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A natural optimization model that formulates many online resource allocation and revenue management problems
is the online linear program (LP) where the constraint matrix is revealed column by column along with the
objective function. We provide a near-optimal algorithm for this surprisingly general class of online problems
under the assumption of random order of arrival and some mild conditions on the size of the LP right-hand-side
input. Our learning-based algorithm works by dynamically updating a threshold price vector at geometric time
intervals, where the dual prices learned from revealed columns in the previous period are used to determine the
sequential decisions in the current period. Our algorithm has a feature of “learning by doing”, and the prices
are updated at a carefully chosen pace that is neither too fast nor too slow. In particular, our algorithm doesn’t
assume any distribution information on the input itself, thus is robust to data uncertainty and variations due to
its dynamic learning capability. Applications of our algorithm include many online multi-resource allocation and
multi-product revenue management problems such as online routing and packing, online combinatorial auctions,
adwords matching, inventory control and yield management.
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1. Introduction Online optimization is attracting an increasingly wide attention in computer sci-
ence, operations research, and management science communities because of its wide applications to
electronic markets and dynamic resource allocation problems. In many practical problems, data does not
reveal itself at the beginning, but rather comes in an online fashion. For example, in the online revenue
management problem, consumers arrive sequentially requesting a subset of goods (multi-leg flights or a
period of stay in a hotel), each offering a certain bid price for his demand. On observing a request, the
seller needs to make an irrevocable decision for that consumer with the overall objective of maximizing
the revenue while respecting the resource constraints. Similarly, in the online routing problem [8, 3],
the central organizer receives demands for subsets of edges in a network from the users in a sequential
manner, each with a certain utility and bid price for his demand. The organizer needs to allocate the
network capacity online to those bidders to maximize social welfare. A similar format also appears in
online auctions [4, 10], online keyword matching problems [13, 20, 23, 16], online packing problems [9],
and various other online revenue management and resource allocation problems [22, 11, 6].

In all these examples mentioned above, the problem can be formulated as an online linear programming
problem1. In an online linear programming problem, the constraint matrix is revealed column by column
with the corresponding coefficient in the objective function. After observing the input arrived so far,
the online algorithm must make the current decision without observing the future data. To be precise,
consider the linear program

maximize
∑n
j=1 πjxj

subject to
∑n
j=1 aijxj ≤ bi, i = 1, . . . ,m

0 ≤ xj ≤ 1 j = 1, . . . , n
(1)

where ∀j, πj ≥ 0, aj = (aij)mi=1 ∈ [0, 1]m, and b = {bi}mi=1 ∈ Rm. In the corresponding online problem,
at time t, the coefficients (πt,at) are revealed, and the algorithm must make a decision xt. Given the

1In fact, many of the problems mentioned above take the form of an integer program. While we discuss our ideas and

results in terms of linear relaxation of these problems, our results naturally extends to integer programs. See Section 5.4

for the detailed discussion.
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previous t − 1 decisions x1, . . . , xt−1, and input {πj ,aj}tj=1 until time t, the tth decision is to select xt
such that ∑t

j=1 aijxj ≤ bi, i = 1, . . . ,m
0 ≤ xt ≤ 1.

(2)

The goal of the online algorithm is to choose xt’s such that the objective function
∑n
t=1 πtxt is maximized.

To evaluate an online algorithm, one could consider various kinds of input models. One approach, which
is completely robust to input uncertainty, is the worst-case analysis, that is, to evaluate the algorithm
based on its performance on the worst-case input [23, 9]. However, this leads to very pessimistic bounds
for the above online problem: no online algorithm can achieve better than O(1/n) approximation of the
optimal offline solution [4]. The other approach, popular among practitioners with domain knowledge, is
to assume certain distribution on the inputs and consider the expected objective value achieved by the
algorithm. In many cases, a priori input distribution can simplify the problem to a great extent, however,
the choice of distribution is very critical and the performance can suffer if the actual input distribution
is not as assumed. In this paper, we take an intermediate path. While we do not assume any knowledge
of the input distribution, we relax the worst-case model by making the following two assumptions:

Assumption 1.1 The columns aj (with the objective coefficient πj) arrive in a random order, i.e., the
set of columns can be adversarily picked at the start. However, after they are chosen, (a1,a2, ...,an) and
(aσ(1),aσ(2), ...,aσ(n)) have same chance to happen for all permutation σ.

This assumption says that we consider the average behavior of the online algorithm over random
permutations. This assumption is reasonable in practical problems, since the order of columns usually
appears to be independent of the content of the columns. We like to emphasize that this assumption
is strictly weaker than assuming an input distribution. In particular, it is automatically satisfied if the
input columns are generated independently from some common (but unknown) distributions. This is also
a standard assumption in many existing literature on solving online problems [4, 13, 20, 17].

Assumption 1.2 We know the total number of columns n a priori.

The second assumption is needed since we will use quantity n to decide the length of history used to
learn the threshold prices in our algorithm. It can be relaxed to an approximate knowledge of n (within
at most 1± ε multiplicative error), without affecting the final results. Note that this assumption is also
standard in many existing algorithms for online problems [4] in computer science. For many practical
problems, the knowledge of n can be implied approximately by the length of time horizon T and the
arrival rates, which is usually available. As long as the time horizon is long enough, the total number
of arrivals in the LP problem will be highly accurate. This is justified in [11] and [19] when they use
the expected number of arrivals for constructing a pricing policy in a revenue management problem.
Moreover, this assumption is necessary from the algorithmic point of view. In [13], the authors showed
that if Assumption 2 doesn’t hold, then the worst-case competitive ratio is bounded away from 1 even
we admit Assumption 1.

In this paper, we present an almost optimal solution for online linear program (2) under the above two
assumptions and a lower bound condition on the size of b. We also extend our results to the following
more general online linear optimization problems:

• Problems with multi-dimensional decisions at each time step. More precisely, consider a sequence
of n non-negative vectors f1,f2, . . . ,fn ∈ Rk, mn non-negative vectors

gi1, gi2, . . . , gin ∈ [0, 1]k, i = 1, . . . ,m,

and (k − 1)-dimensional simplex K = {x ∈ Rk : xTe ≤ 1,x ≥ 0}. In this problem, given
the previous t − 1 decisions x1, . . . ,xt−1, each time we make a k-dimensional decision xt ∈ Rk,
satisfying: ∑t

j=1 g
T
ijxj ≤ bi, i = 1, . . . ,m
xt ∈ K

(3)

where decision vector xt must be chosen only using the knowledge up to time t. The objective
is to maximize

∑n
j=1 f

T
j xj over the whole time horizon. Note that Problem (2) is a special case

of Problem (3) with k = 1.
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• Problem (2) with both buy-and-sell orders, that is,

πj either positive or negative, and aj = (aij)mi=1 ∈ [−1, 1]m. (4)

1.1 Our key ideas and main results In the following, let OPT denote the optimal objective value
for the offline problem (1).

Definition 1.1 An online algorithm A is c-competitive in random permutation model if the expected
value of the online solution obtained by using A is at least c factor of the optimal offline solution. That
is,

Eσ[
∑n
t=1 πtxt(σ,A)] ≥ cOPT

where the expectation is taken over uniformly random permutations σ of 1, . . . , n, and xt(σ,A) is the tth

decision made by algorithm A when the inputs arrive in the order σ.

Our algorithm is based on the observation that the optimal solution x∗ for the offline linear program
is almost entirely determined by the optimal dual solution p∗ ∈ Rm corresponding to the m inequality
constraints. The optimal dual solution acts as a threshold price so that x∗j > 0 only if πj ≥ p∗Taj . Our
online algorithm works by learning a threshold price vector from the input received so far. The price
vector then determines the decision for the next period. However, instead of computing a new price
vector at every step, the algorithm initially waits until nε steps or arrivals, and then computes a new
price vector every time the history doubles. That is, at time steps nε, 2nε, 4nε, . . . and so on. We show
that our algorithm is 1 − O(ε)-competitive in random permutation model under a size condition of the
right-hand-side input. Our main results are precisely stated as follows:

Theorem 1.1 For any ε > 0, our online algorithm is 1−O(ε) competitive for the online linear program
(2) in random permutation model, for all inputs such that 2

B = min
i
bi ≥ Ω

(
m log (n/ε)

ε2

)
(5)

Note that the condition in Theorem 1.1 depends on log n, which is far from satisfying everyone’s
demand when n is large. In [21], the author proves that k ≥ 1/ε2 is necessary to get 1−O(ε) competitive
ratio in k-secretary problem, which is the single dimensional case of our problem with m = 1, B = k
and at = 1 for all t. Thus, dependence on ε in the above theorem is near-optimal. In the next theorem,
we show that a dependence on m is necessary as well for any online algorithm to obtain a near-optimal
solution. Its proof will appear in Section 4.

