third
heuristic starts from the nearest neighbor assignment and uses the modi�ed 1-point movement
improvement method.
The running time for the LP-TSP approach is primarily comprised of the execution time of the
LP and TSP solvers. We use sparse matrices with the LP solver, which makes the execution much
faster. For small to medium sized benchmarks, the main bottleneck is �nding a near optimal TSP
tour for each depot using the Concorde solver. As the number of vehicles for a given set of nodes
increases, the running time for Concorde decreases, as there are fewer average number of nodes per
TSP tour. For a smaller number of depots, this decrease surpasses the increase in time caused by
the new, larger LP.
We can make several observations from the above tables. First, we can observe from Table 1 and
2 that both LP-TSP and region partition algorithms perform better than the traditional nearest
neighbor approach. They are thus e�cient and e�ective candidates for the initial solution.
Second, the LP-TSP with load balancing algorithm for large data sets generates the best solutions

17

Table 1: Summary of First Iteration Solutions for Three Heuristics
LP-TSP

Depots Nodes Max Min Mean Time
d2n100 2 100 464.1665 402.0456 433.1061 2.5545
d2n500 2 500 871.4619 842.9678 857.2148 22.961
d4n100 4 100 284.2732 205.7488 238.2282 1.9062
d4n500 4 500 460.8977 418.7652 439.5123 6.7656
d4n1000 4 1000 639.8514 591.98 613.6506 60.3594
d8n200 8 200 215.6308 134.7093 173.3228 3.075
d8n512 8 512 275.4057 207.7543 237.4244 7.5592
d16n256 16 256 145.9767 73.36452 103.5944 4.4876
d16n512 16 512 175.9382 106.4953 133.9108 6.4186

d16n1024 16 1024 204.026 147.1278 171.829 13.9064
d16n2048 16 2048 263.9013 210.0281 233.4694 49.6688
d32n1024 32 1024 137.6043 67.28527 94.68939 16.9215
d32n2048 32 2048 162.1593 104.0153 122.7029 30.164

Table 2: Continued: Summary of First Iteration Solutions for Three Heuristics
Region Dividing Nearest Neighbor

Max Min Mean Time Max Min Mean Time
423.4482 405.3545 414.4013 2.344 515.1542 327.3245 421.2393 1.055
911.4612 790.7493 851.1053 12.6405 960.5076 764.5879 862.5478 11.3595
259.0749 201.4661 235.0596 2.4284 380.0658 92.77714 222.6629 1.1468
495.6325 400.4423 443.8642 11.0874 683.9169 198.0117 436.3651 20.8
714.2934 522.3308 614.3684 54.4968 967.1309 246.7237 606.5448 62.581
236.4221 139.9234 192.4091 8.2568 339.5696 67.13816 157.5154 2.1846
271.2728 225.9595 250.7157 20.1312 432.4621 84.85089 230.0775 6.5344
190.3163 76.68225 122.981 18.7396 196.367 25.85692 93.53754 3.7092
219.5802 113.4607 152.504 32.2056 244.1982 47.38766 123.5722 5.4874
227.1616 151.2489 184.0757 56.9036 324.0938 61.25875 163.9054 17.3968
285.9507 215.0933 244.4174 115.6698 535.0106 62.50485 225.7516 74.3128
182.5517 77.5453 110.9795 125.4785 209.842 23.38633 86.89184 11.8745
219.1573 109.1832 143.5964 242.655 285.9568 28.65197 117.1062 37.265

18

Table 3: Summary for Improved Heuristics
LP-TSP+local Improvement LP+Load Balancing

Depots Nodes Max Min Mean Time Max Min Mean Time
d2n100 2 100 436.6301 433.1008 434.8655 7.9295 458.7227 402.0542 430.3884 9.172
d2n500 2 500 868.9795 865.5071 867.2433 138.7655 870.9441 841.7714 856.3578 69.6325
d4n100 4 100 264.0869 244.7366 255.2331 9.1062 260.2228 222.3239 240.8577 10.703
d4n500 4 500 456.3324 427.265 446.9734 66.6972 461.0018 418.0355 439.2781 65.8876

d4n1000 4 1000 636.5408 615.1136 629.4529 453.3094 638.6942 591.6303 613.6019 447.1312
d8n200 8 200 203.1164 148.3161 183.7135 19.3502 186.8439 154.7289 171.73 21.7656
d8n512 8 512 264.8996 226.2448 248.5112 63.1908 263.495 214.4003 237.3148 63.8188

