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Abstract

We present more details of the minimal-norm path following algorithm for un-
constrained smooth convex optimization described in the lecture note of CME307
and MS&E311 [10].

Iterative optimization algorithms have been modeled as following certain paths to
the optimal solution set, such as the central path of linear programming (e.g., [1, 3])
and, more recently, the trajectory of accelerated gradients of Nesterov ([8, 9]). Moreover,
there is an interest in accelerating and globalizing Newton’s or second-order methods for
unconstrained smooth convex optimization, e.g., [5].

Let f(x), x ∈ Rn be any smooth convex function with continuous second-order deriva-
tives, and it meets a local Lipschitz condition: for any point x 6= 0 and a constant β ≥ 1

‖∇f(x+ d)−∇f(x)−∇2(x)d‖ ≤ βdT∇2f(x)d, whenever ‖d‖ ≤ O(1). (1)

and x+ d is in the function domain. Here, ‖ · ‖ represents the L2 norm, and it resembles
the self-concordant condition of [6]. Note that all convex power, logarithmic, barrier, and
exponential functions meet this condition, and the function does not need to be strictly
or strongly convex nor has a bounded solution set. Furthermore, we assume that x = 0
is not a minimizer or ∇f(0) 6= 0.

We consider the path constructed from the strictly convex minimization problem

min
x

f(x) +
µ

2
‖x‖2 (2)

where µ is any positive parameter, and the minimizer, denoted by x(µ), satisfies the
necessary and sufficient condition:

∇f(x) + µx = 0. (3)

We now prove a theorem on the path convergence similar to the one in [2]:
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Theorem 1. The following properties on the minimizer of (2) hold.

i). The minimizer x(µ) of (2) is unique and continuous with µ.

ii). The function f(x(µ)) is strictly increasing and ‖x(µ)‖ is strictly decreasing function
of µ.

iii). limµ→0+ x(µ) converges to the minimal norm solution of f(x).

Proof Property i) is based on the fact that f(x) + µ
2
‖x‖2 is a strictly convex function for

any µ > 0 and its Hessian is positive definite.
We prove ii). Let 0 < µ′ < µ. Then

f(x(µ′)) +
µ′

2
‖x(µ′)‖2 < f(x(µ)) +

µ′

2
‖x(µ)‖2

and
f(x(µ)) +

µ

2
‖x(µ)‖2 < f(x(µ′)) +

µ

2
‖x(µ′)‖2.

Add the two inequalities on both sides and rearrange them, we have

µ− µ′

2
‖x(µ′)‖2 > µ− µ′

2
‖x(µ)‖2.

Since µ−µ′ > 0, we have ‖x(µ′)‖2 > ‖x(µ)‖2, that is, ‖x(µ)‖ is strictly decreasing function
of µ. Then, using any one of the original two inequalities, we have f(x(µ′)) < f(x(µ)).

Finally, we prove iii). Let x̄ be an optimizer with the the minimum L2 norm, then
∇f(x̄) = 0, which, together with (3), indicate

∇f(x(µ))−∇f(x̄) + µx(µ) = 0.

Pre-multiplying x(µ)− x̄ to both sides, and using the convexity of f ,

−µ(x(µ)− x̄)Tx(µ) = (x(µ)− x̄)T (∇f(x(µ))−∇f(x̄)) ≥ 0.

Thus, we have ‖x(µ)‖2 ≤ x̄Tx(µ) ≤ ‖x̄‖‖x(µ)‖, that is, ‖x(µ)‖ ≤ ‖x̄)‖ for any µ > 0.
If the accumulating limit point x(0) 6= x̄, f must have two different minimum L2 norm
solutions in the convex optimal solution set of f . Then 1

2
(x(0) + x̄) would remain an

optimal solution and it has a norm strictly less than ‖x̄‖. Thus, x̄ is unique and every
accumulating limit point x(0) = x̄, which completes the proof.