Theorem 1.2 For any online algorithm for linear program (2) in random permutation model, there exists
an instance such that its competitive ratio is less than 1− Ω(ε) when

B = min
i
bi ≤

log(m)
ε2

We also extend our results to more general online linear programs as introduced in (3) and (4):

Theorem 1.3 For any ε > 0, our algorithm is 1−O(ε) competitive for the general online linear problem
(3) or (4) in random permutation model, for all inputs such that:

B = min
i
bi ≥ Ω

(
m log (nk/ε)

ε2

)
. (6)

Remark 1.1 Our condition to hold the main result is independent of the size of OPT or objective coeffi-
cients, and is also independent of any possible distribution of input data. If the largest entry of constraint
coefficients does not equal to 1, then our both theorems hold if the condition (5) or (6) is replaced by:

bi
āi
≥ Ω

(
m log (nk/ε)

ε2

)
, ∀i,

2For any two functions f(n), g(n), f(n) = O(g(n)) iff there exists some constant c1 such that f(n) ≤ c1g(n); and

f(n) = Ω(g(n)) iff there exists some constant c2 such that f(n) ≥ c2g(n). The precise constants required here will be

illustrated later in the text.
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where, for each row i, āi = maxj{|aij |} of (2) and (4), or āi = maxj{‖gij‖∞} of (3). Note that this
bound is proportional only to log(n) so that it is way below to satisfy everyone’s demand.

It is apparent that our generalized problem formulation should cover a wide range of online decision
making problems. In the next section, we discuss the related work and some sample applications of our
model. As one can see, our result in fact improves the best competitive ratios for many online problems
studied in the literature and presents the first non-asymptotic analysis for solving many online resource
allocation and revenue management problems.

1.2 Related work Online decision making has been a topic of wide recent interest in the computer
science, operations research, and management science communities. Various special cases of the general
problem presented in this paper have been studied extensively in the computer science literature as
“secretary problems”. A comprehensive survey of existing results on the secretary problems can be found
in [4]. In particular, constant factor competitive ratios have been proven for k-secretary and knapsack
secretary problems under random permutation model. Further, for many of these problems, a constant
competitive ratio is known to be optimal if no additional conditions on input are assumed. Therefore,
there has been recent interest in searching for online algorithms whose competitive ratio approaches 1 as
the input parameters become large. The first result of this kind appears in [21], where a 1 − O(1/

√
k)-

competitive algorithm is presented for k secretary problem under random permutation model. Recently,
the authors in [13, 15] presented a 1−O(ε)-competitive algorithm for online adwords matching problem
under assumptions of certain lower bounds on OPT and k = mini bi in terms of ε and other input
parameters. Our work is closely related to the works of Kleinberg [21], Devanur et al. [13], and Feldman
et al. [15].

In [21], the author presented a recursive algorithm for single dimensional multiple-choice secretary
problem, and proved that 1−O(1/

√
k) competitive ratio achieved by his algorithm is the best possible for

this problem. We present a (1−O(
√
m log(n)/k)) competitive algorithm for multi-dimensional multiple-

choice secretary problem (k = mini bi), which involves recursive pricing similar to [21], however, due to
the multi-dimensional structure of the problem, significantly different techniques are required for analysis
than those used in [21]. We also prove that no online algorithm can achieve a competitive ratio better
than (1 − Ω(

√
log(m)/k)) for the multi-dimensional problem. To our knowledge, this is the first result

that shows a dependence on dimension m, of the best competitive ratio achievable for this problem.

In [13], the authors study a one-time pricing approach (as opposed to the recursive or dynamic pricing
approach) for a special case (adwords matching) of our problem. Also, the authors prove a competitive
ratio that depends on the optimal value OPT, rather than the right hand side k = mini bi. To be precise,
they prove a competitive ratio of (1 − O( 3

√
m2 log(n)/OPT)). Due to the use of a dynamic pricing

approach, we show that even in terms of OPT, our algorithm has a strictly better competitive ratio of
(1−O(

√
m2 log(n)/OPT)) (see Section 5.1 and Appendix F). We would like to emphasize here that (a)

a competitive ratio in terms of OPT does not imply a corresponding competitive ratio in terms of k and
vice-versa, as we illustrate by examples in Appendix F, there are cases where one may be better than the
other, and (b) significantly different techniques are used in this paper to achieve a bound that depends
only on k, and not on the value of OPT, in particular refer to the analysis in Lemma 3.2 and Lemma
3.3, and its implications on the competitive ratio analysis. We believe having a dependence on k rather
than OPT may be more attractive in many practical settings, since the value of k is known and can be
checked.

More recently, and subsequent to the submission of an earlier version of our paper [2], Feldman et
al. [15] (independently) obtained bounds for an online packing problem which depend both on the right
hand side k and OPT. In addition to requiring lower bounds on both k and OPT, their lower bound on
k depends on ε3, thus their result is much weaker than the result in this paper. Their algorithm is based
on a one-time pricing approach.

Table 1 provides a comparison of these related results, clearly illustrating that our dynamic pricing
algorithm provides significant improvement over the past results. Here “Condition” refers to the lower
bound condition required on the input to achieve (1−O(ε)) competitive ratio, and k = mini bi.

In the operations research and management science community, a dynamic and optimal pricing strat-
egy for various online resource allocation problems has always been an important research topic, some
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Condition Technique Target problem

Kleinberg et al., 2005 [21] k ≥ 1
ε2 , for m = 1 Dynamic pricing k-secretary problem

Devanur et al., 2009 [13] OPT
πmax

≥ m2 log(n)
ε3 One-time pricing Adwords problem

Feldman et al., 2010 [15] k ≥ m log(n)
ε3 and OPT

πmax
≥ m log(n)

ε One-time pricing online packing

This paper k ≥ m log(n)
ε2 or OPT

πmax
≥ m2 log(n)

ε2 Dynamic pricing general online LP

Table 1: Comparison of some existing results

literatures include [14, 18, 19, 26, 22, 11, 6]. In [19, 18, 6], the arrival process are assumed to be price sen-
sitive. However, as commented in [11], this model can be reduced to a price independent arrival process
with availability control under Poisson arrivals. Our model can be further viewed as a discrete version of
the availability control model which is also used as an underlying model in [26] and discussed in [11]. The
idea of using a threshold - or “bid” - price is not new. It is initiated in [28, 25] and investigated further
in [26]. In [26], the authors show that the bid price is asymptotically optimal. However, they assume the
knowledge on the arrival process and therefore the price is obtained by “forecasting” the future using the
distribution information rather than “learning” from the past observations as we do in our paper. The
idea of using linear programming to find dual optimal bid price is discussed in [11] where asymptotic
optimality is also achieved. But again, the arrival process is assumed to be known which made their
analysis relatively simple.

Our work improves upon these existing works in various manners. First, we provide a common near-
optimal solution for a wide class of online linear programs which encompasses many special cases of
secretary problems and resource allocation problems discussed above. Moreover, due to its dynamic
learning capability, our algorithm is distribution free–no knowledge on the input distribution is assumed
except for the random order of arrival. The techniques proposed in this paper may also be considered
a step forward in the threshold price learning kind of approaches. A common element in the techniques
used in existing works on secretary problems [4] (with the exception of [21]), online combinatorial auction
problems [1], and adwords matching problem [13, 15], has been one-time learning of threshold price(s)
from first few (nε) customers, which is then used to determine the decision for remaining customers.
However, in practice one would expect some benefit from dynamically updating the prices as more
and more information is revealed. Dynamic pricing has been a topic of wide attention in many of the
management science literature [14], and a question of increasing importance is: how often and when
to update the price? In [11], the authors demonstrate with a specific example that updating the price
too frequently may even hurt the results. In this paper, we propose a dynamic pricing algorithm that
updates the prices at geometric time intervals–not too sparse nor too often. In particular, we present an
improvement from a factor of 1/ε3 to 1/ε2 in the lower bound requirement on B by using dynamic price
updating instead of one-time learning. Thus we present, for the first time, a precisely quantified strategy
for dynamic price update.

In our analysis, we apply many standard techniques from PAC-learning3, in particular, concentration
bounds and covering arguments. These techniques were also heavily used in [5] and [13]. In [5], price
learned from one half of bidders is used for the other half to get an incentive compatible mechanism
for combinatorial auctions. Their approach is closely related to the idea of one-time learning of price in
online auctions, however, their goal is offline revenue maximization and an unlimited supply is assumed.
And [13], as discussed above, considers a special case of our problem. Part of our analysis is inspired by
some ideas used there, as will be pointed out in the text.

Further comparison of our work with the related work on specific applications appears in the next
section.

1.3 Specific Applications In the following, we show some of the specific applications of our al-
gorithm and compare our work to the previous results for those applications. It is worth noting that

3Probably Approximately Correct learning: which is a framework for mathematical analysis of machine learning



6 Agrawal et al.: A Dynamic Near-Optimal Algorithm for Online Linear Programming
Mathematics of Operations Research xx(x), pp. xxx–xxx, c©200x INFORMS

for many of the problems we discuss below, our algorithm is the first near-optimal algorithm under the
distribution-free model.