d16n256 16 256 131.8973 75.03237 106.9231 31.9628 111.8126 89.28733 101.9054 34.8436
d16n512 16 512 164.1278 108.4291 141.9349 48.1784 145.8283 117.9964 132.2481 51.3344

d16n1024 16 1024 199.5094 149.6246 177.6315 89.8844 193.1127 154.2951 172.1586 106.5252
d16n2048 16 2048 261.9899 212.189 241.7618 415.3404 254.485 210.9747 232.6723 467.6626
d32n1024 32 1024 128.3784 66.37938 96.99964 96.344 101.0706 79.37021 92.39999 110.0465
d32n2048 32 2048 154.8267 103.1623 127.977 232.5 140.2472 111.9905 123.1741 228.3045

Table 4: Continued: Summary for Improved Heuristics

Region Dividing+Local Improvement Nearest Neighbor+Local Improvement
Max Min Mean Time Max Min Mean Time

420.2927 418.882 419.5874 8.156 471.5656 427.8247 449.6951 10.14
868.9259 865.2076 867.0667 118.9685 893.0568 890.6041 891.8305 69.1325
249.4282 235.6096 244.0173 11.1188 315.1402 145.1332 248.2715 8.956
481.4977 427.9336 460.027 66.0092 573.5623 272.6562 470.2735 80.4152
637.6445 616.4023 630.5434 421.2174 917.552 345.6991 654.6088 788.1972
215.6192 171.7715 203.8352 29.3686 265.0315 76.03288 194.5665 40.4906
283.6925 207.1459 258.8974 69.003 387.5828 111.3567 263.5297 67.7752
173.0854 83.4317 133.4789 49.397 172.055 30.18939 104.9598 31.8874
204.8053 119.2954 171.3088 84.3312 220.886 47.30744 138.4406 43.1096
222.0949 157.2944 199.7946 157.6968 265.5577 69.27293 187.3292 134.4
287.1788 213.3255 255.3882 405.3216 467.5545 86.64765 255.156 554.4
186.8116 75.6875 126.9404 216.4065 185.7216 23.48184 95.35758 92.836
214.9572 108.9897 159.6786 456.586 252.2663 28.26846 130.5024 355.4055

19

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

Figure 9: Problems encountered when multiple vehicles are assigned to a single depot. (a) is the
initial node set given to the problem (we have 8 vehicles and 4 depots) and (b) represents a solution
without the perturbation applied. (c) represents a solution with the perturbation applied; it is
clearly preferable, as vehicle routes do not intersect.

while maintaining a competitive running time, as seen in Table 3 and 4. Third, LP-TSP with load
balancing not only improves the maximal tour length as compared to the initial solution, but it also
does not signi�cantly increase the total tour length, suggesting that the adjustment will not lead
to a major global increase in cost. Finally, the region partition algorithm tends to outperform all
the other algorithms when the number of depots is small, though its running time will substantially
increase for more depots.
In our present instances, we use depots of size 2k because the 1.5-approximation region partition
algorithm gives equitable convex partitions in this case. Recently, an exact solution to the convex
region partition has been found [4], which would allow us to e�ectively use the region partition
method on any number of depots.

5.1 Solving a More General Case

We have assumed each depot includes exactly one vehicle in the algorithm above. However, in a
practical situation, multiple vehicles may lie on the same depot. We need to extend our algorithm
to this general case. If we still follow the original algorithm and assign the same number of nodes
to each vehicle instead of each depot, the solution is poor, because nodes are assigned to each such
vehicle randomly � therefore, our initial geometric intuition for node assignment is lost (�gure 9).
In order to work around this di�culty, for vehicles in a same depot, we perturb the locations of
vehicles located at the same depot before generating cij 's. Each vehicle is relocated to a new location
lying in a small circle around that depot , keeping them evenly distributed on that circle. This small
change will dramatically improve the �nal solution (�gure 1). We can generate good solutions with
this technique.