Let us call the path minimum-norm path and let xk be an approximate path solution
for µ = µk and the path error be

‖∇f(xk) + µkxk‖ ≤ 1

2β
µk,

which defines a neighborhood of the path. Then, we like to compute a new iterate xk+1

remains in the neighborhood of the path, similar to the interior-point path-following
algorithms (e.g., [7]), that is,

‖∇f(xk+1) + µk+1xk+1‖ ≤ 1

2β
µk+1, where 0 ≤ µk+1 < µk. (4)
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Note that the neighborhood become smaller and smaller as the iterates go.
When µk is replaced by µk+1, say (1 − η)µk for some number η ∈ (0, 1], we aim to

find the solution x such that

∇f(x) + (1− η)µkx = 0.

To proceed, we use xk as the initial solution and apply the Newton iteration:

∇f(xk) +∇2f(xk)d+ (1− η)µk(xk + d) = 0, or
∇2f(xk)d+ (1− η)µkd = −∇f(xk)− (1− η)µkxk,

(5)

and let the new iterate
xk+1 = xk + d.

From the second expression, we have

‖∇2f(xk)d+ (1− η)µkd‖ = ‖ − ∇f(xk)− (1− η)µkxk‖
= ‖ − ∇f(xk)− µkxk + ηµkxk‖
≤ ‖ −∇f(xk)− µkxk‖+ ηµk‖xk‖
≤ ( 1

2β
+ η‖xk‖)µk.

(6)

On the other hand

‖∇2f(xk)d+ (1− η)µkd‖2 = ‖∇2f(xk)d‖2 + 2(1− η)µkdT∇2f(xk)d+ ((1− η)µk)2‖d‖2.

From convexity of f , dT∇2f(xk)d ≥ 0, together using (6), we have

((1− η)µk)2‖d‖2 ≤ ( 1
2β

+ η‖xk‖)2(µk)2 and

2(1− η)µkdT∇2f(xk)d ≤ ( 1
2β

+ η‖xk‖)2(µk)2. (7)

The first inequality of (7) implies

‖d‖2 ≤
(

1

2β(1− η)
+
η‖xk‖
1− η

)2

.

The second inequality of (7) implies

‖∇f(x+) + (1− η)µkx+‖
= ‖∇f(x+)− (∇f(xk) +∇2f(xk)d) + (∇f(xk) +∇2f(xk)d) + (1− η)µk(xk + d)‖
= ‖∇f(x+)−∇f(xk) +∇2f(xk)d‖
≤ βdT∇2f(xk)d ≤ β

2(1−η)(
1
2β

+ η‖xk‖)2µk.

We now just need to choose η ∈ (0, 1) such that(
1

2β(1−η) + η‖xk‖
1−η

)2

≤ 1 and
β

2(1−η)(
1
2β

+ η‖xk‖)2 ≤ 1
2β

(1− η).

to satisfy (4), due to (1− η)µk = µk+1. Since β ≥ 1, set

η =
1

2β(1 + ‖xk‖)
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would suffice. This would give a linear convergence of µ down to zero,

µk+1 ≤
(

1− 1

2β(1 + ‖xk‖)

)
µk

and xk follows the path to the optimality. From Theorem 1, the size ‖xk‖ is bounded
above by the size of ‖x∗‖ where x∗ is the minimum-norm optimal solution of f(x) that is
fixed.

Theorem 2. There is a linearly convergent second-order or Newton method in minimizing
any smooth convex function that satisfies the local Lipschitz condition. More precisely, the

convergence rate is
(

1− 1
2β(1+‖x∗‖)

)
where x∗ is the minimum-norm optimal solution of

f(x).

Practically, one can implement the algorithm in a predictor-corrector fashion (e.g., [4])
to explore wide neighborhoods and without knowing Lipschitz constant β. One can also
scale variable x such that the norm of the minimum-norm solution x∗ is about 1.
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