1.3.1 Online routing problems The most direct application of our online algorithm is the online
routing problem. In this problem, there are m edges in a network, each edge i has a bounded capacity bi.
There are n customers arriving online, each with a request of certain path at ∈ {0, 1}m, where ait = 1, if
the path of request t contains edge i, and a utility πt for his request. The offline problem for the decision
maker is given by the following integer program:

maximize
∑n
t=1 πtxt

subject to
∑n
t=1 aitxt ≤ bi i = 1, . . . ,m

xt ∈ {0, 1}
(7)

By Theorem 1.1, and its natural extension to integer programs as will be discussed in Section 5.4, our
algorithm gives a 1−O(ε) competitive solution to this problem in the random permutation model as long
as the edge capacity is reasonably large. Earlier, a best of log(mπmax

πmin
) competitive algorithm was known

for this problem under the worst case input model [8].

1.3.2 Online single-minded combinatorial auctions In this problem, there arem goods, bi units
of each good i are available. There are n bidders arriving online, each with a bundle of items at ∈ {0, 1}m
that he desires to buy, and a limit price πt for his bundle. The offline problem of maximizing the social
utility is the same as the routing problem formulation given in (7). Due to the use of a threshold price
mechanism, where threshold price for tth bidder is computed from the input of previous bidders, it is
easy to show that our 1−O(ε) competitive online mechanism also supports incentive compatibility and
voluntary participation. Also one can easily transform this model to revenue maximization. A log(m)-
competitive algorithm for this problem in random permutation setting can be found in recent work [1].

1.3.3 The online adwords problems The online adwords allocation problem is essentially the
online matching problem. In this problem, there are n queries arriving online. And, there are m bidders
each with a daily budget bi, and bid πij on query j. For jth query, the decision vector xj is an m-
dimensional vector, where xij ∈ {0, 1} indicates whether the jth query is allocated to the ith bidder. Also,
since every query can be allocated to at most one bidder, we have the constraint xTj e ≤ 1. Therefore,
the corresponding offline problem can be stated as:

maximize
∑n
j=1 π

T
j xj

subject to
∑n
j=1 πijxij ≤ bi, i = 1, . . . ,m

xTj e ≤ 1
xj ∈ {0, 1}m

The linear relaxation of the above problem is a special case of the general linear optimization problem
(3) with f j = πj , gij = πijei where ei is the ith unit vector of all zeros except 1 for the ith entry. By
Theorem 1.3 (and remarks below the theorem), and extension to integer programs discussed in Section
5.4, our algorithm gives a 1−O(ε) approximation for this problem given the lower bound condition that
for all i, bi

πmax
i
≥ m log(mn/ε)

ε2 , where πmaxi = maxj{πij} is the largest bid by bidder i among all queries.
Richer models incorporating other aspects of sponsored search such as multiple slots, can be formulated
by redefining f j , gij ,K to obtain similar results.

There were several previous studies on this problem under the worst case input model [23, 7, 16], for
which an 1 − 1/e competitive algorithm exists, and this factor is tight. Under the random permutation
assumption, Goel et al [20] showed that the greedy algorithm yields a 1 − 1/e approximation. Later
Feldman et al [17] improved this ratio to 0.67.

A 1 − O(ε) algorithm was provided for this problem by [13] with certain lower bound conditions on
OPT. As we pointed out earlier, we can guarantee the same ratio with a weaker (see Table 1) condition
on OPT than that obtained by [13]. Later, we show that this improvement is a result of dynamically
learning the price at geometric intervals, instead of one-time learning in [13]. [15] also presents a near-
optimal algorithm for this problem concurrent (and independent) with our work. However, their results
are also much weaker than ours, the comparison can be found in Table 1.
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1.3.4 Yield management problems Online yield management problem is to allocate perishable
resources to demands in order to increase the revenue by best online matching the resource capacity and
demand in a given time horizon T . It has wide applications including airline booking, hotel reservation,
media and the internet resource allocation problems. In these problems, there are several types of product
j, j = 1, 2, ..., J , and several resources bi, i = 1, ...,m. To sell a unit demand of product j, it requires
to consume certain units rij of resource i, for all i. Buyers, each demanding certain type of product,
come in a stationary Poisson process and each offers a price π for his or her unit product demand. The
objective of the seller is to maximize his or her revenue in the time horizon T while respecting given
resource constraints. The offline problem can be written as follows:

maximize
∑
t πtxt

subject to
∑
t atxt ≤ b

xt ∈ {0, 1}, ∀t,
(8)

where at is a type of product demanded by tth buyer, i.e. ait = rij , if the tth buyer demands product
of type j, j = 1, ..., J . In practice, we may not know the exact number n of the total buyers in advance.
However, by discretizing the time horizon T to sufficiently small time periods such that there is at most one
arrival in each time period and setting at = 0 for period t if there is no arrival in that period, the above
model well approximates the arrival process under the assumption of stationary Poisson arrivals [26].
Furthermore, the arrivals can be viewed as randomly ordered. Therefore, our online linear programming
model encompasses the above revenue management problem and our algorithm will provide a near-optimal
solution to this problem without any knowledge on the distribution of the demands. In this case, our
dynamic price updating algorithm will update the threshold prices at time periods εT, 2εT, 4εT, . . . till T .

1.3.5 Inventory control problems with replenishment This problem is similar to the yield
management problem discussed in the previous subsection but has multiple time period. The sellers have
m items to sell. At each time step j, a bidder comes and requests a certain bundle of items aj and offers
a price πj . In each period, the seller has to choose an inventory b at the beginning, and then allocate the
demand of the buyers during this period. Each unit of bi costs capital ci and the total investment

∑
i bici

in each period is limited by budget C. There are T periods and the objective is to maximize the total
revenue in these periods. The offline problem of each period, for all bidders who arrive in that period, is
as follows:

maximize x,b
∑
t πtxt

subject to
∑
t atxt − b ≤ 0∑m
i=1 cibi ≤ C

0 ≤ xt ≤ 1, ∀t.

(9)

Note that given b, the problem for one period is exactly as we discussed before. Given the bids come
in a random permutation over the total time horizon, our analysis will show that the itemized demands
b learned from the previous period, together with its itemized dual prices, will be approximately the
same for the remaining periods. Thus, installing inventory b and online pricing the bids for each of the
remaining periods based on the learned demand and dual prices would give a revenue that is close to the
optimal revenue of the offline problem over the entire time horizon:

maximize x,b
∑
j πjxj

subject to
∑
j ajxj − b ≤ 0∑m
i=1 cibi ≤ T · C

0 ≤ xj ≤ 1, ∀j.

(10)

1.4 Organization The rest of the paper is organized as follows. In Section 2 and 3, we present
our online algorithm and prove that it achieves 1−O(ε) competitive ratio under mild conditions on the
input. To keep the discussion clear and easy to follow, we start in Section 2 with a simpler one-time
learning algorithm. While the analysis for this simpler algorithm will be useful to demonstrate our proof
techniques, the results obtained in this setting are weaker than those obtained by our dynamic price
update algorithm, which is discussed in Section 3. In Section 4, we give a detailed proof of Theorem 1.2
regarding the necessity of lower bound condition used in our main theorem. In Section 5, we present
many extensions, including an alternative bound in terms of optimal offline value OPT instead of B,
the extension to multi-dimensional online linear programs, linear program with negative coefficients, and
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integer programs, and the applicability of our model to solving large static linear programs. Then we
conclude our paper in Section 6.

2. One-time learning algorithm For the linear program (1), we use p ∈ Rm to denote the dual
variable associated with the first set of constraints

∑
t atxt ≤ b. Let p̂ denote the optimal dual solution

to the following partial linear program defined only on the input until time s = dnεe:

maximize
∑s
t=1 πtxt

subject to
∑s
t=1 aitxt ≤ (1− ε) snbi, i = 1, . . . ,m

0 ≤ xt ≤ 1, t = 1, . . . , s
(11)

Also, for any given dual price vector p, define the allocation rule xt(p) as:

xt(p) =
{

0 if πt ≤ pTat
1 if πt > pTat

(12)

Our one-time learning algorithm can now be stated as follows:

Algorithm 1 One-time Learning Algorithm (OLA)

(i) Initialize s = dnεe, xt = 0, for all t ≤ s. And p̂ is defined as above.
(ii) Repeat for t = s+ 1, s+ 2, . . .

• If aitxt(p̂) ≤ bi −
∑t−1
j=1 aijxj , set xt = xt(p̂); otherwise, set xt = 0. Output xt.