20

6 Conclusion

In this paper, we make a �rst attempt to study min-max MDVRP. We predicted some properties
of the optimal solution theoretically, and we proved the near-optimal performance for an algorithm
based on computational geometry with a few constraints. In section 3, we discussed the details of
the region partition algorithm, which may have applications beyond the vehicle routing problem. An
LP-based algorithm with global improvement was implemented to solve very large-sized problems
e�ectively. We concluded by reporting our simulation results.
Many interesting topics remain after this �rst attempt in min-max MDVRP. For example, from a
theoretical point of view, accurate estimation of the optimal solution in large-scale problems for the
general case is still open. Our theoretical and implemented work can serve as starting points for
further exploration as well.
The techniques used in our algorithms provide advantages over traditional local search methods.
For example, since the LP-TSP with load balancing algorithm does not inherently require that the
points be scattered in Euclidean space, it can be adapted as a backend to existing map software
to solve VRPs with actual geographic locations. The region partition algorithm can be applied
to problems outside the scope of VRP as well. An exact convex region partition algorithm will be
helpful not only for high-quality initial solutions to MDVRPs, but also for solving a class of network
problems with similar structures and a min-max objective function.

References

[1] K. Altinkemer, B. Gavish, Heuristics with constant error guarantees �r the design of tree
networks. Management Science, 3, 1988.

[2] E.M. Arkin R. Hassin, A. Levin, Approximations for Minimum and Min-max Vehicle Routing
Problems. Journal of Algorithms, 2004.

[3] B. Armbruster, J. Carlsson. Finding e�cient 2d ham sandwich cuts. 2006. Unpublished.

[4] B. Armbruster, J. Carlsson. Finding equitable convex partitions of points in a polygon e�-
ciently. 2006. Unpublished.

[5] A. Baltz, D. P. Dubhashi, L. Tansini, A. Srivastav Soren Werth. Probabilistic Analysis for a
Multiple Depot Vehicle Routing Problem. Foundations of Software Technology and Theoretical
Computer Science, 25th International Conference(FSTTCS). pp 360-371, 2005

[6] S. N. Bespamyatnikh, D. G. Kirkpatrick, J. Snoeyink. Generalizing Ham Sandwich Cuts to
Equitable Subdivisions. Symposium on Computational Geometry, 49-58, 1999.

[7] J. Carlsson, D. Ge. Methods For Vehicle Routing Problem With Distance Constraints. Tech-
niquel Report, ICME, Stanford, 2005.

21

[8] I.-M. Chao, B. Golden, E. Wasil. A new heuristic for the multidepot vehicle routing prob-
lem that improves upon best-known solutions. American Journal mathematical management
Science, Vol 13, No 3, pp 371-406, 1993.

[9] W. Cook.Concorde. Vers. 1.1. Computer software. http://www.tsp.gatech.edu/concorde.html

[10] G.B. Dantzig, J.H. Ramser The truck dispatching problem. Management Science, 6:60, 1959.

[11] J.F. Soumis, M. Desrochers A New Optimization Algorithm for the Vehicle Routing Problem
With Time Windows by Column generation. Networks 14, 545-565,1984

[12] B. Gillet, J. Johnson Multi-terminal vehicle-dispatching algorithm. Omega, Vol 4, pp 711-718,
1976.

[13] I. Giosa, I. Tansini, I. Viera. New assignment algorithm for the multi-depot vehicle routing
problem. Journal of Operations Research Society, Vol 53, pp 283-292, 1984.

[14] B.L. Golden, EL. Magnanti, H.Q. Nguyen. Implementing vehicle routing algorithms. Networks,
7:113-148, 1977.

[15] M. Haimovich, A. H. G. Rinnooy Kan. Bounds and heuristics for capacitated routing problems.
Mathematics of Operations Research 10(1985) 527-542.

[16] T. Leighton, P.W. Shor. Tight Bounds for minimax grid matching with applications to the
average case analysis of algorithms. Combinatorica, 9, 161-187, 1989

[17] A. Lim, F. Wang Multi-Depot Routing Problems: A Sone-Stage Approach. IEEE transactions
on automation science and engineering, Vol 2, No 4, Octomber 2005.

[18] C-L li, D. Simichi-Levi, M. Desrochers. On The Distance Constrained Vehicle Routing Problem.
Operations Research 40, No. 4 (1992), 790-799

[19] R. Motwani, P. Raghavan. Randomized Algorithms. Cambridge University Press, June 1995

[20] http://www.top.sintef.no/vrp/benchmarks.html

[21] L. Tansini. Department of Computer Science, Chalmers Univeristy, PhD Thesis. To appear.

[22] A. Wren, A. Holliday. Computer scheduling of vehicles from one or more depots to a number
of delivery points. Oper. Res. Q., Vol 23, pp. 333-344, 1972.

[23] J. E. Yukich. Probability Theory of Classical Euclidean Optimization Problems. Lecture Notes
in Mathematics, 1998, vol. 1675.

22

