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Abstract

We present more details of the minimal-norm path following algorithm for un-
constrained smooth convex optimization described in the lecture note of CME307
and MS&E311 [10].

[terative optimization algorithms have been modeled as following certain paths to
the optimal solution set, such as the central path of linear programming (e.g., [1, 3|)
and, more recently, the trajectory of accelerated gradients of Nesterov ([8, 9]). Moreover,
there is an interest in accelerating and globalizing Newton’s or second-order methods for
unconstrained smooth convex optimization, e.g., [5].

Let f(z), x € R" be any smooth convex function with continuous second-order deriva-
tives, and it meets a local Lipschitz condition: for any point x # 0 and a constant g > 1

IVf(z+d) - Vf(x)— V(z)d| < Bd"V?f(x)d, whenever |d|| < O(1). (1)

and = + d is in the function domain. Here, || - || represents the Ly norm, and it resembles
the self-concordant condition of [6]. Note that all convex power, logarithmic, barrier, and
exponential functions meet this condition, and the function does not need to be strictly
or strongly convex nor has a bounded solution set. Furthermore, we assume that x = 0
is not a minimizer or V f(0) # 0.

We consider the path constructed from the strictly convex minimization problem

min () + 5 [l ®)

where p is any positive parameter, and the minimizer, denoted by z(u), satisfies the
necessary and sufficient condition:

Vf(z)+ px =0. (3)

We now prove a theorem on the path convergence similar to the one in [2]:



Theorem 1. The following properties on the minimizer of (2) hold.
i). The minimizer x(u) of (2) is unique and continuous with .

it). The function f(x(n)) is strictly increasing and ||z (u)|| is strictly decreasing function
of .
iii). lim, o+ x(p) converges to the minimal norm solution of f(x).
Proof Property i) is based on the fact that f(x) 4 &||z||* is a strictly convex function for

any p > 0 and its Hessian is positive definite.
We prove ii). Let 0 < ¢/ < p. Then
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Add the two inequalities on both sides and rearrange them, we have
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Since p—p’ > 0, we have ||z(1/)||* > ||z (u)||?, that is, ||z (u)]| is strictly decreasing function
of . Then, using any one of the original two inequalities, we have f(z(y')) < f(z(u)).

Finally, we prove iii). Let & be an optimizer with the the minimum L; norm, then
V f(Z) = 0, which, together with (3), indicate

Vf(z(p) = V(@) + pa(p) = 0.

Pre-multiplying =(u) — Z to both sides, and using the convexity of f,

—pu(x(p) = 2) x(p) = (2(p) — 1) (Vf(2(n) = Vf(7)) > 0.

Thus, we have [|z(p)|* < z"2(u) < [|Z[|[lz(w)], that is, [Jx(u)|| < [|Z)|| for any > 0.
If the accumulating limit point x(0) # Z, f must have two different minimum Ly norm
solutions in the convex optimal solution set of f. Then ;(z(0) + ) would remain an
optimal solution and it has a norm strictly less than ||z||. Thus, Z is unique and every

accumulating limit point x(0) = &, which completes the proof.

Let us call the path minimum-norm path and let 2* be an approximate path solution
for 4 = p* and the path error be

IV f(a*) + ]| < %u’“,

which defines a neighborhood of the path. Then, we like to compute a new iterate z*+*
remains in the neighborhood of the path, similar to the interior-point path-following

algorithms (e.g., [7]), that is,

1
HVf(:L‘k+1) —l—uk+liL‘k+1H < %Mk+l> where 0 < uk+l < Nk- (4)
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Note that the neighborhood become smaller and smaller as the iterates go.
When p* is replaced by pf*!, say (1 — n)u”* for some number n € (0, 1], we aim to
find the solution x such that

Vi) + (1 —nptz=0.
To proceed, we use z* as the initial solution and apply the Newton iteration:

Vf(a®) + V2f(a®)d + (1 —n)pk(a* +d) =0, or (5)
V2f(aM)d + (1 = n)pkd = =V f(a*) — (1 — n)pFa*,

and let the new iterate
" =2k + d.

From the second expression, we have

IV2f(a)d+ (L —mytd] = | = VF") = (1 =)t
= || - V() - et 4 et ©
< 1= VAH) — bt |
< (G + it

On the other hand
IV2f(z")d + (1 = m)ptd]® = V2 f(2")d]]* + 2(1 = n)ptd" V2 f(2*)d + (1 = n)p*)?||d])*.
From convexity of f, d'V2f(x*)d > 0, together using (6), we have

(L =mu2ld]* < (55 +nlla"])*(L*)*  and )
2(1 = p)pkd™2 f(a¥)d < (g5 + nlla®)?(u*)*.

The first inequality of (7) implies

1 HWWY
d||? .
ldl” < (26(1—n>+ e

The second inequality of (7) implies

IVf(zT) + (1= n)urat
= |Vf(z*) - ( f(x )+V2f(x’“>d>+(Vf(x’“)+V2f<x’“>d)+(1—n)u’“(a:’“+d)||
= |Vf(z") =V f(z )+V2( )d]
< Bd"VAf(ak)d < gt (55 + nlla )Pt

We now just need to choose n € (0, 1) such that

Ll < and
2ﬁ(1 n 1 -
st (35 Hlat)? < g5t —m).

to satisfy (4), due to (1 — n)uk = pkF*L. Since 8 > 1, set
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would suffice. This would give a linear convergence of © down to zero,

k+1 <

2 (1 g o )

and 2% follows the path to the optimality. From Theorem 1, the size ||z*|| is bounded
above by the size of ||z*|| where z* is the minimum-norm optimal solution of f(z) that is
fixed.

Theorem 2. There is a linearly convergent second-order or Newton method in minimizing
any smooth convex function that satisfies the local Lipschitz condition. More precisely, the

convergence rate s (1 — m> where x* is the minimum-norm optimal solution of
/().

Practically, one can implement the algorithm in a predictor-corrector fashion (e.g., [4])
to explore wide neighborhoods and without knowing Lipschitz constant #. One can also
scale variable x such that the norm of the minimum-norm solution x* is about 1.
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