This algorithm learns a dual price vector using the first dnεe arrivals. Then, at each time t > dnεe,
it uses this price vector to decide the current allocation, and executes this decision as long as it doesn’t
violate any of the constraints. An attractive feature of this algorithm is that it requires to solve only one
small linear program, defined on dnεe variables. In the next subsection, we prove the following proposition
regarding the competitive ratio of this algorithm, which relies on a stronger condition than Theorem 1.1:

Proposition 2.1 For any ε > 0, the one-time learning algorithm is 1 − 6ε competitive for the online
linear program (2) in random permutation model, for all inputs such that

B = min
i
bi ≥

6m log(n/ε)
ε3

(13)

2.1 Competitive ratio analysis Observe that the one-time learning algorithm waits until time
s = dnεe, and then sets the solution at time t as xt(p̂), unless there is a constraint violation. To prove
the competitive ratio of this algorithm, we first prove that with high probability, xt(p̂) satisfies all the
constraints of the linear program. Then, we show that the expected value

∑
t πtxt(p̂) is close to the

optimal offline objective value. For simplicity of the discussion, we assume s = nε in the following.

To start with, we observe that if p∗ is the optimal dual solution to (1), then {xt(p∗)} is close to the
primal optimal solution x∗, i.e., learning the dual price is sufficient to determine the primal solution. We
make the following simplifying technical assumption:

Assumption 2.1 The inputs of this problem are in general position, namely for any price vector p, there
can be at most m columns such that pTat = πt.

The assumption is not necessarily true for all inputs. However, one can always randomly perturb πt by
arbitrarily small amount η through adding a random variable ξt taking uniform distribution on interval
[0, η]. In this way, with probability 1, no p can satisfy m+ 1 equations simultaneously among pTat = πt,
and the effect of this perturbation on the objective can be made arbitrarily small 4. Given this assumption,
we can use complementary conditions of linear program (1) to observe that:

Lemma 2.1 xt(p∗) ≤ x∗t , and under Assumption 2.1, x∗t and xt(p∗) differ on at most m values of t.

4This technique for resolving ties was also used in [13].
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The lemma basically tells that, if the optimal dual solution p∗ to (1) is known, then the (integer) solution
xt(p∗) used by the online pricing algorithm is close to the optimal offline solution. However, in the
online algorithm, we use the price p̂ learned from first few inputs, instead of the optimal dual price. The
remaining discussion attempts to show that the learned price will be sufficiently accurate for our purpose.
Note that the random order assumption can be interpreted to mean that the first s inputs are a uniform
random sample without replacement of size s from the n inputs. Let S denote this sample set of size s,
and N denote the complete set of size n. Consider the sample linear program (11) defined on the sample
set S with right hand side set as (1 − ε)εb. Then, p̂ was constructed as the optimal dual price of the
sample linear program, which we refer to as the sample dual price. In the following two lemmas, we show
that with high probability, the primal solution xt(p̂) constructed from this sample dual price is feasible
and near-optimal:

Lemma 2.2 The primal solution constructed using sample dual price is a feasible solution to the linear
program(1) with high probability. More precisely, with probability 1− ε,

n∑
t=1

aitxt(p̂) ≤ bi, ∀i = 1, . . . ,m

given B ≥ 6m log(n/ε)
ε3 .

Proof. The proof will proceed as follows: Consider any fixed price p. We say a random sample S
is “bad” for this p if and only if p = p̂(S), but

∑n
t=1 aitxt(p) > bi for some i. First, we show that the

probability of bad samples is small for every fixed p. Then, we take union bound over all “distinct” prices
to prove that with high probability the learned price p̂ will be such that

∑n
t=1 aitxt(p̂) ≤ bi for all i.

To start with, we fix p and i. Define Yt = aitxt(p). If p is an optimal dual solution for sample linear
program on S, then by the complementary conditions, we have:∑

t∈S Yt =
∑
t∈S aitxt(p) ≤ (1− ε)εbi (14)

Therefore, the probability of bad samples is bounded by:

P (
∑
t∈S Yt ≤ (1− ε)εbi,

∑
t∈N Yt ≥ bi) ≤ P (|

∑
t∈S Yt − ε

∑
t∈N Yt| ≥ ε2bi|

∑
t∈N Yt = bi)

≤ 2 exp (−ε
3bi

2+ε ) ≤ δ (15)

where δ = ε
m·nm . The last step follows from Hoeffding-Bernstein’s Inequality (Lemma A.1 in appendix

A), and the condition made on B.

Next, we take a union bound over all “distinct” p’s. We call two price vectors p and q distinct if
and only if they result in distinct solutions, i.e., {xt(p)} 6= {xt(q)}. Note that we only need to consider
distinct prices, since otherwise all the Yt’s are exactly the same. Thus, each distinct p is characterized by
a unique separation of n points ({πt,at}nt=1) in m-dimensional space by a hyperplane. By results from
computational geometry [24], the total number of such distinct prices is at most nm. Taking union bound
over nm distinct prices, and i = 1, . . . ,m, we get the desired result. �

Above we showed that with high probability, xt(p̂) is a feasible solution. In the following, we show
that it actually is a near-optimal solution.

Lemma 2.3 The primal solution constructed using sample dual price is a near-optimal solution to the
linear program (1) with high probability. More precisely, with probability 1− ε,∑

t∈N
πtxt(p̂) ≥ (1− 3ε)OPT (16)

given B ≥ 6m log(n/ε)
ε3 .

Proof. The proof of this lemma is based on two observations. First, {xt(p̂)}nt=1 and p̂ satisfies
all the complementarity conditions, and hence is an optimal primal-dual solution of the following linear
program

maximize
∑
t∈N πtxt

subject to
∑
t∈N aitxt ≤ b̂i, i = 1, . . . ,m

0 ≤ xt ≤ 1, t = 1, . . . , n
(17)
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where b̂i =
∑
t∈N aitxt(p̂) if p̂i > 0, and b̂i = max{

∑
t∈N aitxt(p̂), bi}, if p̂i = 0.

Second, one can show that if p̂i > 0, then with probability 1− ε, b̂i ≥ (1− 3ε)bi. To see this, observe
that p̂ is optimal dual solution of sample linear program on set S, let x̂ be the optimal primal solution.
Then, by complementarity conditions of the linear program, if p̂i > 0, the ith constraint must be satisfied
by equality. That is,

∑
t∈S aitx̂t = (1− ε)εbi. Then, given the observation made in Lemma 2.1, and that

B = mini bi ≥ m
ε2 , we get: ∑

t∈S
aitxt(p̂) ≥

∑
t∈S

aitx̂t −m ≥ (1− 2ε)εbi. (18)

Then, using the Hoeffding-Bernstein’s Inequality, in a manner similar to the proof of Lemma 2.2, we can
show that (the proof is given in Appendix A.3.) given the lower bound on B, with probability at least
1− ε:

b̂i =
∑
t∈N

aitxt(p̂) ≥ (1− 3ε)bi (19)

Lastly, observing that whenever (19) holds, given an optimal solution x∗ to (1), (1 − 3ε)x∗ will be a
feasible solution to (17). Therefore, the optimal value of (17) is at least (1−3ε)OPT, which is equivalently
saying that

n∑
t=1

πtxt(p̂) ≥ (1− 3ε)OPT

�

Therefore, the objective value for online solution taken over entire period {1, . . . , n} is near optimal.
However, the online algorithm does not make any decision in the learning period S, and only the decisions
from period {s + 1, . . . , n} contribute to the objective value. The following lemma that relates sample
optimal to the optimal value of a linear program will bound the contribution from the learning period:

Lemma 2.4 Let OPT(S) denote the optimal value of the linear program (11) over sample S, and OPT(N)
denote the optimal value of the offline linear program (1) over N . Then,

E[OPT(S)] ≤ εOPT(N)

Proof. Let (x∗,p∗,y∗) and (x̂, p̂, ŷ) denote the optimal primal-dual solution of linear program (1)
on N , and sample linear program on S, respectively.

(p∗,y∗) = arg min bTp+
∑
t∈N yt

s.t. pTat + yt ≥ πt t ∈ N
p,y ≥ 0

(p̂, ŷ) = arg min εbTp+
∑
t∈S yt

s.t. pTat + yt ≥ πt, t ∈ S
p,y ≥ 0

Since S ⊆ N , p∗,y∗ is a feasible solution to the dual of linear program on S, by weak duality theorem:

OPT(S) ≤ εbTp∗ +
∑
t∈S

y∗t

Therefore,
E[OPT(S)] ≤ εbTp∗ + E[

∑
t∈S

y∗t ] = ε(bTp∗ +
∑
t∈N

y∗t ) = εOPT(N)

�

Now, we are ready to prove Proposition 2.1:

Proof of Proposition 2.1: Using Lemma 2.2 and Lemma 2.3, with probability at least 1 − 2ε, the
following event happen:

n∑
t=1

aitxt(p̂) ≤ bi, i = 1, . . . ,m

n∑
t=1

πtxt(p̂) ≥ (1− 3ε)OPT
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That is, the decisions xt(p̂) are feasible and the objective value taken over the entire period {1, . . . , n} is
near optimal. Denote this event by E , where Pr(E) ≥ 1− 2ε. We have by Lemma 2.2, 2.3 and 2.4:

E[
∑
t∈N\S πtxt(p̂) | E ] ≥ (1− 3ε)OPT− E[

∑
t∈S πtxt(p̂) | E ]

≥ (1− 3ε)OPT− 1
1−2εE[

∑
t∈S πtxt(p̂)]

≥ (1− 3ε)OPT− εOPT
1−2ε

(20)

Therefore,

E[
n∑

t=s+1

πtxt(p̂)] ≥ E[
∑
t∈N\S

πtxt(p̂) | E ] · Pr(E) ≥ (1− 6ε)OPT

�

3. Dynamic price update algorithm The algorithm discussed in the previous section uses the
first nε inputs to learn the price, and then applies it in the remaining time horizon. While this one-time
learning algorithm has its own merits, in particular, requires solving only a small linear problem defined
on nε variables, the lower bound required on B is stronger than that claimed in Theorem 1.1 by an ε
factor.

In this section, we discuss an improved dynamic price update algorithm that will achieve the result in
Theorem 1.1. Instead of computing the price only once, the algorithm will update the price every time
the history doubles, that is, it will learn a new price at time t = nε, 2nε, 4nε, . . .. To be precise, let p̂`

denote the optimal dual solution for the following partial linear program defined only on the input until
time `:

maximize
∑`
t=1 πtxt

subject to
∑`
t=1 aitxt ≤ (1− h`) `nbi, i = 1, . . . ,m

0 ≤ xt ≤ 1, t = 1, . . . , `
(21)

where the set of numbers h` are defined as follows:

h` = ε
√

n
` ∀` (22)

Also, for any given dual price vector p, define the allocation rule xt(p) as earlier in (12). Then, our
dynamic price update algorithm can be stated as follows:

Algorithm 2 Dynamic Pricing Algorithm (DPA)

(i) Initialize t0 = dnεe, xt = x̂t = 0, for all t ≤ t0.
(ii) Repeat for t = t0 + 1, t0 + 2, . . .

(a) Set x̂t = xt(p̂
`), where ` = d2rnεe for largest integer r such that ` < t.

(b) If aitx̂t ≤ bi −
∑t−1
j=1 aijxj , set xt = x̂t; otherwise, set xt = 0. Output xt.

Note that we update the price dlog2 (1/ε)e times during the whole time horizon. Thus, the algorithm
requires more computation, but as we show next it requires a weaker lower bound on B for proving the
same competitive ratio. The intuition behind this improvement is as follows. Note that initially, at ` = nε,
h` =

√
ε > ε. Thus, more slack is available, and so the large deviation argument for constraint satisfaction

(as in Lemma 2.2) requires a weaker condition on B. The numbers h` decreases as ` increases. However,
for large values of `, sample size is larger, making the weaker condition on B sufficient for our purpose.
Also, h` decreases rapidly enough, so that the overall loss on the objective value is not significant. The
careful choice of numbers h` will play a key role in proving our results.

3.1 Competitive ratio analysis The analysis for the dynamic algorithm proceeds in a manner
similar to that for the one-time learning algorithm. However, stronger results for the price learned in
each period need to be proven here. In this proof, for simplicity of discussion, we assume that ε = 2−E

for some integer E, and that the numbers ` = 2rnε for r = 0, 1, 2, ..., E − 1 are all integers. Let
L = {nε, 2nε, . . . , 2E−1ε}.

Lemma 3.1 and 3.2 are in parallel to Lemma 2.2 and 2.3, in the previous section, however require a
weaker condition on B:
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Lemma 3.1 For any ε > 0, with probability 1− ε:
2∑̀

t=`+1

aitxt(p̂
`) ≤ `

n
bi, for all i ∈ {1, . . . ,m}, ` ∈ L

given B = mini bi ≥ 10m log (n/ε)
ε2 .

Proof. The proof is similar to the proof of Lemma 2.2 but a more careful analysis is needed. We
provide a brief outline here with a detailed proof in Appendix B.1. First, we fix p, i and `. This time,
we say a random order is “bad” for this p, i and ` if and only if p = p̂l but

∑2`
t=`+1 aitxt(p̂

l) > l
nbi.

By using the Hoeffding-Berstein’s Inequality, we show that the probability of “bad” orders is less than
δ = ε

m·nm·E for any fixed p, i and ` under the condition on B. Then by taking union bound over all
distinct prices, all items i and periods `, the lemma is proved. �

In the following, we will use some notations. Let LPs(d) denote the partial linear program that is
defined on variables till time s, i.e. (x1, . . . , xs), with right hand side in the inequality constraints set as
d. That is,

LPs(d) :
maximize

∑s
t=1 πtxt

subject to
∑s
t=1 aitxt ≤ di, i = 1, . . . ,m

0 ≤ xt ≤ 1, t = 1, . . . , s

And let OPTs(d) denote the optimal objective value for LPs(d).

Lemma 3.2 With probability at least 1− ε, for all ` ∈ L:

2∑̀
t=1

πtxt(p̂
`) ≥ (1− 2h` − ε)OPT2`(

2`
n
b)

given B = mini bi ≥ 10m log (n/ε)
ε2 .

Proof. Let b̂i =
∑2`
j=1 aijxj(p̂

`) for i such that p`i > 0, and b̂i = max{
∑2`
j=1 aijxj(p̂

`), 2`
n bi},

otherwise. Then, note that the solution pair ({xt(p̂`)}2`t=1, p̂
`), satisfies all the complementarity conditions,

and therefore is an optimal primal-dual solution for the linear program LP2`(b̂):

maximize
∑2`
t=1 πtxt

subject to
∑2`
t=1 aitxt ≤ b̂i, i = 1, . . . ,m

0 ≤ xt ≤ 1, t = 1, . . . , 2`
(23)

This means
2∑̀
t=1

πtxt(p̂
`) = OPT2`(b̂) ≥

(
min
i

b̂i

bi
2`
n

)
OPT2`(

2`
n
b) (24)

Now, let us analyze the ratio b̂i

2`bi/n
. By definition, for i such that p`i = 0, b̂i ≥ 2`bi/n. Otherwise, using

techniques similar to the proof of Lemma 3.1, we can prove that with probability 1− ε,

b̂i =
2∑̀
t=1

aitxt(p̂
`) ≥ (1− 2h` − ε)

2`
n
bi (25)

A detailed proof of inequality (25) appears in appendix B.2. And the lemma follows from (25). �

Next, similar to Lemma 2.4 in previous section, we prove the following lemma relating the sample optimal
to the optimal value of the offline linear program:

Lemma 3.3 For any `,

E
[

OPT`(
`

n
b)
]
≤ `

n
OPT

Proof. The proof is exactly the same as the proof for Lemma 2.4. �

Now we are ready to prove Theorem 1.1.
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Proof of Theorem 1.1: Observe that the output of the online solution at time t ∈ {` + 1, . . . , 2`} is
xt(p̂

`) as long as the constraints are not violated. By Lemma 3.1 and Lemma 3.2, with probability at
least 1− 2ε:

2∑̀
t=`+1

aitxt(p̂
`) ≤ `

n
bi, for all i ∈ {1, . . . ,m}, ` ∈ L

2∑̀
t=1

πtxt(p̂
`) ≥ (1− 2h` − ε)OPT2`(

2`
n
b)

Denote this event by E , where Pr(E) ≥ 1 − 2ε. Given this event, the expected objective value achieved
by the online algorithm can be bounded as follows:

E[
∑
`∈L

2∑̀
t=`+1

πtxt(p̂
`)|E ]

≥
∑
l∈L

E

[
2∑̀
t=1

πtxt(p̂
l)|E

]
−
∑
`∈L

E

[∑̀
t=1

πtxt(p̂
`)|E

]

≥
∑
`∈L

(1− 2hl − ε)E
[
OPT2`(

2`
n
b)|E

]
−
∑
`∈L

E
[
OPT`(

`

n
b)|E

]
≥ OPT−

∑
`∈L

2hlE
[
OPT2`(

2`
n
b)|E

]
− ε
∑
`∈L

E
[
OPT2`(

2`
n
b)|E

]
− E [OPTεn(εb)|E ]

≥ OPT− 1
Pr(E)

∑
`∈L

2hlE
[
OPT2`(

2`
n
b)
]
− ε

Pr(E)

∑
`∈L

E
[
OPT2`(

2`
n
b)
]
− 1
Pr(E)

E [OPTεn(εb)]

≥ OPT− 4
1− 2ε

∑
`∈L

hl
l

n
OPT− 2ε

1− 2ε

∑
l∈L

l

n
OPT− ε

1− 2ε
OPT

≥ OPT− 13ε
1− 2ε

OPT

where the last inequality follows from the fact that∑
`∈L

`

n
= (1− ε), and

∑
`∈L

h`
`

n
= ε

∑
`∈L

√
`

n
≤ 2.5ε

Therefore,

E[
∑
`∈L

∑2`
t=`+1 πtxt(p̂

`)] ≥ E[
∑
`∈L

∑2`
t=`+1 πtxt(p̂

`)|E ] Pr(E) ≥ (1− 15ε)OPT

Thus, Theorem 1.1 is proved.

�

4. Necessity of condition on B In this section, we prove Theorem 1.2, i.e., the condition
B ≥ Ω(logm/ε2) is necessary for any online algorithm to achieve a competetive ratio of 1 − O(ε). We
prove this by constructing an instance of online packing problem with m items and B units of each item
such that no online algorithm can achieve a competetive ratio of 1−O(ε) unless B ≥ Ω(logm/ε2).

In this construction, we refer to the 0 − 1 vectors at’s as demand vectors, and πt’s as profit coef-
ficients. Assume m = 2z for some integer z. We will construct z pairs of demand vectors such that
demand vectors in each pair are complement of each other, and do not share any item. However, every
set of z vectors consisting of exactly one vector from each pair will share at least one common item.

To achieve this, consider the 2z possible boolean strings of length z. The jth boolean string represents
jth item for j = 0, . . . , 2z − 1. Let sij denote the value at ith bit of the jth string. Then, construct a pair
of demand vectors vi,wi ∈ {0, 1}m, by setting vij = sij , wij = 1 − sij . Following figure illustrates this
construction for m = 8 (z = 3):

Note that pair of vectors vi,wi, i = 1, . . . , z are complement of each other. Consider any set of z
demand vectors formed by picking exactly one of the two vectors vi and wi for each i = 1, . . . , z. Then,
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Figure 1: Construction for m = 8, z = 3

form a bit string by setting sij = 1 if this set has vector vi and 0 if it has vector wi. Then, all the vectors
in this set share the item corresponding to the boolean string. For example, in above, the demand vectors
v3,w2,w1 share item 4(=′ 100′), the demand vectors w3,v2,v1 share item 3(=′ 011′) and so on.

Now, we construct an instance consisting of

• B/z inputs with profit coefficient 4 and demand vector vi, for each i = 1, . . . , z.

• qi inputs with profit 3 and demand vector wi, for each i, where qi is a Binomial(2B/z, 1/2)
random variable.

•
√
B/4z inputs with profit 2 and demand vector wi, for each i.

• 2B/z − qi inputs with profit 1 and demand vector wi, for each i.

Using the properties of demand vectors ensured in the construction, we prove the following claim:

Claim 1 Let ri denote number of vectors of type wi accepted by any 1 − ε competitive solution for the
constructed example. Then, it must hold that∑

i

|ri −B/z| ≤ 7εB

Proof. Let OPT denote the optimal value of the offline program. And let OPTi denote the revenue
obtained from demands accepted of type i. Let topwi(k) denote sum of profits of top k inputs with
demand vector wi. Then

OPT =
z∑
i=1

OPTi ≥
z∑
i=1

(4B/z + topwi(B/z)) = 4B +
z∑
i=1

topwi(B/z)

Let ÔPT be the objective value of a solution which accepts ri vectors of type wi. Firstly, note that∑
i ri ≤ B. This is because all wis share one common item, and there are at most B units of this item

available. Let Y be the set {i : ri > B/z}, and X be the remaining i’s, i.e. X = {i : ri ≤ B/z}. Then, we
show that total number of accepted vis cannot be more than B−

∑
i∈Y ri+ |Y |B/z. Obviously, the set Y

cannot contribute more than |Y |B/z vis. Let S ⊆ X contribute the remaining vis. Now consider the item
that is common to all wis in set Y and vis in the set S (there is at least one such item by construction).
Since only B units of this item are available, total number of vis contributed by S cannot be more than
B −

∑
i∈Y ri. Therefore number of accepted vis is less than or equal to B −

∑
i∈Y ri + |Y |B/z.

Denote P =
∑
i∈Y ri − |Y |B/z, M = |X|B/z −

∑
i∈X ri. Then, P,M ≥ 0. And the objective value

ÔPT ≤
∑z
i=1 topwi(ri) + 4(B −

∑
i∈Y ri + |Y |B/z)

≤
∑
i topwi(B/z) + 3P −M + 4(B − P )

= OPT− P −M

Since OPT ≤ 7B, this means that, P +M must be less than 7εB in order to get an approximation ratio
of 1− ε or better. �
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Here is a brief description of the remaining proof. By construction, for every i, there are exactly 2B/z
demand vectors wi that have profit coefficients 1 and 3, and those have equal probability to take value
1 or 3. Now, from the previous claim, in order to get near-optimal solution, one must select close to
B/z demand vectors of type wi. Therefore, if total number of (3,wi) inputs are more than B/z, then
selecting any (2,wi) will cause a loss of 1 in profit as compared to the optimal profit; and if total number
of (3,wi) inputs are less than B/z −

√
B/4z, then rejecting any (2,wi) will cause a loss of 1 in profit.

Using central limit theorem, at any step, both these events can happen with constant probability. Thus,
every decision for (2,wi) is a mistake with constant probability, which results in a total expected loss of
Ω(
√
B/z) for every i, that is, a total loss of Ω(

√
zB).

If the number of wis to be accepted is not exactly B/z, some of these
√
B/z decisions may not be

mistakes, but as in the claim above, such cases cannot be more than 7εB. Therefore, the expected value
of online solution,

ONLINE ≤ OPT− Ω(
√
zB − 7εB)

Since OPT ≤ 7B, in order to get (1− ε) approximation factor, we need

Ω(
√
z/B − 7ε) ≤ 7ε⇒ B ≥ Ω(z/ε2) = Ω(log(m)/ε2)

This completes the proof of Theorem 1.2. A detailed exposition of steps used in this proof appears in
Appendix C.

5. Extensions We present a few extensions and implications of our results.

5.1 Alternative bounds in terms of OPT In Theorem 1.1, we required lower bound conditions
on the right-hand side input B = mini bi. Interestingly, our conditions can be easily translated into a
corresponding condition that depends only on the optimal offline objective value OPT instead of B. In
particular, we can show that

Proposition 5.1 For any ε > 0, our online algorithm is 1 − O(ε) competitive for the online linear
program (2) in random permutation model, for all inputs such that

OPT

πmax
≥ Ω

(
m2 log (n/ε)

ε2

)
(26)

where πmax = maxj=1,...,n πj.

We may remark that the above proposition improves upon the existing results that depend on OPT ([13])
by reducing the dependence on ε from ε3 to ε2. A key to these improvements is our dynamic pricing
approach as opposed to the usual one-time learning approach.

Out of the two forms of conditions (in terms of B as in Theorem 1.1, and in terms of OPT as in
Proposition 5.1), the preferable form may depend on the application at hand. Meanwhile, we can show
that none of the two conditions subsumes another. In Appendix F, we give examples showing that either
of the conditions could be stronger depending on the problem instance.

5.2 Online multi-dimensional linear program We consider the following more general online
linear programs with multi-dimensional decisions xt ∈ Rk at each step, as defined in Section 1:

maximize
∑n
t=1 f

T
t xt

subject to
∑n
t=1 g

T
itxt ≤ bi i = 1, . . . ,m

xTt e ≤ 1,xt ≥ 0 ∀t
xt ∈ Rk

(27)

Our online algorithm remains essentially the same (as described in Section 3), with xt(p) now defined as
follows:

xt(p) =
{

0 if for all j, ftj ≤
∑
i pigitj

er otherwise, where r ∈ arg maxj(ftj −
∑
i pigitj)

(28)

Using the complementary conditions of (27), and the lower bound condition on B as assumed in Theorem
1.3, we can prove the following lemmas; the proofs are very similar to the proofs for the one-dimensional
case, and will be provided in the appendix.
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Lemma 5.1 x∗t and xt(p∗) differ in at most m values of t.

Lemma 5.2 Let p and q are distinct if xt(p) 6= xt(q) for some t. Then, there are at most nmk2m distinct
price vectors.

With the above lemmas, the proof of Theorem 1.3 will follow exactly as the proof for Theorem 1.1.

5.3 General constraint matrices In (1), we assumed that each entry of the constraint matrix is
between zero and one and the coefficients in the objective function is positive. Here, we show that these
restrictions can be relaxed to

πj either positive or negative, and aj = (aij)mi=1 ∈ [−1, 1]m.

(In Remark 1.1, we have already shown that we can deal with large coefficients by first normalizing them
using a row scaling.)

First it is easy to note that the requirement πj ≥ 0 can be relaxed since we never used this condition
in our proof.

When negative entries exist in the coefficient matrix, everything in the proof is the same except that
there is risk of running out of inventory during the process. The following lemma which is a strengthened
statement of Lemma 3.1 shows that this will not happen with high probability in our dynamic price
updating algorithm.

Lemma 5.3 For any ε > 0, with probability 1− ε:
w∑

t=`+1

aitxt(p̂
`) ≤ `

n
bi, for all i ∈ {1, . . . ,m}, ` ∈ L, `+ 1 ≤ w ≤ 2`

given B = mini bi ≥ 10(m+1) log (n/ε)
ε2 .

Proof. The idea of the proof is to add an extra n factor to the δ defined in proving Lemma 3.1
to guarantee that for every step, our algorithm will not violate the inventory constraint. This will only
affect the condition on B by increasing m to m+1 which is no more than a constant factor. The detailed
proof is given in Appendix E.1. �

Note that allowing negative aij ’s may have important implications in many management problems, which
means that we not only allow to sell products, but also allow buying from others. This will be a fairly
general model for many practical management problems.

5.4 Online integer programs From the definition of xt(p) in (12), the algorithm always outputs
integer solutions. And, since the competitive ratio analysis will compare the online solution to the optimal
solution of the corresponding linear relaxation, the competitive ratio stated in Theorem 1.1 also holds for
the online integer programs. The same observation holds for the general online linear programs introduced
in Section 5.2 since it also outputs integer solutions. Our result implies a common belief: when relatively
sufficient resource quantities are to be allocated to a large number of small demands, linear programming
solutions possess a small gap to integer programming solutions.

5.5 Fast solution of large linear programs by column sampling Apart from online problems,
our algorithm can also be applied for solving (offline) linear programs that are too large to consider all
the variables explicitly. Similar to the one-time learning online solution, one could randomly sample a
small subset εn of variables, and use the dual solution p̂ for this smaller program to set the values of
variables xj as xj(p̂). This approach is very similar to the popular column generation method used for
solving large linear programs [12]. Our result provides the first rigorous analysis of the approximation
achieved by the approach of reducing the linear program size by randomly selecting a subset of columns.

6. Conclusions In this paper, we provided a 1 − o(1) competitive algorithm for a general class
of online linear programming problems under the assumption of random order of arrival and a mild
condition on the right-hand-side input. The condition we use is independent of the optimal objective
value, objective function coefficients, or distributions of input data.
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Our dynamic learning-based algorithm works by dynamically updating a threshold price vector at
geometric time intervals. The algorithm provides the best known bounds for many generalized secretary
problems including online routing, adwords allocation problems, etc; also it presents a first non-asymptotic
analysis for the online LP, a model frequently used in revenue management and resource allocation. Be-
sides, the geometric learning frequency may also be of interest to management practitioners. It essentially
indicates that not only it might be bad to react too slow, but also to react too fast.

There are many remaining questions. Theoretically, is the bound on the size of the right-hand-input
B the optimal one can achieve under the current model? We tried to answer this question partially by
proving that the bound must be at least Ω(log(m)/ε2). Thus, while the dependence on ε is provably
optimal, that is not case for the dependence on m achieved by our algorithm; could we find an alternative
proving technique to improve it? Furthermore, the comparison between this dynamic price updating
mechanism and the other price updating methods in practice will be very interesting.
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Appendix A. Supporting lemmas for Section 2

A.1 Hoeffding-Bernstein’s Inequality By Theorem 2.14.19 in [27]:

Lemma A.1 [Hoeffding-Bernstein’s Inequality] Let u1, u2, ...ur be a random sample without replacement
from the real numbers {c1, c2, ..., cR}. Then for every t > 0,

P (|
∑
i ui − rc̄| ≥ t) ≤ 2 exp(− t2

2rσ2
R+t∆R

) (29)

where ∆R = maxi ci −mini ci, c̄ = 1
R

∑
i ci, and σ2

R = 1
R

∑R
i=1(ci − c̄)2.

A.2 Proof of Lemma 2.1: Let x∗,p∗ be optimal primal-dual solution of the offline problem (1).
From KKT conditions of (1), x∗t = 1, if (p̂∗)Tat < πt and x∗t = 0 if (p∗)Tat > πt. Therefore, xt(p∗) = x∗t
if (p∗)Tat 6= πt. By Assumption 2.1, there are at most m values of t such that (p∗)Tat 6= πt.

A.3 Proof of inequality (19) We prove that with probability 1− ε

b̂i =
∑
t∈N

aitxt(p̂) ≥ (1− 3ε)bi

given
∑
t∈S aitxt(p̂) ≥ (1 − 2ε)εbi. The proof is very similar to the proof of Lemma 2.2. Fix a price

vector p and i. Define a permutation is “bad” for p, i if both (a)
∑
t∈S aitxt(p) ≥ (1 − 2ε)εbi and (b)∑

t∈N aitxt(p) ≤ (1− 3ε)bi hold.

Define Yt = aitxt(p). Then, the probability of bad permutations is bounded by:

Pr(|
∑
t∈S Yt − ε

∑
t∈N Yt| ≥ ε2bi|

∑
t∈N Yt ≤ (1− 3ε)bi) ≤ 2 exp

(
− biε

3

3

)
≤ ε

m·nm (30)

where the last inequality follows from the inequality that bi ≥ 6m log(n/ε)
ε3 . Summing over nm “distinct”

prices and i = 1, . . . ,m, we get the desired inequality.
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Appendix B. Supporting lemmas for Section 3

B.1 Proof of Lemma 3.1 Proof. Consider the ith component
∑
t aitx̂t for a fixed i. For ease

of notation, we temporarily omit the subscript i. Define Yt = atxt(p). If p is an optimal dual solution
for (21), then by the complementarity conditions, we have:∑`

t=1 Yt =
∑`
t=1 atxt(p) ≤ (1− h`)b `n (31)

Therefore, the probability of “bad” permutations is bounded by:

P (
∑`
t=1 Yt ≤ (1− h`) b`n ,

∑2`
t=`+1 Yt ≥

b`
n )

≤ P (
∑`
t=1 Yt ≤ (1− h`) b`n ,

∑2`
t=1 Yt ≥

2b`
n ) + P (|

∑`
t=1 Yt −

1
2

∑2`
t=1 Yt| ≥

h`

2
b`
n ,
∑2`
t=1 Yt ≤

2b`
n )

Define δ = ε
m·nm·E . Using Hoeffding-Bernstein’s Inequality (Lemma A.1 in appendix, here R = 2`,

σ2
R ≤ b/n, and ∆R ≤ 1), we have:

P (
∑`
t=1 Yt ≤ (1− h`) b`n ,

∑2`
t=1 Yt ≥

2b`
n ) ≤ P (

∑`
t=1 Yt ≤ (1− h`) b`n |

∑2`
t=1 Yt ≥

2b`
n )

≤ P (
∑`
t=1 Yt ≤ (1− h`) b`n |

∑2`
t=1 Yt = 2b`

n )
≤ P (|

∑`
t=1 Yt −

1
2

∑2`
t=1 Yt| ≥ h`

b`
n |
∑2`
t=1 Yt = 2b`

n )
≤ 2 exp (− ε2b

2+hl
) ≤ δ

2

and
P (|

∑`
t=1 Yt −

1
2

∑2`
t=1 Yt| ≥

h`

2
b`
n ,
∑2`
t=1 Yt ≤

2b`
n ) ≤ 2 exp(− ε2b

8+2h`
) ≤ δ

2

where the last steps hold because h` ≤ 1, and the condition made on B.

Next, we take a union bound over nm distinct prices, i = 1, . . . ,m, and E values of `, the lemma is
proved. �

B.2 Proof of inequality (25) Proof. The proof is very similar to the proof of Lemma 3.1. Fix
a p, ` and i ∈ {1, . . . ,m}. Define “bad” permutations for p, i, ` as those permutations such that all the
following conditions hold: (a) p = p̂`, that is, p is the price learned as the optimal dual solution for (21),
(b) pi > 0, and (c)

∑2`
t=1 aitxt(p) ≤ (1 − 2h` − ε) 2`

n bi. We will show that the probability of these bad
permutations is small.

Define Yt = aitxt(p). If p is an optimal dual solution for (21), and pi > 0, then by the KKT conditions
the ith inequality constraint holds with equality. Therefore, by observation made in Lemma 2.1, we have:∑`

t=1 Yt =
∑`
t=1 aitxt(p) ≥ (1− h`) `nbi −m ≥ (1− h` − ε) `nbi (32)

where the second last inequality follows from B = mini bi ≥ m
ε2 , and ` ≥ nε. Therefore, the probability

of “bad” permutations for p, i, ` is bounded by:

P (|
∑`
t=1 Yt −

1
2

∑2`
t=1 Yt| ≥ h`

bi`
n |
∑2`
t=1 Yt ≤ (1− 2h` − ε) 2`

n bi) ≤ 2 exp (− ε
2bi

2 ) ≤ δ

where δ = ε
m·nm·E . The last inequality follows from the condition on B. Next, we take a union bound

over the nm “distinct” p’s, i = 1, . . . ,m, and E values of `, we conclude that with probability 1− ε
2∑̀
t=1

aitx̂t(p̂
`) ≥ (1− 2h` − ε)

2`
n
bi

for all i such that p̂i > 0 and all `. �

Appendix C. Detailed steps for Theorem 1.2 Let c1, . . . , cn denote the n customers. For each
i, the set Ri ⊆ {c1, . . . , cn} of customers with bid vector wi and bid 1 or 3 is fixed. |Ri| = 2B/z for all
i. Conditional on set Ri the bid values of customers {cj , j ∈ Ri} are independent random variables that
take value 1 or 3 with equal probability.

Now consider tth bid (2,wi). In at least 1/2 of the random permutations, the number of bids from
set Ri before the bid t is less than B/z. Conditional on this event, with a constant probability the bids
in Ri before t take values such that the bids after t can make the number of (3,wi) bids more than B/z
with a constant probability and less than B/z −

√
B/4z with a constant probability. This probability
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calculation is similar to the one used by Kleinberg [21] in his proof of necessity of condition B ≥ Ω(1/ε2).
For completeness, we derive it in the Lemma C.1 towards the end of the proof.

Now, in the first kind of instances (where number of (3,wi) bids are more than B/z) retaining (2,wi)
is a “potential mistake” of 1, and in second kind, skipping (2,wi) is a potential mistake of 1. We call it
a potential mistake because it will cost a revenue loss of 1 if the online algorithm decides to pick B/z of
wi bids. |ri −B/z| of these mistakes may be recovered in each instance by deciding to pick ri 6= B/z of
wi bids. The total expected number of potential mistakes is Ω(

√
Bz) (since there are

√
B/4z of (2,wi)

bids for every i). By Claim 1, no more than a constant fraction of instances can recover more than 7εB
of the potential mistakes. Let ONLINE denote the expected value for the online algorithm over random
permutation and random instances of the problem. Therefore,

ONLINE ≤ OPT− Ω(
√
zB − 7εB)

Now, observe that OPT ≤ 7B. This is because by construction every set of demand vectors (consisting
of either vi or wi for each i) will have at least 1 item in common, and since there are only B units of this
item available, at most 2B demand vectors can be accepted giving a profit of at most 7B. Therefore,
ONLINE ≤ OPT(1− Ω(

√
z/B − 7ε)), and in order to get (1− ε) approximation factor we need

Ω(
√
z/B − 7ε) ≤ O(ε)⇒ B ≥ Ω(z/ε2)

This completes the proof of Theorem 1.2.

Lemma C.1 Consider 2k random variables Yj , j = 1, . . . , 2k that take value 0/1 independently with equal
probability. Let r ≤ k.Then with constant probability Y1, . . . , Yr take value such that

∑2k
j=1 Yj can be

greater or less than its expected value k by
√
k/2 with equal constant probability.

Pr(|
2k∑
j=1

Yj − k| ≥ d
√
k/2e | Y1, . . . Yr) ≥ c

for some constant 0 < c < 1.

Proof.

• Given r ≤ k, |
∑
j≤r Yj − r/2| ≤

√
k/4 with constant probability (by central limit theorem).

• Given r ≤ k, |
∑
j>r Yj − (2k − r)/2)| ≥ 3

√
k/4 with constant probability.

Given the above events |
∑
j Yj − k| ≥

√
k/2, and by symmetry both events have equal probability. �

Appendix D. Online multi-dimensional linear program

D.1 Proof of Lemma 5.1 Proof. Using Lagrangian duality, observe that given optimal dual
solution p∗, optimal solution x∗ is given by:

maximize fTt xt −
∑
i p
∗
i g
T
itxt

subject to xTt e ≤ 1,xt ≥ 0
(33)

Therefore, it must be true that if x∗tr = 1, then r ∈ arg maxj ftj − (p∗)Tgtj and ftr − (p∗)Tgtr ≥ 0
This means that for t’s such that maxj ftj − (p∗)Tgtj is strictly positive and arg maxj returns a unique
solution, xt(p∗) and x∗t are identical. By random perturbation argument there can be at most m values
of t which do not satisfy this condition (for each such t, p satisfies an equation ftj − pTgtj = ftl − pTgtl
for some j, l, or ftj − pTgtj = 0 for some j). This means x∗ and xt(p∗) differ in at most m positions.
�

D.2 Proof of Lemma 5.2 Proof. Consider nk2 expressions

ftj − pT gtj − (ftl − pT gtl), 1 ≤ j, l ≤ k, j 6= l, 1 ≤ t ≤ n
ftj − pT gtj , 1 ≤ j ≤ k, 1 ≤ t ≤ n

xt(p) is completely determined once we determine the subset of expressions out of these nk2 expressions
that are assigned a non-negative value. By theory of computational geometry, there can be at most
(nk2)m such distinct assignments. �
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Appendix E. General constraint matrix case

E.1 Proof of Lemma 5.3 Proof.

The proof is very similar to the proof of Lemma 3.1. To start with, we fix p and `. This time, we say
a random order is “bad” for this p if and only if there exists ` ∈ L, ` + 1 ≤ w ≤ 2` such that p = p̂l

but
∑w
t=`+1 aitxt(p̂

l) > l
nbi for some i . Define δ = ε

m·nm+1·E . Then by Hoeffding-Berstein’s Inequality
one can show that for each fixed p, i ` and w, the probability of that bad order is less than δ. Then by
taking union bound over all p, i, ` and w, the lemma is proved. �

Appendix F. Competitive ratio in terms of OPT In this section, we show prove Proposition
5.1 that provides a lower bound condition only in OPT (and not on B). We also show that the conditions
on OPT and B don’t subsume each other. We will give examples showing that either of the conditions
could be stronger depending on the problem instance.

Proof of Proposition 5.1: We only give a brief proof since the main idea is very similar to
our main theorem but only with some adjustment of the parameters. Without loss of generality, assume
πmax = 1. Also, we assume aij ∈ {0, 1}. We still take L = {nε, 2nε, ...}, and compute the dual price of
following program for each ` ∈ L, which we use on inputs from `+ 1 to 2`:

maximize
∑`
t=1 πtxt

subject to
∑`
t=1 aitxt ≤ (1− h`,i) `nbi, i = 1, . . . ,m

0 ≤ xt ≤ 1, t = 1, . . . , `
(34)

Here, instead of using h` = ε
√

n
` as in (21), we are using h`,i =

√
2nm log (n/ε)

`bi
. Then by the same

argument as we used in the proof of our main theorem, with probability at least 1 − O(ε) none of the
constraints will be violated and

∑2`
t=1 aitxt(p̂

`) ≥ (1− 2h`,i− ε) 2`
n bi for all ` and i. Therefore, comparing

to the optimal value of

maximize
∑2`
t=1 πtxt

subject to
∑2`
t=1 aitxt ≤ (1− 2h` − ε) 2`

n bi i = 1, ...,m
0 ≤ xt ≤ 1 t = 1, ..., 2`,

(35)

the difference in value of new algorithm is at most
∑
i(2h`,i−2h`)+ 2l

n bi (we have assumed that πmax = 1).
Also, we know by the proof of Theorem 1.1, using (35) gives a value of at least (1−O(ε))OPT, therefore
the loss of the new algorithm is at most

O(εOPT ) + 2
∑
`,i

(2h`,i − 2h`)+ `

n
bi ≤ O(εOPT ) +O

(
m2 log (n/ε)

ε

)
= O(εOPT )

The last inequality is because∑
`,i

(h`,i − h`)+ `

n
bi ≤ m

∑
`

sup
b

(√
2m` log (n/ε)b

n
− bε

√
`

n

)

≤
∑
`

√
`

n

m2 log (n/ε)
ε

≤ O

(
m2 log (n/ε)

ε

)
When aij /∈ {0, 1}, πmax can be taken as the maximum bid price per order, i.e. πmax = maxj

πj∑
i aij

.
�

Next, we compare Theorem 1.1 and Proposition 5.1 by providing examples where conditions for one
may be satisfied and not the other.

Example F.1 Condition on B fails but condition on OPT
πmax

holds.
We start from any instance for which both conditions hold. However, we add another item to this instance,
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which has very few copies and contributes very little to the optimal solution(much less than OPT/m).
Then condition on B will fail but the OPT

πmax
one still holds to guarantee that our algorithm returns a

near-optimal solution. Intuitively, condition on OPT
πmax

works better when the coefficients πis are uniform
but the number of items bi is highly non-uniform.

Example F.2 Condition on OPT
πmax

fails but condition on B holds.
Again, we start from any instance for which both the conditions hold. Now we replace one coefficient πi
to take a value that equals to the original optimal objective value. Now, OPT

πmax
is less than 2, but the value

of B stays unchanged. Intuitively, condition on B condition works better when the number of items are
close to uniform but the coefficients πis are not.

Above examples show that the conditions on B and OPT don’t subsume each other. However, since
the condition on B is checkable, while the condition on OPT is not, the former might be preferable in
practice.


